1
|
Corbin B, Houglan P, Pang Y. Fluorescence of 2-Hydroxy Chalcone Analogs with Extended Conjugation: ESIPT vs. ICT Pathways. Molecules 2024; 29:5972. [PMID: 39770060 PMCID: PMC11677836 DOI: 10.3390/molecules29245972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
The chalcone derivatives with hydroxy group (2) have been examined using low-temperature fluorescence spectroscopy. The study aimed to freeze the intramolecular charge transfer (ICT) motion in order to reveal the potential hidden transition(s) that are difficult to observe at room temperature. Although chalcone 2 revealed one emission peak at ~667 nm at room temperature, it exhibited two emission peaks (λem = 580 and 636 nm) in EtOH at liquid N2 temperatures (77 K). With the aid of model compound 3 with methoxy group and aluminum complex 2-Al3+, attempts were made to assign these emission peaks. The results point towards the possibility of the coexistence of ICT and excited state intramolecular proton transfer (ESIPT) in the chalcone derivatives with extended conjugation.
Collapse
Affiliation(s)
| | | | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
2
|
Pivovarenko VG, Klymchenko AS. Fluorescent Probes Based on Charge and Proton Transfer for Probing Biomolecular Environment. CHEM REC 2024; 24:e202300321. [PMID: 38158338 DOI: 10.1002/tcr.202300321] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Fluorescent probes for sensing fundamental properties of biomolecular environment, such as polarity and hydration, help to study assembly of lipids into biomembranes, sensing interactions of biomolecules and imaging physiological state of the cells. Here, we summarize major efforts in the development of probes based on two photophysical mechanisms: (i) an excited-state intramolecular charge transfer (ICT), which is represented by fluorescent solvatochromic dyes that shift their emission band maximum as a function of environment polarity and hydration; (ii) excited-state intramolecular proton transfer (ESIPT), with particular focus on 5-membered cyclic systems, represented by 3-hydroxyflavones, because they exhibit dual emission sensitive to the environment. For both ICT and ESIPT dyes, the design of the probes and their biological applications are summarized. Thus, dyes bearing amphiphilic anchors target lipid membranes and report their lipid organization, while targeting ligands direct them to specific organelles for sensing their local environment. The labels, amino acid and nucleic acid analogues inserted into biomolecules enable monitoring their interactions with membranes, proteins and nucleic acids. While ICT probes are relatively simple and robust environment-sensitive probes, ESIPT probes feature high information content due their dual emission. They constitute a powerful toolbox for addressing multitude of biological questions.
Collapse
Affiliation(s)
- Vasyl G Pivovarenko
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033, Kyiv, Ukraine
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI SysChem, Université de Strasbourg, 67401, Illkirch, France
| |
Collapse
|
3
|
Different positions of cyano substitution controlled directionality of ESIPT processes with two asymmetric proton acceptors system: A TD-DFT study. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
A near-infrared self-assembled micellar nanoprobe for highly selective detection of hydrazine. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Liang X, Zhang Z, Fang H. Uncovering the effect of atom substitution on ESIPT direction and luminescent property of the asymmetric two proton acceptor compound: A TD-DFT study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Yan Q, Wang Y, Wang Z, Zhang G, Shi D, Xu H. A novel water-soluble flavonol-based fluorescent probe for highly specific and sensitive detection of Al 3+ and its application in onion and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121384. [PMID: 35636134 DOI: 10.1016/j.saa.2022.121384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
A novel and simple turn-on fluorescence probe (HD) for Al3+ detection was successfully developed based on flavonol derivatives. This probe exhibited a significantly enhanced fluorescence response toward Al3+ in aqueous solution which could be observed by naked-eye from poor fluorescence to strong light green emission. The probe HD displays highly specific detection for Al3+ over other competitive metal ions, and the detection limit of probe HD for Al3+ was determined to be 2.57 × 10-8 M, which are much lower than the World Health Organization (WHO) guideline value for drinking food/water. The binding stoichiometry of probe HD with Al3+ was determined to be 1:1 according to Job's plot and ESI-HRMS analysis, and the binding constant was calculated to be 2.01 × 104 M-1. The probe HD exhibited high selectivity, high sensitivity, good anti-interface ability, and wide pH application range as well as the quantitative determination in the detection of Al3+. The coordination mechanism of probe HD with Al3+ was supported by density functional theory (DFT) calculations and HRMS analysis. In addition, the probe HD was found to have good cell permeability and could be applied for live-cell imaging to detect Al3+ in onions and zebrafish.
