1
|
Kim D, Kim NW, Kim TG, Lee J, Jung JY, Hur S, Lee J, Lee K, Park SA. Surface Functionalization of 3D-Printed Scaffolds with Seed-Assisted Hydrothermally Grown ZnO Nanoarrays for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45389-45398. [PMID: 39150145 DOI: 10.1021/acsami.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bioactive metal-based nanostructures, particularly zinc oxide (ZnO), are promising materials for bone tissue engineering. However, integrating them into 3D-printed polymers using traditional blending methods reduces the cell performance. Alternative surface deposition techniques often require extreme conditions that are unsuitable for polymers. To address these issues, we propose a metal-assisted hydrothermal synthesis method to modify 3D printed polycaprolactone (PCL) scaffolds with ZnO nanoparticles (NPs), facilitating the growth of ZnO nanoarrays (NAs) at a low-temperature (55 °C). Physicochemical characterizations revealed that the ZnO NPs form both physical and chemical bonds with the PCL surface; chemical bonding occurs between the carboxylate groups of PCL and Zn(OH)2 during seed deposition and hydrothermal synthesis. The ZnO NPs and NAs grown for a longer time (18 h) on the surface of PCL scaffolds exhibit significant proliferation and early differentiation of osteoblast-like cells. The proposed method is suitable for the surface modification of thermally degradable polymers, opening up new possibilities for the deposition of diverse metals.
Collapse
Affiliation(s)
- Dahong Kim
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Woon Kim
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Tae Gun Kim
- Center for Analysis and Evaluation, National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Jihye Lee
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Joo-Yun Jung
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Shin Hur
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Jaejong Lee
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Su A Park
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| |
Collapse
|
2
|
Voorhis C, González-Benito J, Kramar A. "Nano in Nano"-Incorporation of ZnO Nanoparticles into Cellulose Acetate-Poly(Ethylene Oxide) Composite Nanofibers Using Solution Blow Spinning. Polymers (Basel) 2024; 16:341. [PMID: 38337230 DOI: 10.3390/polym16030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this work, the preparation and characterization of composites from cellulose acetate (CA)-poly(ethylene oxide) (PEO) nanofibers (NFs) with incorporated zinc oxide nanoparticles (ZnO-NPs) using solution blow spinning (SBS) is reported. CA-PEO nanofibers were produced by spinning solution that contained a higher CA-to-PEO ratio and lower (equal) CA-to-PEO ratio. Nanoparticles were added to comprise 2.5% and 5% of the solution, calculated on the weight of the polymers. To have better control of the SBS processing conditions, characterization of the spinning suspensions is carried out, which reveals a decrease in viscosity (two- to eightfold) upon the addition of NPs. It is observed that this variation of viscosity does not significantly affect the mean diameters of nanofibers, but does affect the mode of the nanofibers' size distribution, whereby lower viscosity provides thinner fibers. FESEM-EDS confirms ZnO NP encapsulation into nanofibers, specifically into the CA component based on UV-vis studies, since the release of ZnO is not detected for up to 5 days in deionized water, despite the significant swelling of the material and accompanied dissolution of water-soluble PEO. Upon the dissolution of CA nanofibers into acetone, immediate release of ZnO is detected, both visually and by spectrometer. ATR-FTIR studies reveal interaction of ZnO with the CA component of composite nanofibers. As ZnO nanoparticles are known for their bioactivity, it can be concluded that these CA-PEO-ZnO composites are good candidates to be used in filtration membranes, with no loss of incorporated ZnO NPs or their release into an environment.
