1
|
Zhang F, Jiang Y, Dai S, Wei X, Ma Y, Liao H, Qin Y, Peng Q, Zhao X, Hou Z. Selective Hydrogenation of Nitrobenzene to para-Aminophenol on a Zirconium-Phosphate-Supported Platinum Catalyst. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Fengxue Zhang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xinjia Wei
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Ma
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huiying Liao
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxi Qin
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingpo Peng
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuge Zhao
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, School of Chemistry and Molecular Engineering, Shanghai 200062, China
| |
Collapse
|
2
|
Nitrogen doped carbon solid acid for improving its catalytic transformation of xylose and agricultural biomass residues to furfural. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Cousin E, Namhaed K, Pérès Y, Cognet P, Delmas M, Hermansyah H, Gozan M, Alaba PA, Aroua MK. Towards efficient and greener processes for furfural production from biomass: A review of the recent trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157599. [PMID: 35901885 DOI: 10.1016/j.scitotenv.2022.157599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
As mentioned in several recent reviews, biomass-based furfural is attracting increasing interest as a feasible alternative for the synthesis of a wide range of non-petroleum-derived compounds. However, the lack of environmentally friendly, cost-effective, and sustainable industrial procedures is still evident. This review describes the chemical and biological routes for furfural production. The mechanisms proposed for the chemical transformation of xylose to furfural are detailed, as are the current advances in the manufacture of furfural from biomass. The main goal is to overview the different ways of improving the furfural synthesis process. A pretreatment process, particularly chemical and physico-chemical, enhances the digestibility of biomass, leading to the production of >70 % of available sugars for the production of valuable products. The combination of heterogeneous (zeolite and polymeric solid) catalyst and biphasic solvent system (water/GVL and water/CPME) is regarded as an attractive approach, affording >75 % furfural yield for over 80 % of selectivity with the possibility of catalyst reuse. Microwave heating as an activation technique reduces reaction time at least tenfold, making the process more sustainable. The state of the art in industrial processes is also discussed. It shows that, when sulfuric acid is used, the furfural yields do not exceed 55 % for temperatures close to 180 °C. However, the MTC process recently achieved an 83 % yield by continuously removing furfural from the liquid phase. Finally, the CIMV process, using a formic acid/acetic acid mixture, has been developed. The economic aspects of furfural production are then addressed. Future research will be needed to investigate scaling-up and biological techniques that produce acceptable yields and productivities to become commercially viable and competitive in furfural production from biomass.
Collapse
Affiliation(s)
- Elsa Cousin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Kritsana Namhaed
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Yolande Pérès
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Patrick Cognet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Michel Delmas
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Heri Hermansyah
- Biorefinery Lab, Bioprocess Engineering Program, Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.
| | - Misri Gozan
- Biorefinery Lab, Bioprocess Engineering Program, Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.
| | - Peter Adeniyi Alaba
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mohamed Kheireddine Aroua
- Centre for Carbon Dioxide Capture and Utilization (CCDCU), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Malaysia; Department of Engineering, Lancaster University, Lancaster LA1 4YW, United Kingdom; Sunway Materials Smart Science & Engineering Research Cluster (SMS2E), Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
4
|
Preparation of Alkyl Levulinates from Xylose Over Modified Bifunctional Mesoporous Zirconium Phosphate Catalysts. Catal Letters 2022. [DOI: 10.1007/s10562-021-03792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Manjunathan P, Shanbhag DY, Vinu A, Shanbhag GV. Recognizing soft templates as stimulators in multivariate modulation of tin phosphate and its application in catalysis for alkyl levulinate synthesis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01637c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft template tunes and controls explicitly both morphology and nature of active sites during the synthesis of tin phosphate catalyst. This synthesis strategy helped in producing alkyl levulinate in high yields from one-pot alcoholysis of furfuryl alcohol.