Collapse
Affiliation(s)
- Qi Yan
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gang Zhang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Donghai Shi
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453002, China.
| |
Collapse
|
7
|
Wang E, Ma H, Lu J, Wang F, Ren J. Recent progress in the fluorescent probes for hydrazine detection. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Yin F, Fang H. Unveiling the effects of atomic electronegativity on the ESIPT mechanism and luminescence property of new coumarin benzothiazole Fluorophore: A TD-DFT exploration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121118. [PMID: 35305361 DOI: 10.1016/j.saa.2022.121118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The excited-state intramolecular proton transfer (ESIPT) mechanism, photophysical properties of 8-(benzo[D] thiazole-2-yl)-7-hydroxy-2H-benzopyran-2-one (L-HKS) and the effect of O/Se atomic substitution on L-HKS have been studied in detail based on density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The S atom in the thiazole ring of L-HKS has been replaced by O/Se atom (denoted to L-HKO/L-HKSe) to analyze the effects of atomic electronegativity on the intramolecular H-bond, absorption/emission spectrum and ESIPT process. Through the analysis of series of calculated results, it can be found that the intramolecular H-bonds at normal form and tautomer form are enhanced and weakened in the S1 state, respectively, which is favorable to ESIPT process. The potential energy curves revealed that the ESIPT process is much easier to occur gradually from L-HKO to L-HKS and L-HKSe, as the electron-withdrawing ability of atom (from O to S and Se) is weakened. The atomic substitution also has an effect on the photophysical properties. From L-HKO to L-HKS, the emission peak at tautomer form red-shifts 70 nm. The energy gaps of the three compounds follow the decreased order of L-HKO (4.866 eV) > L-HKS (4.753 eV) > L-HKSe (4.371 eV) with the weakened electron-withdrawing ability of atom (from O to S and Se), which leads to the gradual red-shift of the absorption spectra from L-HKO to L-HKS and L-HKSe.
Collapse
Affiliation(s)
- Feiyang Yin
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hua Fang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
9
|
Zhang C, Lv X, Liu X, Chen H, He H. A reasonably constructed fluorescent chemosensor based on the dicyanoisophorone skeleton for the discriminative sensing of Fe 3+ and Hg 2+ as well as imaging in HeLa cells and zebrafish. RSC Adv 2022; 12:12355-12362. [PMID: 35480345 PMCID: PMC9037825 DOI: 10.1039/d2ra01357f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a new fluorescent sensor dicyanoisophorone Rhodanine-3-acetic acid (DCI-RDA) (DCI-RDA) has been developed by employing a DCI-based push–pull dye as the fluorophore and RDA as the recognition moiety for the simultaneous sensing of Fe3+ and Hg2+ with a large Stokes Shift (162 nm), high selectivity and sensitivity, and low LOD (1.468 μM for Fe3+ and 0.305 μM for Hg2+). In particular, DCI-RDA has a short response time (30 s). The Job's plot method in combination with 1H NMR titration and theoretical calculations was used to determine the stoichiometry of both DCI-RDA-Fe3+/Hg2+ complexes to be 1 : 1. Moreover, DCI-RDA is applied as a fluorescent probe for imaging in HeLa cells and zebrafish, indicating that it can be potentially applied for Fe3+/Hg2+ sensing in the field of biology. A new fluorescent sensor dicyanoisophorone rhodanine-3-acetic acid has been developed by employing a DCI-based push–pull dye as the fluorophore and RDA as the recognition moiety for the simultaneous sensing of Fe3+ and Hg2+.![]()
Collapse
Affiliation(s)
- Chuqi Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Xinyan Lv
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Xiuhong Liu
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Hongyun Chen
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Haifeng He
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| |
Collapse
|
10
|
Liang X, Fang H. Fine-tuning directionality of ESIPT behavior of the asymmetric two proton acceptor system via atomic electronegativity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120406. [PMID: 34600322 DOI: 10.1016/j.saa.2021.120406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The excited state intramolecular proton transfer (ESIPT) processes and photophysical features of 3-(benzo[d]oxazol-2-yl)-2-hydroxy-5-methoxy benzaldehyde (BOHMB) and 3-(benzo[d]selenazole-2-yl)-2-hydroxy-5-methoxy benzaldehyde (BSeHMB) molecules were investigated in detail by using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The strengthened excited state hydrogen bonds (H-bond) of the title compounds are favorable to ESIPT process according to the analyses of structural parameter, infrared vibration frequency, electron density and reduced density gradient. The atomic substitution changes the intramolecular H-bond O1-H2…O3 and O1-H2…N4 and the fluorescence emission peaks of BOHMB-N and BSeHMB-N in normal and tautomer forms. The potential energy curves indicate that the ESIPT energy barriers of BOHMB-O, BTHMB-O and BSeHMB-O increase as the electron-withdrawing abilities of atoms (from O to S and Se) are gradually weakened. However, the ESIPT energy barriers of BOHMB-N and BTHMB-N follow the totally opposite order. For BOHMB and BSeHMB, ESIPT process prefers to occur in the direction from O-H group to the O atom.
Collapse
Affiliation(s)
- Xiuning Liang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hua Fang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
11
|
Sun YJ, Zhao DJ, Song B. Indole-substituted flavonol-based cysteine fluorescence sensing and subsequent precisely controlled linear CO liberation. Analyst 2022; 147:3360-3369. [DOI: 10.1039/d2an00631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study describes the first indole-substituted flavonol-based fluorescent probe to effectively sense and image Cys in vivo, as a precursor of photoCORM, actuated by Cys, triggered by visible-light, release precisely controlled linear CO under O2.
