1
|
Kuehl BW, Hohmann A, Lee TH, Forrester M, Hernandez N, Dietrich H, Smith C, Musselman S, Tran G, Cochran EW. Cavitation-Mediated Fracture Energy Dissipation in Polylactide at Rubbery Soybean Oil-Based Block Copolymer Interfaces Formed via Reactive Extrusion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46912-46919. [PMID: 36201621 DOI: 10.1021/acsami.2c10496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Here, we spearhead a new approach to biopolymer impact modification that demonstrates superior performance while maintaining greater than 99% compostability. Using soybean-based monomers, a virtually untapped resource in terms of commercial volume and overall cost, a series of hyperbranched block copolymers were synthesized and melt-processed with poly(l-lactide) (PLA) to yield impact resistant all-polymer composites. Although PLA impact modification has been treated extensively, to date, the only practical solutions have relied on non-compostable petroleum-based rubbers. This study illustrates the activity of energy dissipation mechanisms such as cavitation, classically relegated to well-entangled petroleum-based rubbers, in poorly entangled hyperbranched soybean-based rubbers. Furthermore, we present a complete study of the mechanical performance and morphology of these impact modified PLA composites. The significance of combining deformation theory with a scalable green alternative to petroleum-based rubbers opens up a potential avenue for cheap compostable engineering thermoplastics.
Collapse
Affiliation(s)
- Baker W Kuehl
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Austin Hohmann
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Ting Han Lee
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Michael Forrester
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Nacu Hernandez
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Hannah Dietrich
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Connor Smith
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Sam Musselman
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Grayson Tran
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Eric W Cochran
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Development and Analysis of Mechanical Properties of Caryota and Sisal Natural Fibers Reinforced Epoxy Hybrid Composites. Polymers (Basel) 2021; 13:polym13060864. [PMID: 33799715 PMCID: PMC8000251 DOI: 10.3390/polym13060864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years, natural fiber reinforced polymer composites have gained much attention over synthetic fiber composites because of their many advantages such as low-cost, light in weight, non-toxic, non-abrasive, and bio-degradable properties. Many researchers have found interest in using epoxy resin for composite fabrication over other thermosetting and thermoplastic polymers due to its dimensional stability and mechanical properties. In this research work, the mechanical and moisture properties of Caryota and sisal fiber-reinforced epoxy resin hybrid composites were investigated. The main objective of these studies is to develop hybrid composites and exploit their importance over single fiber composites. The Caryota and sisal fiber reinforced epoxy resin composites were fabricated by using the hand lay-up technique. A total of five different samples (40C/0S, 25C/15S, 20C/20S, 15C/25S, 0C/40S) were developed based on the rule of hybridization. The samples were allowed for testing to evaluate their mechanical, moisture properties and the morphology was studied by using the scanning electron microscope analysis. It was observed that hybrid composites have shown improved mechanical properties over the single fiber (Individual fiber) composites. The moisture studies stated that all the composites were responded to the water absorption but single fiber composites absorbed more moisture than hybrid composites.
Collapse
|
3
|
Wang J, Zhang X, Jiang L, Qiao J. Advances in toughened polymer materials by structured rubber particles. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101160] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Maurya SD, Kurmvanshi SK, Mohanty S, Nayak SK. Synthesis and characterization of crosslinked transparent poly(ester-urethane-acrylate) containing methyl methacrylate. Macromol Res 2017. [DOI: 10.1007/s13233-017-5105-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
He R, Zhan X, Zhang Q, Chen F. Toughening of an epoxy thermoset with poly[styrene-alt-(maleic acid)]-block-polystyrene-block-poly(n-butyl acrylate) reactive core–shell particles. RSC Adv 2016. [DOI: 10.1039/c6ra05048d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Reactive core–shell particles for epoxy toughening were synthesized via reversible addition–fragmentation chain transfer emulsion polymerization mediated by an amphiphilic macro-RAFT agent followed by core-crosslinking to increase stability.
Collapse
Affiliation(s)
- Ren He
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Fengqiu Chen
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
6
|
Fu N, Yang YY, Ma J, Yu XY, Ding HL, Qu XW. Preparation of core-shell structured polyacrylic modifiers and effects of the core-shell weight ratio on toughening of poly(butylene terephthalate). CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-001-1582-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|