Collapse
Affiliation(s)
- Pandian Manjunathan
- Materials Science and Catalysis Division
- Poornaprajna Institute of Scientific Research (PPISR)
- Bengaluru-562164
- India
- Graduate Studies
| | - Dhanush Y. Shanbhag
- Global Innovative Center for Advanced Nanomaterials (GICAN)
- Faculty of Engineering and Built Environment
- The University of Newcastle
- Callaghan
- Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN)
- Faculty of Engineering and Built Environment
- The University of Newcastle
- Callaghan
- Australia
| | - Ganapati V. Shanbhag
- Materials Science and Catalysis Division
- Poornaprajna Institute of Scientific Research (PPISR)
- Bengaluru-562164
- India
| |
Collapse
|
6
|
Kim H, Yang S, Kim DH. One-pot conversion of alginic acid into furfural using Amberlyst-15 as a solid acid catalyst in γ-butyrolactone/water co-solvent system. ENVIRONMENTAL RESEARCH 2020; 187:109667. [PMID: 32442791 DOI: 10.1016/j.envres.2020.109667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
One-pot conversion of alginic acid, which was derived from brown algae, to furfural was investigated using various solid acid catalysts. Among the solid acid catalysts tested, Amberlyst-15 showed the highest activity in furfural production in aqueous media. When the effect of reaction media was examined by applying various organic solvent mixtures, it was found that γ-butyrolactone/water co-solvent system was selected as the most appropriate system for the reaction. Maximum furfural yield of 32.2% was obtained using Amberlyst-15 in the γ-butyrolactone/H2O at 210 °C for 20 min. Catalyst showed gradual deactivation behavior as the reaction proceeded, although the catalyst recovered its activity upon the simple treatment with sulfuric acid. N2 adsorption-desorption experiments, Fourier-transform infrared spectroscopy (FT-IR), back titration, and CHNS analysis were applied to investigate the physicochemical property of post-reaction samples, confirming that the leaching of the active sulfonic acid group and decrease in acid density was the major cause of deactivation.
Collapse
Affiliation(s)
- Hyungjoo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seungdo Yang
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Do Heui Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Kasipandi S, Ali M, Li Y, Bae JW. Phosphorus‐Modified Mesoporous Inorganic Materials for Production of Hydrocarbon Fuels and Value‐Added Chemicals. ChemCatChem 2020. [DOI: 10.1002/cctc.202000418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Saravanan Kasipandi
- School of Chemical Engineering Sungkyunkwan University (SKKU) 2066 Seobu-ro Jangan-gu, Suwon Gyeonggi-do 16419 Republic of Korea
- Department of Chemical and Metallurgical Engineering School of Chemical Engineering Aalto University Kemistintie 1 P.O. Box 16100 Espoo FI-00076 Finland
| | - Mansoor Ali
- School of Chemical Engineering Sungkyunkwan University (SKKU) 2066 Seobu-ro Jangan-gu, Suwon Gyeonggi-do 16419 Republic of Korea
| | - Yongdan Li
- Department of Chemical and Metallurgical Engineering School of Chemical Engineering Aalto University Kemistintie 1 P.O. Box 16100 Espoo FI-00076 Finland
| | - Jong Wook Bae
- School of Chemical Engineering Sungkyunkwan University (SKKU) 2066 Seobu-ro Jangan-gu, Suwon Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
8
|
Partially Exfoliated α-ZrP Reinforced Unsaturated Polyester Nanocomposites by Simultaneous Co-polymerization and Brønsted Acid–Base Strategy. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01558-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
|
10
|
Revealing the factors determining the selectivity of guaiacol HDO reaction pathways using ZrP-supported Co and Ni catalysts. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
He J, Li H, Saravanamurugan S, Yang S. Catalytic Upgrading of Biomass-Derived Sugars with Acidic Nanoporous Materials: Structural Role in Carbon-Chain Length Variation. CHEMSUSCHEM 2019; 12:347-378. [PMID: 30407741 DOI: 10.1002/cssc.201802113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/08/2018] [Indexed: 05/07/2023]
Abstract
Shifting from petroleum-based resources to inedible biomass for the production of valuable chemicals and fuels is one of the significant aspects in sustainable chemistry for realizing the sustainable development of our society. Various renowned biobased platform molecules, such as 5-hydroxymethylfurfural, furfural, levulinic acid, and lactic acid, are successfully accessible from the transformation of biobased sugars. To achieve the specific reaction routes, heterogeneous nanoporous acidic materials have served as promising catalysts for the conversion of bio-sugars in the past decade. This Review summarizes advances in various nanoporous acidic materials for bio-sugar conversion, in which the number of carbon atoms is variable and controllable with the assistance of the switchable structure of nanoporous materials. The major focus of this Review is on possible reaction pathways/mechanisms and the relationships between catalyst structure and catalytic performance. Moreover, representative examples of catalytic upgrading of biobased platform molecules to biochemicals and fuels through selective C-C cleavage and coupling strategies over nanoporous acidic materials are also discussed.