Collapse
Affiliation(s)
- Ying-Ji Sun
- Department of Chemistry, Dalian University of Technology, Linggong Road 2, 116024, Dalian, China
| | - Deng-Jie Zhao
- Department of Chemistry, Dalian University of Technology, Linggong Road 2, 116024, Dalian, China
| | - Bo Song
- Department of Chemistry, Dalian University of Technology, Linggong Road 2, 116024, Dalian, China
| |
Collapse
|
12
|
Sun YJ, Liu B, Zhao DJ, Zhang Y, Yu C. Cysteine ratiometric fluorescence sensing reaction actuated B-ring naphthalene-substituted flavonol-based PhotoCORM: precisely controlled linear CO liberation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02897b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study describes the first B-ring-naphthalene-substituted flavonol-based ratiometric fluorescent probe to efficiently detect and image endo/exo-genous Cys both in vivo, and subsequent Cys-driven, visible-light triggered linear CO delivery under O2.
Collapse
Affiliation(s)
- Ying-Ji Sun
- Department of Chemistry, Dalian University of Technology, Linggong Road 2, 116024, Dalian, China
| | - Bei Liu
- Department of Chemistry, Dalian University of Technology, Linggong Road 2, 116024, Dalian, China
| | - Deng-Jie Zhao
- Department of Chemistry, Dalian University of Technology, Linggong Road 2, 116024, Dalian, China
| | - Yi Zhang
- Department of Chemistry, Dalian University of Technology, Linggong Road 2, 116024, Dalian, China
| | - Chao Yu
- Department of Chemistry, Dalian University of Technology, Linggong Road 2, 116024, Dalian, China
| |
Collapse
|
13
|
Zhao X, Li X, Liang S, Dong X, Zhang Z. 3-Hydroxyflavone derivatives: promising scaffolds for fluorescent imaging in cells. RSC Adv 2021; 11:28851-28862. [PMID: 35478549 PMCID: PMC9038104 DOI: 10.1039/d1ra04767a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022] Open
Abstract
As a typical class of excited-state intramolecular proton transfer (ESIPT) molecules, 3-hydroxyflavone derivatives (3HF, also known as flavonols) have received much attention recently. Thereinto, the role of hydrophobic microenvironment is significant importance in promoting the process and effects of ESIPT, which can be regulated by the solvents, the existence of metal ions and proteins rich with α-helix structures or the advanced DNA structures. Considering that plenty of biological macromolecules offer cellular hydrophobic microenvironment, enhancing the ESIPT effects and resulting in dual emission, 3HF could be a promising scaffold for the development of fluorescent imaging in cells. Furthermore, as the widespread occurance of compounds with biological activity in plants, 3HF derivatives are much more secure to be cellular diagnosis and treatment integrated fluorescent probes. In this review, multiple regulatory strategies for the fluorescence emission of 3HF derivatives have been collectively and comprehensively analyzed, including the solvent effects, metal chelation, interaction with proteins or DNAs, which would be beneficial for ESIPT-promoting or ESIPT-blocking processes and then enhance or control the fluorescence emission of 3HF effectively. We expect that this review would provide a new perspective to develop novel 3HF-based fluorescent sensors for imaging in cells and plants.
Collapse
Affiliation(s)
- Xueke Zhao
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University Wuhan Hubei 430073 P. R. China
| | - Xiang Li
- College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China .,School of Chemistry, Central China Normal University Wuhan Hubei 430079 P. R. China
| | - Shuyu Liang
- College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Xiongwei Dong
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University Wuhan Hubei 430073 P. R. China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
14
|
Mikaliunaite L, Green DB. Using a 3-hydroxyflavone derivative as a fluorescent probe for the indirect determination of aminothiols separated by ion-pair HPLC. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2915-2925. [PMID: 34109341 DOI: 10.1039/d1ay00499a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Homocysteine, cysteine, cysteinyl-glycine, and glutathione are significant biological aminothiols (ATs) that are marker-molecules in Down syndrome, Alzheimer's disease, or have been implicated as risk factors in atherosclerosis and other vascular diseases, and therefore rapid determination of these molecules is desirable. After reduction of the disulfides, a widely used method utilizes derivatization with ammonium 7-fluorobenzo-2-oxa-1,3-diazole-4-sulfonate (SBD-F) as a fluorogenic probe prior to reversed-phase HPLC separation followed by fluorescence detection. The traditional HPLC determination of ATs is time consuming and economically expensive. We have developed an ion-pair HPLC method coupled with indirect fluorescence detection after post-column reaction with a 2,4-dinitrobenzenesulfonate derivative of a 3-hydroxyflavone. The accuracy, precision, post-column temperature and residence time, and limit-of-detection were evaluated. Sample throughput and reduced sample preparation time of over an hour for the existing methods to less than 20 minutes for the new method is also demonstrated. No statistical differences in HCy, Cys, or Cys-Gly determinations in plasma samples were observed between our method and the traditional HPLC method.