Collapse
Affiliation(s)
- Caroline Voorhis
- School of Science, Marist College, 3399 North Road, Poughkeepsie, NY 12601, USA
- Department of Materials Science and Engineering and Chemical Engineering, Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | - Ana Kramar
- Department of Materials Science and Engineering and Chemical Engineering, Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
3
|
Feng Y, Cölfen H, Xiong R. Organized mineralized cellulose nanostructures for biomedical applications. J Mater Chem B 2023. [PMID: 36892529 DOI: 10.1039/d2tb02611b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Cellulose is the most abundant naturally-occurring polymer, and possesses a one-dimensional (1D) anisotropic crystalline nanostructure with outstanding mechanical robustness, biocompatibility, renewability and rich surface chemistry in the form of nanocellulose in nature. Such features make cellulose an ideal bio-template for directing the bio-inspired mineralization of inorganic components into hierarchical nanostructures that are promising in biomedical applications. In this review, we will summarize the chemistry and nanostructure characteristics of cellulose and discuss how these favorable characteristics regulate the bio-inspired mineralization process for manufacturing the desired nanostructured bio-composites. We will focus on uncovering the design and manipulation principles of local chemical compositions/constituents and structural arrangement, distribution, dimensions, nanoconfinement and alignment of bio-inspired mineralization over multiple length-scales. In the end, we will underline how these cellulose biomineralized composites benefit biomedical applications. It is expected that this deep understanding of design and fabrication principles will enable construction of outstanding structural and functional cellulose/inorganic composites for more challenging biomedical applications.
Collapse
Affiliation(s)
- Yanhuizhi Feng
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, Konstanz, Germany.
| | - Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
Khamidy NI, Aflaha R, Nurfani E, Djamal M, Triyana K, Wasisto HS, Rianjanu A. Influence of dopant concentration on the ammonia sensing performance of citric acid-doped polyvinyl acetate nanofibers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4956-4966. [PMID: 36440647 DOI: 10.1039/d2ay01382g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chemical modification of polymer nanofiber-based ammonia sensors by introducing dopants into the active layers has been proven as one of the low-cost routes to enhance their sensing performance. Herein, we investigate the influence of different citric acid (CA) concentrations on electrospun polyvinyl acetate (PVAc) nanofibers coated on quartz crystal microbalance (QCM) transducers as gravimetric ammonia sensors. The developed CA-doped PVAc nanofiber sensors are tested against various concentrations of ammonia vapors, in which their key sensing performance parameters (i.e., sensitivity, limit of detection (LOD), limit of quantification (LOQ), and repeatability) are studied in detail. The sensitivity and LOD values of 1.34 Hz ppm-1 and 1 ppm, respectively, can be obtained during ammonia exposure assessment. Adding CA dopants with a higher concentration not only increases the sensor sensitivity linearly, but also prolongs both response and recovery times. This finding allows us to better understand the dopant concentration effect, which subsequently can result in an appropriate strategy for manufacturing high-performance portable nanofiber-based sensing devices.
Collapse
Affiliation(s)
- Nur Istiqomah Khamidy
- Department of Materials Engineering, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung 35365, Lampung, Indonesia.
| | - Rizky Aflaha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta 55281, Indonesia
| | - Eka Nurfani
- Department of Materials Engineering, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung 35365, Lampung, Indonesia.
| | - Mitra Djamal
- Department of Physics, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung 35365, Lampung, Indonesia
| | - Kuwat Triyana
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO Box BLS 21, Yogyakarta 55281, Indonesia
| | | | - Aditya Rianjanu
- Department of Materials Engineering, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung 35365, Lampung, Indonesia.
- Research and Innovation Center for Advanced Materials, Institut Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung 35365, Lampung, Indonesia
| |
Collapse
|
5
|
Cellulose-Based Nanofibers Processing Techniques and Methods Based on Bottom-Up Approach-A Review. Polymers (Basel) 2022; 14:polym14020286. [PMID: 35054691 PMCID: PMC8781687 DOI: 10.3390/polym14020286] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
In the past decades, cellulose (one of the most important natural polymers), in the form of nanofibers, has received special attention. The nanofibrous morphology may provide exceptional properties to materials due to the high aspect ratio and dimensions in the nanometer range of the nanofibers. The first feature may lead to important consequences in mechanical behavior if there exists a particular orientation of fibers. On the other hand, nano-sizes provide a high surface-to-volume ratio, which can have important consequences on many properties, such as the wettability. There are two basic approaches for cellulose nanofibers preparation. The top-down approach implies the isolation/extraction of cellulose nanofibrils (CNFs) and nanocrystals (CNCs) from a variety of natural resources, whereby dimensions of isolates are limited by the source of cellulose and extraction procedures. The bottom-up approach can be considered in this context as the production of nanofibers using various spinning techniques, resulting in nonwoven mats or filaments. During the spinning, depending on the method and processing conditions, good control of the resulting nanofibers dimensions and, consequently, the properties of the produced materials, is possible. Pulp, cotton, and already isolated CNFs/CNCs may be used as precursors for spinning, alongside cellulose derivatives, namely esters and ethers. This review focuses on various spinning techniques to produce submicrometric fibers comprised of cellulose and cellulose derivatives. The spinning of cellulose requires the preparation of spinning solutions; therefore, an overview of various solvents is presented showing their influence on spinnability and resulting properties of nanofibers. In addition, it is shown how bottom-up spinning techniques can be used for recycling cellulose waste into new materials with added value. The application of produced cellulose fibers in various fields is also highlighted, ranging from drug delivery systems, high-strength nonwovens and filaments, filtration membranes, to biomedical scaffolds.