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory Breeding Base of Green Pesticide, & Agricultural Bioengineering, Key Laboratory of Green Pesticide, & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide, & Agricultural Bioengineering, Key Laboratory of Green Pesticide, & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Mohali, 140 306, Punjab, India
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide, & Agricultural Bioengineering, Key Laboratory of Green Pesticide, & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, PR China
| |
Collapse
|
12
|
Ni W, Li D, Zhao X, Ma W, Kong K, Gu Q, Chen M, Hou Z. Catalytic dehydration of sorbitol and fructose by acid-modified zirconium phosphate. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.03.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Delbecq F, Wang Y, Muralidhara A, El Ouardi K, Marlair G, Len C. Hydrolysis of Hemicellulose and Derivatives-A Review of Recent Advances in the Production of Furfural. Front Chem 2018; 6:146. [PMID: 29868554 PMCID: PMC5964623 DOI: 10.3389/fchem.2018.00146] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022] Open
Abstract
Biobased production of furfural has been known for decades. Nevertheless, bioeconomy and circular economy concepts is much more recent and has motivated a regain of interest of dedicated research to improve production modes and expand potential uses. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of furfural production from sugars and polysaccharides feedstocks. The review discusses advances obtained in major production pathways recently explored splitting in the following categories: (i) non-catalytic routes like use of critical solvents or hot water pretreatment, (ii) use of various homogeneous catalysts like mineral or organic acids, metal salts or ionic liquids, (iii) feedstock dehydration making use of various solid acid catalysts; (iv) feedstock dehydration making use of supported catalysts, (v) other heterogeneous catalytic routes. The paper also briefly overviews current understanding of furfural chemical synthesis and its underpinning mechanism as well as safety issues pertaining to the substance. Eventually, some remaining research topics are put in perspective for further optimization of biobased furfural production.
Collapse
Affiliation(s)
- Frederic Delbecq
- Ecole Superieure de Chimie Organique et Minerale, Compiègne, France
| | - Yantao Wang
- Sorbonne Universités, Universite de Technologie de Compiegne, Compiègne, France
| | - Anitha Muralidhara
- Sorbonne Universités, Universite de Technologie de Compiegne, Compiègne, France.,Institut National de l'Environnement Industriel et des Risques, Verneuil-en-Halatte, France.,Avantium Chemicals, Amsterdam, Netherlands
| | - Karim El Ouardi
- Materials Science and Nano-Engineering Department, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Guy Marlair
- Institut National de l'Environnement Industriel et des Risques, Verneuil-en-Halatte, France
| | - Christophe Len
- Sorbonne Universités, Universite de Technologie de Compiegne, Compiègne, France.,Institut de Recherche de Chimie Paris, PSL University, Chimie ParisTech, Paris, France
| |
Collapse
|
14
|
Wu K, Yang M, Hu H, Liang J, Wu Y. ZrMn Oxides for Aqueous-Phase Ketonization of Acetic Acid: Effect of Crystal and Porosity. Chem Asian J 2018; 13:1180-1186. [PMID: 29498220 DOI: 10.1002/asia.201800114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/16/2018] [Indexed: 11/07/2022]
Abstract
Aqueous-phase ketonization of bio-based acetic acid is important to improve the conversion efficiency of biomass resources. In this study, ZrMn mixed oxides (ZrMnOx ) with high aqueous-phase ketonization activity are synthetized through a carbonization/oxidation method (COM) and solvothermal method (STM). The results show that ZrMnOx prepared by COM possesses tetragonal ZrO2 , and hausmannite Mn3 O4 is observed only at a high oxidation temperature of 750 °C. Low-temperature and long oxidation results in decreased crystallinity and crystallite size, which is related to highly dispersed Mnn+ species. The catalysts with improved acid sites possess high ketonization activity. Surface areas and pore size of ZrMnOx synthetized by STM are controlled by the solvents for thermal treatment. Compared with water as solvent, ethanol increases the surface area and pore size, resulting in high ketonization activity.