Collapse
Affiliation(s)
- Lina Mikaliunaite
- Department of Chemistry, Pepperdine University, Malibu, CA 90263, USA.
| | - David B Green
- Department of Chemistry, Pepperdine University, Malibu, CA 90263, USA.
| |
Collapse
|
15
|
Sun Q, Liu H, Qiu Y, Chen J, Wu FS, Luo XG, Wang DW. A highly sensitive and selective fluorescence turn-on probe for the sensing of H 2S in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119620. [PMID: 33684854 DOI: 10.1016/j.saa.2021.119620] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
A fluorescence turn-on probe, 2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl 2,4-dinitrobenzenesulfonate (NT-SH), has been constructed for sensing of hydrogen sulfide (H2S). NT-SH exhibited excellent detection performance including favorable water solubility, low fluorescence background, high enhancement (45-fold), large linear response range (0-50 μM) and low detection limit (80.01 nM) for H2S in aqueous. In addition, the response mechanism of NT-SH for H2S was confirmed by the theoretical calculation and mass spectral analysis. More importantly, the imaging experiments of H2S in vitro and in vivo confirmed that NT-SH had low cytotoxicity, and favorable biocompatibility. In addition, it illustrated that NT-SH was able to detected exogenous H2S in living cells and zebrafish. These results suggested that NT-SH can be act as a potential molecular tool for detecting of H2S in aqueous solution, in vitro and in vivo.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemistry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Heng Liu
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yuan Qiu
- Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemistry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jun Chen
- Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemistry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Feng-Shou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemistry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiao-Gang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemistry and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou City 450001, Henan Province, China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
16
|
You J, Fu H, Zhao D, Hu T, Nie J, Wang T. Flavonol dyes with different substituents in photopolymerization. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112097] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
A Reversible Colorimetric and Fluorescence "Turn-Off" Chemosensor for Detection of Cu 2+ and Its Application in Living Cell Imaging. Molecules 2019; 24:molecules24234283. [PMID: 31775232 PMCID: PMC6930558 DOI: 10.3390/molecules24234283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022] Open
Abstract
Dual-function chemosensors that combine the capability of colorimetric and fluorimetric detection of Cu2+ are still relatively rare. Herein, we report that a 3-hydroxyflavone derivative (E)-2-(4-(dimethylamino)styryl)-3-hydroxy-4H-chromen-4-one (4), which is a red-emitting fluorophore, could serve as a reversible colorimetric and fluorescence “turn-off” chemosensor for the detection of Cu2+. Upon addition of Cu2+ to 4 in neutral aqueous solution, a dramatic color change from yellow to purple-red was clearly observed, and its fluorescence was markedly quenched, which was attributed to the complexation between the chemosensor and Cu2+. Conditions of the sensing process had been optimized, and the sensing studies were performed in a solution of ethanol/phosphate buffer saline (v/v = 3:7, pH = 7.0). The sensing system exhibited high selectivity towards Cu2+. The limit of naked eye detection of Cu2+ was determined at 8 × 10−6 mol/L, whereas the fluorescence titration experiment showed a detection limit at 5.7 × 10−7 mol/L. The complexation between 4 and Cu2+ was reversible, and the binding constant was found to be 3.2 × 104 M−1. Moreover, bioimaging experiments showed that 4 could penetrate the cell membrane and respond to the intracellular changes of Cu2+ within living cells, which indicated its potential for biological applications.
Collapse
|
18
|
Sukpattanacharoen C, Salaeh R, Promarak V, Escudero D, Kungwan N. Heteroatom substitution effect on electronic structures, photophysical properties, and excited-state intramolecular proton transfer processes of 3-hydroxyflavone and its analogues: A TD-DFT study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Hou P, Wang J, Fu S, Liu L, Chen S. A new turn-on fluorescent probe with ultra-large fluorescence enhancement for detection of hydrogen polysulfides based on dual quenching strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:342-346. [PMID: 30716645 DOI: 10.1016/j.saa.2019.01.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/17/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Based on dual quenching strategy (ESIPT inhibited quenching and PET quenching), we have developed a new turn-on fluorescent probe 1. Combining 3-(benzo[d]thiazol-2-yl)-10-butyl-10H-phenothiazin-2-ol (dye 2) as the fluorophore and 2-fluoro-5-nitro-benzoic as the recognition moiety, probe 1 had feature of notable large Stokes shift, highly sensitivity and selective for monitoring H2Sn with remarkable fluorescence enhancement (328-fold) response at 534 nm. Probe 1 exhibited excellent performance in the quantitative detection of H2Sn with a 137 nm Stokes shift and a low detection limit of 26 nM in solution. Finally, probe 1 was successfully utilized to image H2Sn in living A549 cells and zebrafish.
Collapse
Affiliation(s)
- Peng Hou
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Jing Wang
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Shuang Fu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Lei Liu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China.
| |
Collapse
|
20
|
Yang L, Xiong H, Su Y, Tian H, Liu X, Song X. A red-emitting water-soluble fluorescent probe for biothiol detection with a large Stokes shift. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Rong Y, Wang C, Chuai P, Song Y, Zhou S, Hou P, Liu X, Wei L, Song X. A naphthalimide-indole fused chromophore-based fluorescent probe for the detection of biothiol with red emission and a large Stokes shift. NEW J CHEM 2019. [DOI: 10.1039/c9nj02709b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This probe exhibited red emission (λmax = 590 nm) and a large Stokes shift (143 nm) for the detection of biothiols.
