1
|
Complementary catalysis and analysis within solid state additively manufactured metal micro flow reactors. Sci Rep 2022; 12:5121. [PMID: 35332202 PMCID: PMC8948297 DOI: 10.1038/s41598-022-09044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/16/2022] [Indexed: 11/08/2022] Open
Abstract
Additive Manufacturing is transforming how researchers and industrialists look to design and manufacture chemical devices to meet their specific needs. In this work, we report the first example of a flow reactor formed via the solid-state metal sheet lamination technique, Ultrasonic Additive Manufacturing (UAM), with directly integrated catalytic sections and sensing elements. The UAM technology not only overcomes many of the current limitations associated with the additive manufacturing of chemical reactionware but it also significantly increases the functionality of such devices. A range of biologically important 1, 4-disubstituted 1, 2, 3-triazole compounds were successfully synthesised and optimised in-flow through a Cu mediated Huisgen 1, 3-dipolar cycloaddition using the UAM chemical device. By exploiting the unique properties of UAM and continuous flow processing, the device was able to catalyse the proceeding reactions whilst also providing real-time feedback for reaction monitoring and optimisation.
Collapse
|
2
|
Nano-magnetic-iron Oxides@choline Acetate as a Heterogeneous Catalyst for the Synthesis of 1,2,3-Triazoles. Catal Letters 2021. [DOI: 10.1007/s10562-021-03739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Gupta S, Pathak AK, Ameta C, Punjabi PB. Microwave-Induced Expeditious Synthesis of Biologically Active Substituted Imidazoles using CuO-TiO2-GO Nanocomposite as a Recyclable Catalyst. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200708161330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An efficient, green and rapid protocol for one-pot synthesis of substituted imidazoles from
isatin, aryl/hetero-aryl aldehydes and ammonium acetate in presence of CuO-TiO2-GO nanocomposite
as catalyst under microwave irradiation has been reported in this article. The CuO-TiO2-GO nanocomposite
was synthesized by the hydrothermal method. Further, the prepared composite was characterized
by FT-IR, XRD, FESEM, EDS, TEM, Raman and TGA techniques. The protocol offered several advantages
such as high rate of reaction, excellent yields, economic feasibility, simple work-up and reusability
of catalyst up to six cycles. Further antimicrobial activities of the synthesized substituted imidazoles
were evaluated by the broth dilution method.
Collapse
Affiliation(s)
- Sharoni Gupta
- Microwave Synthesis Laboratory, Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur-313001, Rajasthan,India
| | - Arpit K. Pathak
- Department of Chemistry, Shri Govind Guru Government College, Banswara- 327001, Rajasthan,India
| | - Chetna Ameta
- Microwave Synthesis Laboratory, Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur-313001, Rajasthan,India
| | - Pinki B. Punjabi
- Microwave Synthesis Laboratory, Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur-313001, Rajasthan,India
| |
Collapse
|
4
|
Barman K, Dutta P, Chowdhury D, Baruah PK. Green Biosynthesis of Copper Oxide Nanoparticles Using Waste Colocasia esculenta Leaves Extract and Their Application as Recyclable Catalyst Towards the Synthesis of 1,2,3-triazoles. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00826-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Affiliation(s)
- Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) Consiglio Nazionale delle Ricerche via G. Fantoli 16/15 20138 Milan Italy
| | - Giorgio Molteni
- Dipartimento di Chimica Università degli Studi di Milano via Golgi 19 20133 Milan Italy
| |
Collapse
|
6
|
Sawkmie ML, Paul D, Kalita G, Agarwala K, Maji PK, Chatterjee PN. Synthesis and characterization of active cuprous oxide particles and their catalytic application in 1,2,3‐triazole synthesis via alkyne‐azide cycloaddition reaction in water. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Dipankar Paul
- Department of ChemistryNational Institute of Technology Meghalaya Shillong India
| | - Gitumoni Kalita
- Department of ChemistryNational Institute of Technology Meghalaya Shillong India
| | - Khushboo Agarwala
- Department of ChemistryNational Institute of Technology Meghalaya Shillong India
| | - Pradip K. Maji
- Department of Polymer and Process EngineeringIndian Institute of Technology Roorkee Saharanpur India
| | | |
Collapse
|
7
|