Collapse
Affiliation(s)
- Kejing Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China.,Institute of New Energy Low-Carbon Technology, Sichuan University, Chengdu, 610065, P. R. China
| | - Mingde Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Husheng Hu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Junmei Liang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yulong Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China.,Beijing Key Laboratory of Fine Ceramics, Beijing, 100084, P. R. China
| |
Collapse
|
15
|
Saravanan K, Park KS, Jeon S, Bae JW. Aqueous Phase Synthesis of 5-Hydroxymethylfurfural from Glucose over Large Pore Mesoporous Zirconium Phosphates: Effect of Calcination Temperature. ACS OMEGA 2018; 3:808-820. [PMID: 31457931 PMCID: PMC6641390 DOI: 10.1021/acsomega.7b01357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/05/2018] [Indexed: 06/10/2023]
Abstract
For a solid acid-catalyzed dehydration of biomass-derived carbohydrates into useful furan derivatives, a suitable porous solid acid catalyst having an optimum acidic density and its strength is required to avoid cascade reactions in biomass conversion processes. A large-pore mesoporous zirconium phosphate (m-ZrP) was prepared hydrothermally using P123 as a template in water solvent, which resulted in a higher pore diameter (>9 nm) having wormhole-like pore structures with balanced Lewis (L) to Brönsted (B) acid sites. The effects of calcination temperature (500-800 °C) on the textural, acidic/basic, and structural properties of the m-ZrP with its catalytic performance for glucose dehydration to 5-hydroxymethylfurfural (HMF) were investigated in a pure water media as a green and sustainable alternative solvent. The larger number of L and B acid sites and basic sites with their appropriate strengths were clearly related with a better catalytic performance in terms of glucose conversion and HMF yield. The strong L acid and basic sites in the m-ZrP efficiently promoted the glucose isomerization to fructose, which dehydrated exclusively on the weak B acid sites resulting in a maximum conversion of glucose (83.8%) and HMF yield (46.6%). The adjusted acidic and basic sites with large mesopore sizes make the m-ZrP yield a higher reaction rate (2.78 mmol gcat -1 h-1) and turnover frequency (11.68/h) for conversion of glucose to HMF, which showed higher catalytic activity than those of a small-pore m-ZrP and other mesoporous heterogeneous and homogeneous acid catalysts.
Collapse
Affiliation(s)
| | | | | | - Jong Wook Bae
- E-mail: . Tel: +82-31-290-7347. Fax: +82-31-290-7272
| |
Collapse
|
16
|
Ma Y, Shang Y, Liu F, Zhang W, Wang C, Zhu D. Convenient isolation of strictinin-rich tea polyphenol from Chinese green tea extract by zirconium phosphate. J Food Drug Anal 2018; 26:100-106. [PMID: 29389544 PMCID: PMC9332652 DOI: 10.1016/j.jfda.2016.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022] Open
Abstract
Zirconium phosphate (ZrP) was prepared and employed to separate strictinin-rich tea polyphenol from Chinese green tea extracts. The influences of ZrP calcination temperatures, green tea extraction conditions, and the amounts of ZrP on the isolation of strictinin-rich tea polyphenol were evaluated; the absorption and desorption dynamics of strictinin on ZrP were also determined. Our results revealed that the HPLC content of strictinin increased from 4.96% in 70% ethanol extract of green tea to 58.2% in isolated strictinin-rich tea polyphenol obtained by ZrP-900 (ZrP calcined at 900°C). Furthermore, the suitable time for both strictinin absorption and desorption was 4 hours at 37°C. The method developed here consisted of easy steps such as ZrP absorption, water washing, and 0.4% phosphoric acid solution desorption, which may facilitate the detection and isolation of strictinin from different samples.