Collapse
|
6
|
Functionalization of Commercial Electrospun Veils with Zinc Oxide Nanostructures. NANOMATERIALS 2021; 11:nano11020418. [PMID: 33562142 PMCID: PMC7916010 DOI: 10.3390/nano11020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/19/2022]
Abstract
The present research is focused on the synthesis of hexagonal ZnO wurtzite nanorods for the decoration of commercially available electrospun nylon nanofibers. The growth of ZnO was performed by a hydrothermal technique and for the first time on commercial electrospun veils. The growth step was optimized by adopting a procedure with the refresh of growing solution each hour of treatment (Method 1) and with the maintenance of a specific growth solution volume for the entire duration of the treatment (Method 2). The overall treatment time and volume of solution were also optimized by analyzing the morphology of ZnO nanostructures, the coverage degree, the thermal and mechanical stability of the obtained decorated electrospun nanofibers. In the optimal synthesis conditions (Method 2), hexagonal ZnO nanorods with a diameter and length of 53.5 nm ± 5.7 nm and 375.4 nm ± 37.8 nm, respectively, were obtained with a homogeneous and complete coverage of the veils. This easily scalable procedure did not damage the veils that could be potentially used as toughening elements in composites to prevent delamination onset and propagation. The presence of photoreactive species makes these materials ideal also as environmentally friendly photocatalysts for wastewater treatment. In this regard, photocatalytic tests were performed using methylene blue (MB) as model compound. Under UV light irradiation, the degradation of MB followed a first kinetic order data fitting and after 3 h of treatment a MB degradation of 91.0% ± 5.1% was achieved. The reusability of decorated veils was evaluated and a decrease in photocatalysis efficiency was detected after the third cycle of use.
Collapse
|
7
|
Islam M, Srivastava AK, Basavaraja BM, Sharma A. “Nano-on-Micro” approach enables synthesis of ZnO nano-cactus for gas sensing applications. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Chowdhury T, D’Souza N, Ho YH, Dahotre N, Mahbub I. Embedded Corrosion Sensing with ZnO-PVDF Sensor Textiles. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20113053. [PMID: 32481573 PMCID: PMC7308928 DOI: 10.3390/s20113053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Corrosion in underground and submerged steel pipes is a global problem. Coatings serve as an impermeable barrier or a sacrificial element to the transport of corrosive fluids. When this barrier fails, corrosion in the metal initiates. There is a critical need for sensors at the metal/coating interface as an early alert system. Current options utilize metal sensors, leading to accelerating corrosion. In this paper, a non-conductive sensor textile as a viable solution was investigated. For this purpose, non-woven Zinc (II) Oxide-Polyvinylidene Fluoride (ZnO-PVDF) nanocomposite fiber textiles were prepared in a range of weight fractions (1%, 3%, and 5% ZnO) and placed at the coating/steel interface. The properties of ZnO-PVDF nanocomposite meshes were characterized using scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared (FTIR) and d33 meter. Electrochemical impedance spectroscopy (EIS) testing was performed during the immersion of the coated samples to validate the effectiveness of the sensor textile. The results offer a new option for sub-surface corrosion sensing using low cost, easily fabricated sensor textiles.