Wang D, Astruc D. The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chem Soc Rev 2018; 46:816-854. [PMID: 28101543 DOI: 10.1039/c6cs00629a] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Whereas noble metal compounds have long been central in catalysis, Earth-abundant metal-based catalysts have in the same time remained undeveloped. Yet the efficacy of Earth-abundant metal catalysts was already shown at the very beginning of the 20th century with the Fe-catalyzed Haber-Bosch process of ammonia synthesis and later in the Fischer-Tropsch reaction. Nanoscience has revolutionized the world of catalysis since it was observed that very small Au nanoparticles (NPs) and other noble metal NPs are extraordinarily efficient. Therefore the development of Earth-abundant metals NPs is more recent, but it has appeared necessary due to their "greenness". This review highlights catalysis by NPs of Earth-abundant transition metals that include Mn, Fe, Co, Ni, Cu, early transition metals (Ti, V, Cr, Zr, Nb and W) and their nanocomposites with emphasis on basic principles and literature reported during the last 5 years. A very large spectrum of catalytic reactions has been successfully disclosed, and catalysis has been examined for each metal starting with zero-valent metal NPs followed by oxides and other nanocomposites. The last section highlights the catalytic activities of bi- and trimetallic NPs. Indeed this later family is very promising and simultaneously benefits from increased stability, efficiency and selectivity, compared to monometallic NPs, due to synergistic substrate activation.
Collapse
Affiliation(s)
- Dong Wang
- ISM, UMR CNRS 5255, Univ. Bordeaux, 33405 Talence Cedex, France.
| | - Didier Astruc
- ISM, UMR CNRS 5255, Univ. Bordeaux, 33405 Talence Cedex, France.
| |
Collapse
|
8
|
Tăbăcaru A, Furdui B, Ghinea IO, Cârâc G, Dinică RM. Recent advances in click chemistry reactions mediated by transition metal based systems. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Abstract
This review presents the recent remarkable developments of efficient Earth-abundant transition-metal nanocatalysts.
Collapse
Affiliation(s)
- Dong Wang
- ISM
- UMR CNRS 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| | - Didier Astruc
- ISM
- UMR CNRS 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| |
Collapse
|
10
|
Das D. Multicomponent Reactions in Organic Synthesis Using Copper-Based Nanocatalysts. ChemistrySelect 2016. [DOI: 10.1002/slct.201600414] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Debjit Das
- Centre for Applied Chemistry; Central University of Jharkhand, Brambe; Ranchi- 835205, Jharkhand India
| |
Collapse
|
11
|
Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem Rev 2016; 116:3722-811. [DOI: 10.1021/acs.chemrev.5b00482] [Citation(s) in RCA: 1589] [Impact Index Per Article: 198.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Manoj B. Gawande
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
11, 783 71 Olomouc, Czech Republic
| | - Anandarup Goswami
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
11, 783 71 Olomouc, Czech Republic
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Department
of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - François-Xavier Felpin
- UFR
Sciences et Techniques, UMR CNRS 6230, Chimie et Interdisciplinarité:
Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes, 2 Rue de la Houssinière, BP 92208, Nantes 44322 Cedex 3, France
| | - Tewodros Asefa
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Department
of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Xiaoxi Huang
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Rafael Silva
- Department
of Chemistry, Maringá State University, Avenida Colombo 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Xiaoxin Zou
- State
Key
Laboratory of Inorganic Synthesis and Preparative Chemistry, International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Radek Zboril
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
11, 783 71 Olomouc, Czech Republic
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacky University, Šlechtitelů
11, 783 71 Olomouc, Czech Republic
| |
Collapse
|
12
|
Deka P, Hazarika A, Deka RC, Bharali P. Influence of CuO morphology on the enhanced catalytic degradation of methylene blue and methyl orange. RSC Adv 2016. [DOI: 10.1039/c6ra20173c] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sheet-like CuO shows enhanced catalytic activity, compared to polycrystalline CuO for the catalytic degradation of methylene blue and methyl orange.