Collapse
Affiliation(s)
- Yilong Ma
- Department of Chemical Engineering and Food Processing, Hefei University of Technology, Xuancheng Campus, Xuancheng, PR
China
- Corresponding author. Department of Chemical Engineering and Food Processing, Hefei University of Technology, Xuancheng Campus, Xuancheng 242000, PR China. E-mail address: (Y. Ma)
| | - Yafang Shang
- Department of Chemical Engineering and Food Processing, Hefei University of Technology, Xuancheng Campus, Xuancheng, PR
China
| | - Fengru Liu
- Department of Chemical Engineering and Food Processing, Hefei University of Technology, Xuancheng Campus, Xuancheng, PR
China
| | - Wenqing Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei Campus, Hefei, PR
China
| | - Caihong Wang
- Department of Chemical Engineering and Food Processing, Hefei University of Technology, Xuancheng Campus, Xuancheng, PR
China
| | - Danye Zhu
- Department of Chemical Engineering and Food Processing, Hefei University of Technology, Xuancheng Campus, Xuancheng, PR
China
| |
Collapse
|
17
|
Ballesteros-Plata D, Infantes-Molina A, Rodríguez-Aguado E, Braos-García P, Rodríguez-Castellón E. Lamellar zirconium phosphates to host metals for catalytic purposes. Dalton Trans 2018; 47:3047-3058. [DOI: 10.1039/c7dt03717a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals.
Collapse
Affiliation(s)
- Daniel Ballesteros-Plata
- Departamento de Química Inorgánica
- Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Universidad de Málaga
- 29071 Málaga
| | - Antonia Infantes-Molina
- Departamento de Química Inorgánica
- Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Universidad de Málaga
- 29071 Málaga
| | - Elena Rodríguez-Aguado
- Departamento de Química Inorgánica
- Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Universidad de Málaga
- 29071 Málaga
| | - Pilar Braos-García
- Departamento de Química Inorgánica
- Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Universidad de Málaga
- 29071 Málaga
| | - Enrique Rodríguez-Castellón
- Departamento de Química Inorgánica
- Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC)
- Facultad de Ciencias
- Universidad de Málaga
- 29071 Málaga
| |
Collapse
|
18
|
Conversion of biomass to chemicals over zirconium phosphate-based catalysts. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62908-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Zirconium Phosphate Catalysts in the XXI Century: State of the Art from 2010 to Date. Catalysts 2017. [DOI: 10.3390/catal7060190] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Zhu Y, Kanamori K, Brun N, Pélisson CH, Moitra N, Fajula F, Hulea V, Galarneau A, Takeda K, Nakanishi K. Monolithic acidic catalysts for the dehydration of xylose into furfural. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2016.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
21
|
Zhang X, Wilson K, Lee AF. Heterogeneously Catalyzed Hydrothermal Processing of C 5-C 6 Sugars. Chem Rev 2016; 116:12328-12368. [PMID: 27680093 DOI: 10.1021/acs.chemrev.6b00311] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biomass has been long exploited as an anthropogenic energy source; however, the 21st century challenges of energy security and climate change are driving resurgence in its utilization both as a renewable alternative to fossil fuels and as a sustainable carbon feedstock for chemicals production. Deconstruction of cellulose and hemicellulose carbohydrate polymers into their constituent C5 and C6 sugars, and subsequent heterogeneously catalyzed transformations, offer the promise of unlocking diverse oxygenates such as furfural, 5-hydroxymethylfurfural, xylitol, sorbitol, mannitol, and gluconic acid as biorefinery platform chemicals. Here, we review recent advances in the design and development of catalysts and processes for C5-C6 sugar reforming into chemical intermediates and products, and highlight the challenges of aqueous phase operation and catalyst evaluation, in addition to process considerations such as solvent and reactor selection.