Collapse
Affiliation(s)
- Yifan Rong
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Chen Wang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Panfeng Chuai
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Yunfan Song
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Shuang Zhou
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Peng Hou
- College of Pharmacy
- Qiqihar Medical University
- Qiqihar
- P. R. China
| | - Xingjiang Liu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Liuhe Wei
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- China
| |
Collapse
|
22
|
|
23
|
Moncomble A, Falantin C, Cornard JP. Electronic Spectroscopies Combined with Quantum Chemistry Calculations: Study of the Interactions of 3-Hydroxyflavone with Copper Ions. J Phys Chem B 2018; 122:8943-8951. [PMID: 30183301 DOI: 10.1021/acs.jpcb.8b06062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The current study aims at obtaining a better understanding of the mechanisms involved in the complexation of copper ions by 3-hydroxyflavone (3HF), which is one of the most studied compounds of the flavonoid family. To achieve this goal, quantum chemistry calculations combined with electronic spectroscopies, including absorption, fluorescence emission, and excitation, have been used. The formation of successive complexes of stoichiometry (metal/ligand) 1:2, 1:1, and 3:2 has been highlighted. Even under acidic conditions (pH = 4.0), the α-hydroxy-keto function of the molecule presents a high complexing power with regard to copper ions, insofar as a stable complex of 1:2 stoichiometry is obtained with a large conditional stability constant (log β = 8.7). The formation of this predominant species induces a quenching of the dual fluorescence of 3HF, whereas the second complex of stoichiometry 1:1 presents a fluorescence emission.
Collapse
Affiliation(s)
- Aurélien Moncomble
- Université de Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France
| | - Cécilia Falantin
- Université de Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France
| | - Jean-Paul Cornard
- Université de Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France
| |
Collapse
|
24
|
Bao XZ, Dai F, Li XR, Zhou B. Targeting redox vulnerability of cancer cells by prooxidative intervention of a glutathione-activated Cu(II) pro-ionophore: Hitting three birds with one stone. Free Radic Biol Med 2018; 124:342-352. [PMID: 29935260 DOI: 10.1016/j.freeradbiomed.2018.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 11/17/2022]
Abstract
Altered redox homeostasis including higher levels of copper, reduced glutathione (GSH) and reactive oxygen species (ROS) in cancer cells than in normal cells illustrates their redox vulnerability, and has opened a window for developing prooxidative anticancer agents (PAAs) to hit this status. However, how to design PAAs with high selectivity in killing cancer cells over normal cells remains a challenge. Herein we designed a 3-hydroxyflavone-inspired copper pro-ionophore (PHF) as a potent PAA based on the GSH-mediated conversion of 2,4-dinitrobenzenesulfonates to enols. Mechanistic investigation reveals that it is capable of exploiting increased levels of GSH in cancer cells to in situ release an active ionophore, 3-hydroxyflavone, inducing redox imbalance (copper accumulation, GSH depletion and ROS generation) and achieving highly selective killing of cancer cells upon specific transport of small amounts of Cu(II). To the best of our knowledge, it is the first example of Cu(II) pro-ionophore type of PAA which hits (changes) the three birds (abnormal copper, GSH and ROS levels in cancer cells) with one stone (PHF) in terms of its ability to induce preferentially redox imbalance of cancer cells by copper accumulation, GSH depletion and ROS generation.
Collapse
Affiliation(s)
- Xia-Zhen Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Xin-Rong Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China.
| |
Collapse
|
25
|
Chen S, Hou P, Wang J, Fu S, Liu L. A highly sensitive fluorescent probe based on the Michael addition mechanism with a large Stokes shift for cellular thiols imaging. Anal Bioanal Chem 2018; 410:4323-4330. [PMID: 29687249 DOI: 10.1007/s00216-018-1082-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/13/2018] [Accepted: 04/12/2018] [Indexed: 12/22/2022]
Abstract
A novel fluorescent probe IPY-MAL for thiols was developed based on imidazo[1,5-α]pyridine derivative, which was decorated with a maleimide group. The probe IPY-MAL showed a rapid response (30 s), high sensitivity and selectivity for thiols with a large Stokes shift (140 nm), which was triggered by the Michael addition reaction of thiols toward the C=C double bond of the maleimide group. Moreover, this probe IPY-MAL could quantitatively detect the concentrations of thiols ranging from 0 to 50 μM, and the detection limit was found to be as low as 28 nM. Cell imaging results indicated that the probe IPY-MAL could detect and visualize thiols in the living cells. Graphical abstract A novel imidazo[1,5-α]pyridine-based fluorescent probe was developed for sensitively monitoring and imaging thiols in living A549 cells with a large Stokes shift.
Collapse
Affiliation(s)
- Song Chen
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China.