Collapse
Affiliation(s)
- Tonoy Chowdhury
- Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76207, USA;
| | - Nandika D’Souza
- Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76207, USA;
- Department of Materials Science and Engineering; University of North Texas, Denton, TX 76207, USA; (Y.H.H.); (N.D.)
| | - Yee Hsien Ho
- Department of Materials Science and Engineering; University of North Texas, Denton, TX 76207, USA; (Y.H.H.); (N.D.)
| | - Narendra Dahotre
- Department of Materials Science and Engineering; University of North Texas, Denton, TX 76207, USA; (Y.H.H.); (N.D.)
| | - Ifana Mahbub
- Department of Electrical Engineering, University of North Texas, Denton, TX 76207, USA;
| |
Collapse
|
9
|
Shah AP, Jain S, Mokale VJ, Shimpi NG. High performance visible light photocatalysis of electrospun PAN/ZnO hybrid nanofibers. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Kim M, Wu YS, Kan EC, Fan J. Breathable and Flexible Piezoelectric ZnO@PVDF Fibrous Nanogenerator for Wearable Applications. Polymers (Basel) 2018; 10:E745. [PMID: 30960670 PMCID: PMC6403693 DOI: 10.3390/polym10070745] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/22/2018] [Indexed: 11/17/2022] Open
Abstract
A novel breathable piezoelectric membrane has been developed by growing zinc oxide (ZnO) nanorods on the surface of electrospun poly(vinylidene fluoride) (PVDF) nanofibers using a low-temperature hydrothermal method. Significant improvement in the piezoelectric response of the PVDF membrane was achieved without compromising breathability and flexibility. PVDF is one of the most frequently used piezoelectric polymers due to its high durability and reasonable piezoelectric coefficient values. However, further enhancement of its piezoelectric response is highly desirable for sensor and energy-harvester applications. Previous studies have demonstrated that piezoelectric ceramic and polymer composites can have remarkable piezoelectric properties and flexibility. However, devices made of such composites lack breathability and some present health risks in wearable applications for containing heavy metals. Unlike other piezoelectric ceramics, ZnO is non-toxic material and has been widely used in many applications including cosmetics. The fabrication of ZnO@PVDF porous electrospun membrane involves a simple low-temperature ZnO growth in aqueous solution, which does not weaken the polarization of PVDF created during electrospinning in the high electric field.
Collapse
Affiliation(s)
- Minji Kim
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA.
| | - Yuen Shing Wu
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA.
| | - Edwin C Kan
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Jintu Fan
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Ognibene G, Cristaldi DA, Fiorenza R, Blanco I, Cicala G, Scirè S, Fragalà ME. Photoactivity of hierarchically nanostructured ZnO–PES fibre mats for water treatments. RSC Adv 2016. [DOI: 10.1039/c6ra06854e] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brush-like ZnO nanorods shell grown by CBD onto electrospun PES fibres as photocatalytic membranes for water purification.
Collapse
Affiliation(s)
- G. Ognibene
- Department of Civil Engineering and Architecture
- University of Catania
- 95123 Catania
- Italy
| | - D. A. Cristaldi
- Department of Chemical Science and INSTM UdR Catania
- University of Catania
- I-95123 Catania
- Italy
| | - R. Fiorenza
- Department of Chemical Science and INSTM UdR Catania
- University of Catania
- I-95123 Catania
- Italy
| | - I. Blanco
- Department of Civil Engineering and Architecture
- University of Catania
- 95123 Catania
- Italy
| | - G. Cicala
- Department of Civil Engineering and Architecture
- University of Catania
- 95123 Catania
- Italy
| | - S. Scirè
- Department of Chemical Science and INSTM UdR Catania
- University of Catania
- I-95123 Catania
- Italy
| | - M. E. Fragalà
- Department of Chemical Science and INSTM UdR Catania
- University of Catania
- I-95123 Catania
- Italy
| |
Collapse
|
12
|
Fu J, Pang Z, Yang J, Yang Z, Cao J, Xu Y, Huang F, Wei Q. Hydrothermal Growth of Ag-Doped ZnO Nanoparticles on Electrospun Cellulose Nanofibrous Mats for Catechol Detection. ELECTROANAL 2015. [DOI: 10.1002/elan.201400636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Su YW, Lin WH, Hsu YJ, Wei KH. Conjugated polymer/nanocrystal nanocomposites for renewable energy applications in photovoltaics and photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4427-42. [PMID: 25074641 DOI: 10.1002/smll.201401508] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/24/2014] [Indexed: 05/17/2023]