Collapse
Affiliation(s)
- Xingguang Zhang
- European Bioenergy Research Institute, Aston University , Birmingham B4 7ET, United Kingdom
| | - Karen Wilson
- European Bioenergy Research Institute, Aston University , Birmingham B4 7ET, United Kingdom
| | - Adam F Lee
- European Bioenergy Research Institute, Aston University , Birmingham B4 7ET, United Kingdom
| |
Collapse
|
22
|
Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives. J SOLID STATE CHEM 2016. [DOI: 10.1016/j.jssc.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Wu K, Wu Y, Chen Y, Chen H, Wang J, Yang M. Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase. CHEMSUSCHEM 2016; 9:1355-1385. [PMID: 27158985 DOI: 10.1002/cssc.201600013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/25/2016] [Indexed: 06/05/2023]
Abstract
Different biobased chemicals are produced during the conversion of biomass into fuels through various feasible technologies (e.g., hydrolysis, hydrothermal liquefaction, and pyrolysis). The challenge of transforming these biobased chemicals with high hydrophilicity is ascribed to the high water content of the feedstock and the inevitable formation of water. Therefore, aqueous-phase processing is an interesting technology for the heterogeneous catalytic conversion of biobased chemicals. Different reactions, such as dehydration, isomerization, aldol condensation, ketonization, and hydrogenation, are applied for the conversion of sugars, furfural/hydroxymethylfurfural, acids, phenolics, and so on over heterogeneous catalysts. The activity, stability, and reusability of the heterogeneous catalysts in water are summarized, and deactivation processes and several strategies are introduced to improve the stability of heterogeneous catalysts in the aqueous phase.
Collapse
Affiliation(s)
- Kejing Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, PR China
| | - Yulong Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, PR China.
- Beijing Engineering Research Center for Biofuels, Beijing, 100084, PR China.
| | - Yu Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, PR China
| | - Hao Chen
- Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, PR China
| | - Mingde Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
24
|
Hu J, Shen D, Wu S, Zhang H, Xiao R. Catalytic cleavage of C–O linkages in benzyl phenyl ether assisted by microwave heating. RSC Adv 2015. [DOI: 10.1039/c5ra04974a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hybrid catalyst of ZrP–Pd/C performed effectively for promoting the cleavage of C–O linkages in benzyl phenyl ether forming phenol.
Collapse
Affiliation(s)
- Jun Hu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education
- Southeast University
- Nanjing 210096
- PR China
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education
- Southeast University
- Nanjing 210096
- PR China
| | - Shiliang Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education
- Southeast University
- Nanjing 210096
- PR China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education
- Southeast University
- Nanjing 210096
- PR China
| | - Rui Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education
- Southeast University
- Nanjing 210096
- PR China
| |
Collapse
|
25
|
García-Sancho C, Rubio-Caballero J, Mérida-Robles J, Moreno-Tost R, Santamaría-González J, Maireles-Torres P. Mesoporous Nb2O5 as solid acid catalyst for dehydration of d-xylose into furfural. Catal Today 2014. [DOI: 10.1016/j.cattod.2014.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Kumar S, Kumar J, Kaul S, Jain SL. Carbon Dioxide Promoted Hydrolysis of Xylose to Furfural Using 1,1,3,3-Tetramethyl Guanidinium Hydrogen Sulfate: A Remarkable Enhancement in Reaction Rate. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502614z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Subodh Kumar
- Chemical
Sciences Division, CSIR—Indian Institute of Petroleum Mohkampur, Dehradun 248005 India
| | - Jitendra Kumar
- Chemical
Sciences Division, CSIR—Indian Institute of Petroleum Mohkampur, Dehradun 248005 India
| | - Savita Kaul
- Chemical
Sciences Division, CSIR—Indian Institute of Petroleum Mohkampur, Dehradun 248005 India
| | - Suman L. Jain
- Chemical
Sciences Division, CSIR—Indian Institute of Petroleum Mohkampur, Dehradun 248005 India
| |
Collapse
|
27
|
Bhaumik P, Kane T, Dhepe PL. Silica and zirconia supported tungsten, molybdenum and gallium oxide catalysts for the synthesis of furfural. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00530a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|