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China
| | - Jing Wang
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China
| | - Shuang Fu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China
| | - Lei Liu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China
| |
Collapse
|
26
|
Bojtár M, Janzsó-Berend PZ, Mester D, Hessz D, Kállay M, Kubinyi M, Bitter I. An uracil-linked hydroxyflavone probe for the recognition of ATP. Beilstein J Org Chem 2018; 14:747-755. [PMID: 29719572 PMCID: PMC5905274 DOI: 10.3762/bjoc.14.63] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/13/2018] [Indexed: 01/05/2023] Open
Abstract
Background: Nucleotides are essential molecules in living systems due to their paramount importance in various physiological processes. In the past years, numerous attempts were made to selectively recognize and detect these analytes, especially ATP using small-molecule fluorescent chemosensors. Despite the various solutions, the selective detection of ATP is still challenging due to the structural similarity of various nucleotides. In this paper, we report the conjugation of a uracil nucleobase to the known 4'-dimethylamino-hydroxyflavone fluorophore. Results: The complexation of this scaffold with ATP is already known. The complex is held together by stacking and electrostatic interactions. To achieve multi-point recognition, we designed the uracil-appended version of this probe to include complementary base-pairing interactions. The theoretical calculations revealed the availability of multiple complex structures. The synthesis was performed using click chemistry and the nucleotide recognition properties of the probe were evaluated using fluorescence spectroscopy. Conclusions: The first, uracil-containing fluorescent ATP probe based on a hydroxyflavone fluorophore was synthesized and evaluated. A selective complexation with ATP was observed and a ratiometric response in the excitation spectrum.
Collapse
Affiliation(s)
- Márton Bojtár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Péter Zoltán Janzsó-Berend
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Dávid Mester
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Dóra Hessz
- Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Miklós Kubinyi
- Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - István Bitter
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| |
Collapse
|
27
|
A 3-hydroxyflavone derivative as fluorescence chemosensor for copper and zinc ions. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2243-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
The effect of protic solvents on the excited state proton transfer of 3-hydroxyflavone: A TD-DFT static and molecular dynamics study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.148] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Chen S, Li H, Hou P. A large stokes shift fluorescent probe for sensing of thiophenols based on imidazo[1,5-α]pyridine in both aqueous medium and living cells. Anal Chim Acta 2017; 993:63-70. [PMID: 29078956 DOI: 10.1016/j.aca.2017.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/19/2017] [Accepted: 09/05/2017] [Indexed: 01/21/2023]
Abstract
An imidazo [1,5-α]pyridine-based fluorescent probe MIPY-DNP with a large Stokes shift (173 nm) for the sensing of thiophenols in aqueous medium has been developed. This probe with 2,4-dinitrophenyl ether as a highly thiophenol-selective group was constructed based on the combination of PET and ESIPT mechanisms. Upon the treatment with thiophenols, MIPY-DNP produced a remarkable fluorescence enhancement (209-fold) at 478 nm. The detect limit for thiophenols was calculated to be as low as 5.6 nM. Importantly, the practical utility of MIPY-DNP for the selective detection of thiophenols has been successfully demonstrated in both real water samples and living cells.
Collapse
Affiliation(s)
- Song Chen
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Hongmei Li
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China.
| |
Collapse
|
30
|
Chen S, Li H, Hou P. A novel cyanobiphenyl benzothiazole-based fluorescent probe for detection of biothiols with a large Stokes shift and its application in cell imaging. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.12.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Chen W, Luo H, Liu X, Foley JW, Song X. Broadly Applicable Strategy for the Fluorescence Based Detection and Differentiation of Glutathione and Cysteine/Homocysteine: Demonstration in Vitro and in Vivo. Anal Chem 2016; 88:3638-46. [PMID: 26911923 DOI: 10.1021/acs.analchem.5b04333] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glutathione (GSH), cysteine (Cys), and homocysteine (Hcy) are small biomolecular thiols that are present in all cells and extracellular fluids of healthy mammals. It is well-known that each plays a separate, critically important role in human physiology and that abnormal levels of each are predictive of a variety of different disease states. Although a number of fluorescence-based methods have been developed that can detect biomolecules that contain sulfhydryl moieties, few are able to differentiate between GSH and Cys/Hcy. In this report, we demonstrate a broadly applicable approach for the design of fluorescent probes that can achieve this goal. The strategy we employ is to conjugate a fluorescence-quenching 7-nitro-2,1,3-benzoxadiazole (NBD) moiety to a selected fluorophore (Dye) through a sulfhydryl-labile ether linkage to afford nonfluorescent NBD-O-Dye. In the presence of GSH or Cys/Hcy, the ether bond is cleaved with the concomitant generation of both a nonfluorescent NBD-S-R derivative and a fluorescent dye having a characteristic intense emission band (B1). In the special case of Cys/Hcy, the NBD-S-Cys/Hcy cleavage product can undergo a further, rapid, intramolecular Smiles rearrangement to form a new, highly fluorescent NBD-N-Cys/Hcy compound (band B2); because of geometrical constraints, the GSH derived NBD-S-GSH derivative cannot undergo a Smiles rearrangement. Thus, the presence of a single B1 or double B1 + B2 signature can be used to detect and differentiate GSH from Cys/Hcy, respectively. We demonstrate the broad applicability of our approach by including in our studies members of the Flavone, Bodipy, and Coumarin dye families. Particularly, single excitation wavelength could be applied for the probe NBD-OF in the detection of GSH over Cys/Hcy in both aqueous solution and living cells.