Collapse
Affiliation(s)
- Pangkita Deka
- Department of Chemical Sciences
- Tezpur University
- Napaam 784 028
- India
| | - Anil Hazarika
- Sophisticated Analytical Instrumentation Centre (SAIC)
- Tezpur University
- Napaam 784 028
- India
| | - Ramesh C. Deka
- Department of Chemical Sciences
- Tezpur University
- Napaam 784 028
- India
| | - Pankaj Bharali
- Department of Chemical Sciences
- Tezpur University
- Napaam 784 028
- India
| |
Collapse
|
13
|
Gorai S, Bagdi PR, Borah R, Paul D, Santra MK, Khan AT, Manna D. Insights into the inhibitory mechanism of triazole-based small molecules on phosphatidylinositol-4,5-bisphosphate binding pleckstrin homology domain. Biochem Biophys Rep 2015; 2:75-86. [PMID: 29124147 PMCID: PMC5668642 DOI: 10.1016/j.bbrep.2015.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
Background Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important regulator of several cellular processes and a precursor for other second messengers which are involved in cell signaling pathways. Signaling proteins preferably interact with PI(4,5)P2 through its pleckstrin homology (PH) domain. Efforts are underway to design small molecule-based antagonist, which can specifically inhibit the PI(4,5)P2/PH-domain interaction to establish an alternate strategy for the development of drug(s) for phosphoinositide signaling pathways. Methods Surface plasmon resonance, molecular docking, circular dichroism, competitive Förster resonance energy transfer, isothermal titration calorimetric analyses and liposome pull down assay were used. Results In this study, we employed 1,2,3-triazol-4-yl methanol containing small molecule (CIPs) as antagonists for PI(4,5)P2/PH-domain interaction and determined their inhibitory effect by using competitive-surface plasmon resonance analysis (IC50 ranges from 53 to 159 nM for PI(4,5)P2/PLCδ1-PH domain binding assay). We also used phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2], PI(4,5)P2 specific PH-domains to determine binding selectivity of the compounds. Various physicochemical analyses showed that the compounds have weak affect on fluidity of the model membrane but, strongly interact with the phospholipase C δ1 (PLCδ1)-PH domains. The 1,2,3-triazol-4-yl methanol moiety and nitro group of the compounds are essential for their exothermic interaction with the PH-domains. Potent compound can efficiently displace PLCδ1-PH domain from plasma membrane to cytosol in A549 cells. Conclusions Overall, our studies demonstrate that these compounds interact with the PIP-binding PH-domains and inhibit their membrane recruitment. General significance These results suggest specific but differential binding of these compounds to the PLCδ1-PH domain and emphasize the role of their structural differences in binding parameters. These triazole-based compounds could be directly used/further developed as potential inhibitor for PH domain-dependent enzyme activity.
Collapse
Affiliation(s)
- Sukhamoy Gorai
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Prasanta Ray Bagdi
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Rituparna Borah
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Debasish Paul
- National Center for Cell Science, Pune 411007, Maharashtra, India
| | | | - Abu Taleb Khan
- Alia University, DN 18, 8th Floor, Sector V, Kolkata 700091, India
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
14
|
Bagdi PR, Basha RS, Khan AT. Synthesis of 2-triazolyl-imidazo[1,2-a]pyridine through a one-pot three-component reaction using a nano copper oxide assisted click-catalyst. RSC Adv 2015. [DOI: 10.1039/c5ra09671e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The syntheses of 2-triazolyl imidazo[1,2-a]pyridine were accomplished through 5-exo dig cyclisation using 5 mol% nanocopper oxide together with 10 mol% sodium ascorbate as a click-catalyst in ethanol at 70 °C.
Collapse
Affiliation(s)
- Prasanta Ray Bagdi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | - R. Sidick Basha
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
| | - Abu T. Khan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039
- India
- Vice-Chancellor
| |
Collapse
|