Abstract
Conjugated polymer/nanocrystal composites have attracted much attention for use in renewable energy applications because of their versatile and synergistic optical and electronic properties. Upon absorbing photons, charge separation occurs in the nanocrystals, generating electrons and holes for photocurrent flow or reduction/oxidation (redox) reactions under proper conditions. Incorporating these nanocrystals into conjugated polymers can complement the visible light absorption range of the polymers for photovoltaics applications or allow the polymers to sensitize or immobilize the nanocrystals for photocatalysis. Here, the current developments of conjugated polymer/nanocrystal nanocomposites for bulk heterojunction-type photovoltaics incorporating Cd- and Pb-based nanocrystals or quantum dots are reviewed. The effects of manipulating the organic ligands and the concentration of the nanocrystal precursor, critical factors that affect the shape and aggregation of the nanocrystals, are also discussed. In the conclusion, the mechanisms through which conjugated polymers can sensitize semiconductor nanocrystals (TiO2 , ZnO) to ensure efficient charge separation, as well as how they can support immobilized nanocrystals for use in photocatalysis, are addressed.
Collapse
Affiliation(s)
- Yu-Wei Su
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | | | | | | |
Collapse
|
14
|
Kayaci F, Vempati S, Ozgit-Akgun C, Donmez I, Biyikli N, Uyar T. Selective isolation of the electron or hole in photocatalysis: ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition. NANOSCALE 2014; 6:5735-5745. [PMID: 24664354 DOI: 10.1039/c3nr06665g] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Heterojunctions are a well-studied material combination in photocatalysis studies, the majority of which aim to improve the efficacy of the catalysts. Developing novel catalysts begs the question of which photo-generated charge carrier is more efficient in the process of catalysis and the associated mechanism. To address this issue we have fabricated core-shell heterojunction (CSHJ) nanofibers from ZnO and TiO2 in two combinations where only the 'shell' part of the heterojunction is exposed to the environment to participate in the photocatalysis. Core and shell structures were fabricated via electrospinning and atomic layer deposition, respectively which were then subjected to calcination. These CSHJs were characterized and studied for photocatalytic activity (PCA). These two combinations expose electrons or holes selectively to the environment. Under suitable illumination of the ZnO-TiO2 CSHJ, e/h pairs are created mainly in TiO2 and the electrons take part in catalysis (i.e. reduce the organic dye) at the conduction band or oxygen vacancy sites of the 'shell', while holes migrate to the core of the structure. Conversely, holes take part in catalysis and electrons diffuse to the core in the case of a TiO2-ZnO CSHJ. The results further revealed that the TiO2-ZnO CSHJ shows ∼1.6 times faster PCA when compared to the ZnO-TiO2 CSHJ because of efficient hole capture by oxygen vacancies, and the lower mobility of holes.
Collapse
Affiliation(s)
- Fatma Kayaci
- UNAM-National Nanotechnology Research Centre, Bilkent University, Ankara, 06800, Turkey.
| | | | | | | | | | | |
Collapse
|
15
|
Athauda TJ, Madduma-Bandarage USK, Vasquez Y. Integration of ZnO/ZnS nanostructured materials into a cotton fabric platform. RSC Adv 2014. [DOI: 10.1039/c4ra12074d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inorganic semiconductor ZnO/ZnS nanostructures were coupled to flexible natural fibrous materials for potential applications that include wearable electronics, protective textiles, portable and flexible photovoltaic and solar cell devices.
Collapse
Affiliation(s)
| | | | - Yolanda Vasquez
- Department of Chemistry
- Oklahoma State University
- Stillwater, USA
| |
Collapse
|
16
|
Athauda TJ, LePage WS, Chalker JM, Ozer RR. High density growth of ZnO nanorods on cotton fabric enables access to a flame resistant composite. RSC Adv 2014. [DOI: 10.1039/c4ra01543f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|