Collapse
Affiliation(s)
- Wenqiang Chen
- College of Chemistry & Chemical Engineering, Central South University , 410083 Changsha, Hunan Province, P.R. China.,College of Chemistry and Materials Science, Guangxi Teachers Education University , 530001 Nanning, Guangxi, P. R. China
| | - Hongchen Luo
- College of Chemistry & Chemical Engineering, Central South University , 410083 Changsha, Hunan Province, P.R. China
| | - Xingjiang Liu
- College of Chemistry & Chemical Engineering, Central South University , 410083 Changsha, Hunan Province, P.R. China
| | - James W Foley
- Rowland Institute at Harvard, Harvard University , 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University , 410083 Changsha, Hunan Province, P.R. China
| |
Collapse
|
32
|
Tan H, Tang G, Ma C, Li Q. Luminescence detection of cysteine based on Ag⁺-mediated conformational change of terbium ion-promoted G-quadruplex. Anal Chim Acta 2016; 908:161-7. [PMID: 26826698 DOI: 10.1016/j.aca.2015.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/20/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
Abstract
In this work, we developed a simple and sensitive method for the detection of cysteine (Cys) by employing terbium ion (Tb(3+))-promoted G-qudraplex (G4/Tb) as a luminescent probe, which is based on Ag(+)-mediated conformational change of G4/Tb. Due to Ag(+) is able to compete with Tb(3+) to bind guanine at G4, the presence of Ag(+) can lead to the formation of G4/Tb-Ag(+) complex and disrupt the structure of G4/Tb. Meanwhile, the binding of Ag(+) with G4/Tb will also cause the alteration of the excited state of G4 and more efficient energy transfer from G4 to Tb(3+), enhancing the luminescence of G4/Tb. However, upon the addition of Cys, Ag(+) will be released from G4/Tb-Ag(+) complex because of the high affinity of Cys to Ag(+). This results in the re-formation of the conformation of G4/Tb and the decrease of the luminescence of G4/Tb. So, Ag(+)-enhanced luminescence of G4/Tb is associated with its conformational transformation. As a luminescent probe for Cys, G4/Tb not only shows excellent selectivity and sensitivity with a detection limit of 20 nM, but also possesses the features of simple preparation, easy reproducibility, and eliminating the interferences from background fluorescence. We envision that the presented strategy might provide new insight into the biosensing applications of lanthanide complex.
Collapse
Affiliation(s)
- Hongliang Tan
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China.
| | - Gonge Tang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Chanjiao Ma
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Qian Li
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| |
Collapse
|
33
|
Shen BX, Qian Y. A novel triphenylamine-BODIPY dendron: click synthesis, near-infrared emission and a multi-channel chemodosimeter for Hg2+ and Fe3+. J Mater Chem B 2016; 4:7549-7559. [DOI: 10.1039/c6tb02469f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel near-infrared emission triphenylamine-BODIPY dendron for Hg2+ and Fe3+ detection, fluorescent nanoparticle and living cell imaging.
Collapse
Affiliation(s)
- Bao-xing Shen
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Ying Qian
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| |
Collapse
|
34
|
A fluorescent probe emitting in near-infrared region for sensitive and selective detection of biothiols in both solution and living cells. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.11.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
A selective fluorescent probe for relay recognition of Al3+ and Cu2+ through fluorescence “off-on-off” functionality. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Liu X, Yang L, Gao L, Chen W, Qi F, Song X. A phthalimide-based fluorescent probe for thiophenol detection in water samples and living cells with a large Stokes shift. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.08.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
NIR absorbing DICPO derivatives applied to wide range of pH and detection of glutathione in tumor. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Tong Y, Dai CG, Ren Y, Luo SW. A Mechanism Study of a Novel Acid-Activatable Michael-Type Fluorescent Probe for Thiols. CHINESE J CHEM PHYS 2015. [DOI: 10.1063/1674-0068/28/cjcp1412217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
39
|
Zhang RR, Zhang JF, Wang SQ, Cheng YL, Miao JY, Zhao BX. Novel pyrazoline-based fluorescent probe for detecting thiols and its application in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:450-455. [PMID: 25238183 DOI: 10.1016/j.saa.2014.08.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/19/2014] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
A new compound, N-(4-(1,5-diphenyl-4,5-dihydro-1H-pyrazol-3-yl)phenyl)-acrylamide (probe L), was designed and synthesized as a highly sensitive and selective fluorescent probe for recognizing and detecting thiol from other amino acids. On being mixed with thiol in buffered DMSO:HEPES=1:1 solution at pH 7.4, the probe exhibited the blue emission at 474 nm. This probe is very sensitive and displayed a linear fluorescence off-on response to thiol. The fluorescence emission of the probe is pH independent in the physiological pH range. Living cell imaging of HeLa cells confirmed its cell permeability and its ability to selectively detect thiol in cells. The structure of the probe was characterized by IR, NMR and HRMS spectroscopy analysis.
