1
|
Rajbongshi BK, Bhattacharyya HP, Pegu CD, Sharma S, Baruah PK, Sarma M. Ultra-High Stokes Shift in Polycyclic Chromeno[2,3- b]Indoles. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1804411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Choitanya Dev Pegu
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, India
| | - Sagar Sharma
- Department of Chemistry, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, Assam, India
| | - Pranjal K. Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
2
|
Cheng HB, Zhang S, Bai E, Cao X, Wang J, Qi J, Liu J, Zhao J, Zhang L, Yoon J. Future-Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108289. [PMID: 34866257 DOI: 10.1002/adma.202108289] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Diarylethene (DAE) photoswitch is a new and promising family of photochromic molecules and has shown superior performance as a smart trigger in stimulus-responsive materials. During the past few decades, the DAE family has achieved a leap from simple molecules to functional molecules and developed toward validity as a universal switching building block. In recent years, the introduction of DAE into an assembly system has been an attractive strategy that enables the photochromic behavior of the building blocks to be manifested at the level of the entire system, beyond the DAE unit itself. This assembly-based strategy will bring many unexpected results that promote the design and manufacture of a new generation of advanced materials. Here, recent advances in the design and fabrication of diarylethene as a trigger in materials science, chemistry, and biomedicine are reviewed.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Enying Bai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ji Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
3
|
Triphenylethylene benzimidazole derivatives with aggregation-induced emission (AIE) characteristics: An effect of the aryl linker and application in cell imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Xiong KT, Li ML, Jiang Y, Xu HB, Zeng MH. Imidazole diarylethene switches: an alternative to acid-gated photochromism. NEW J CHEM 2020. [DOI: 10.1039/d0nj00606h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Improving the photoactivity of imidazole diarylethenes by modifying their response sites in imidazole instead of appended aryl units is accomplished.
Collapse
Affiliation(s)
- Kang-Tai Xiong
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
| | - Meng-Lian Li
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
| | - Yue Jiang
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
| | - Hai-Bing Xu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
| | - Ming-Hua Zeng
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan 430062
| |
Collapse
|
5
|
Lvov AG, Mörtel M, Yadykov AV, Heinemann FW, Shirinian VZ, Khusniyarov MM. Photochromic diarylethene ligands featuring 2-(imidazol-2-yl)pyridine coordination site and their iron(II) complexes. Beilstein J Org Chem 2019; 15:2428-2437. [PMID: 31666877 PMCID: PMC6808200 DOI: 10.3762/bjoc.15.235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/27/2019] [Indexed: 12/29/2022] Open
Abstract
A new family of photochromic diarylethene-based ligands bearing a 2-(imidazol-2-yl)pyridine coordination unit has been developed. Four members of the new family have been synthesized. The photoactive ligands feature non-aromatic ethene bridges (cyclopentene, cyclopentenone, and cyclohexenone), as well as closely spaced photoactive and metal coordination sites aiming a strong impact of photocyclization on the electronic structure of the coordinated metal ion. The ligands with cyclopentenone and cyclohexenone bridges show good cycloreversion quantum yields of 0.20-0.32. The thermal stability of closed-ring isomers reveals half-lives of up to 20 days in solution at room temperature. The ligands were used to explore coordination chemistry with iron(II) targeting photoswitchable spin-crossover complexes. Unexpectedly, dinuclear and tetranuclear iron(II) complexes were obtained, which were thoroughly characterized by X-ray crystallography, magnetic measurements, and Mössbauer spectroscopy. The formation of multinuclear complexes is facilitated by two coordination sites of the diarylethene, acting as a bridging ligand. The bridging nature of the diarylethene in the complexes prevents photocyclization.
Collapse
Affiliation(s)
- Andrey G Lvov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation
| | - Max Mörtel
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Anton V Yadykov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Valerii Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation
| | - Marat M Khusniyarov
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
6
|
El Guesmi N, Ahmed SA, Althagafi II, Khairou KS. Photochromism of Dihydroindolizines. Part XXI: Multiaddressable Photochromic Performances based on Pyrrolo[1,2 -b ]pyridazine photochromes: Kinetics, Substituent Effect and Solvatochromism. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Chen J, Xiang H, Yang L, Zhou X. Synthesis of 2-substituted benzo[b]thiophene via a Pd-catalyzed coupling of 2-iodothiophenol with phenylacetylene. RSC Adv 2017. [DOI: 10.1039/c6ra26611h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A Pd(ii)-catalyzed Sonogashira type cross-coupling reaction between 2-iodothiophenol and phenylacetylene to form 2-substituted benzo[b]thiophenes has been developed with yields up to 87%.
Collapse
Affiliation(s)
- Jingwen Chen
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Haifeng Xiang
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Li Yang
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
- College of Chemistry & Chemical Engineering
| | - Xiangge Zhou
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
10
|
Jia H, Pu S, Fan C, Liu G. A new multi-addressable molecular switch based on a photochromic diarylethene with a 6-aryl[1,2-c]quinazoline unit. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 138:441-446. [PMID: 25523047 DOI: 10.1016/j.saa.2014.11.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/31/2014] [Accepted: 11/22/2014] [Indexed: 06/04/2023]
Abstract
A novel diarylethene with a 6-aryl[1,2-c]quinazoline unit has been synthesized via a nucleophilic reaction. Its photochromism and fluorescence exhibited multi-addressable behaviors by the stimulation of both light irradiation and acid/base. Addition of trifluoroacetic acid to the solution of the diarylethene resulted in notable absorption spectral change, and the protonated form also possessed excellent photochromic properties. Meanwhile, its emission intensity was enhanced remarkably and the emission peak redshifted with a notable color change from dark blue to bright green. The changes could be recovered to the initial state by neutralizing with triethylamine. Consequently, a logic circuit was constructed with the diarylethene by using the fluorescence intensity at 482nm as output and acid/base as inputs.
Collapse
Affiliation(s)
- Hongjing Jia
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, PR China.
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330013, PR China
| |
Collapse
|