Collapse
Affiliation(s)
- Rong-Rong Zhang
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jin-Feng Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Sheng-Qing Wang
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; Linyi City Engineering Consulting Institute, Shandong University, Linyi 276015, PR China
| | - Yan-Long Cheng
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jun-Ying Miao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China.
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
40
|
Liu X, Zhang W, Li C, Zhou W, Li Z, Yu M, Wei L. Nanomolar detection of Hcy, GSH and Cys in aqueous solution, test paper and living cells. RSC Adv 2015. [DOI: 10.1039/c4ra13262a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Based on selective cleavage of naphthalimide-based fluorescent probes by biological thiols, a “turn-on” fluorescent probe toward thiols has been developed.
Collapse
Affiliation(s)
- Xingjiang Liu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
- College of Chemistry and Chemical Engineering
| | - Wenying Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Chunxiao Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Wan Zhou
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Zhanxian Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Mingming Yu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Liuhe Wei
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
41
|
Liu X, Gao L, Yang L, Zou L, Chen W, Song X. A phthalimide-based fluorescent probe for thiol detection with a large Stokes shift. RSC Adv 2015. [DOI: 10.1039/c5ra00255a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A phthalimide-based fluorescent probe for thiols with a large Stokes shift (161 nm) was developed via PET and ESIPT mechanisms. This probe displayed good selectivity and high sensitivity toward thiols. Imaging intracellular thiols was successfully achieved in living cells.
Collapse
Affiliation(s)
- Xingjiang Liu
- College of Chemistry & Chemical Engineering
- Central South University
- 410083 Changsha
- P. R. China
| | - Li Gao
- College of Chemistry & Chemical Engineering
- Central South University
- 410083 Changsha
- P. R. China
| | - Liu Yang
- College of Chemistry & Chemical Engineering
- Central South University
- 410083 Changsha
- P. R. China
| | - Lifen Zou
- College of Chemistry & Chemical Engineering
- Central South University
- 410083 Changsha
- P. R. China
| | - Wenqiang Chen
- College of Chemistry & Chemical Engineering
- Central South University
- 410083 Changsha
- P. R. China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering
- Central South University
- 410083 Changsha
- P. R. China
- State Key Laboratory for Powder Metallurgy
| |
Collapse
|
42
|
Jin X, Dong L, Di X, Huang H, Liu J, Sun X, Zhang X, Zhu H. NIR luminescence for the detection of latent fingerprints based on ESIPT and AIE processes. RSC Adv 2015. [DOI: 10.1039/c5ra16614d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A facile NIR probe NIR-LP based on the ESIPT–AIE processes for the detection of the latent fingerprints (LFPs) was developed for the first time.
Collapse
Affiliation(s)
- Xiaodong Jin
- Department of Applied Chemistry
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Libo Dong
- Department of Criminal Science and Technology
- Jiangsu Police Institute
- Nanjing
- P. R. China
| | - Xiaoyu Di
- Department of Applied Chemistry
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Hai Huang
- Department of Applied Chemistry
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Jingning Liu
- Department of Criminal Science and Technology
- Jiangsu Police Institute
- Nanjing
- P. R. China
| | - Xiaoli Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology
- Nanjing Normal University
- Nanjing
- P. R. China
| | - Xueqiong Zhang
- Department of Applied Chemistry
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Hongjun Zhu
- Department of Applied Chemistry
- Nanjing Tech University
- Nanjing
- P. R. China
| |
Collapse
|
43
|
Liu Y, Yu D, Ding S, Xiao Q, Guo J, Feng G. Rapid and ratiometric fluorescent detection of cysteine with high selectivity and sensitivity by a simple and readily available probe. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17543-17550. [PMID: 25253409 DOI: 10.1021/am505501d] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report a simple and readily available fluorescent probe for rapid, specific, and ratiometric fluorescent detection of the biologically important cysteine (Cys). This probe uses a visible-light excitable excited-state intramolecular proton transfer (ESIPT) dye (4'-dimethylamino-3-hydroxyflavone) as the fluorophore and an acrylate group as the ESIPT blocking agent as well as the recognition unit. Cleavage of the acrylate moiety can be achieved specifically and rapidly by Cys in aqueous solution under mild conditions, which leads to restore the ESIPT process and enables the probe to show a rapid, ratiometric fluorescent detection process for Cys with high selectivity over various analytes, including homocysteine (Hcy) and glutathione (GSH). The detection limit of this probe for Cys was found to be ∼0.2 μM and bioimaging of intracellular Cys by this probe was successfully applied in living cells, indicating that this probe holds great potential for biological applications.
Collapse
Affiliation(s)
- Yao Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , 152 Luoyu Road, Wuhan 430079, People's Republic of China
| | | | | | | | | | | |
Collapse
|