1
|
El-Didamony SE, Gouda HI, Zidan MM, Amer RI. Bee products: An overview of sources, biological activities and advanced approaches used in apitherapy application. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00862. [PMID: 39507381 PMCID: PMC11538619 DOI: 10.1016/j.btre.2024.e00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Background Bee therapy (Apitherapy, Api-treatment, Bee treatment) is a type of biotherapy that uses bees and their products as medicinal or preventative measures to control progression of diseases. In many countries today, apitherapy is a section of complementary and integrative medicine. The aim of this review is to explore the different bee products and their therapeutic potentials. Method We searched the literature and then explored and evaluated evidence for bee products' composition, therapeutic abilities and novel techniques used to enhance their effectiveness. Results Data revealed that there are continuous advances in research and clinical trials of bee therapy. A better understanding of the composition of bee products generated great interest in their use for medical treatments. Bee products either collected or synthesized promote healing through reducing inflammation, enhancing circulation, and inducing a healthy immunological response, Furthermore, researchers have developed innovative approaches such as nanoparticles, scaffold, nanofibers, and others to increase the bioavailability of bee products and overcome problems with the traditional use of these products. Conclusion Bee therapy is a simple, accessible, and easy-to-use pharmaceutical that is used in conventional medicine and has the potential to treat a variety of diseases. However, further studies are needed to prove its efficacy, and safety. Lack of practice regulations is still an issue.
Collapse
Affiliation(s)
- Samia E. El-Didamony
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University (Girls), Nasr City, Cairo, 11884, Egypt
| | - Hend I.A. Gouda
- Honeybee Research Department, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Mahmoud M.M. Zidan
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University (Boys), Nasr City, Cairo, Egypt
| | - Reham I. Amer
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Marutyan S, Karapetyan H, Khachatryan L, Muradyan A, Marutyan S, Poladyan A, Trchounian K. The antimicrobial effects of silver nanoparticles obtained through the royal jelly on the yeasts Candida guilliermondii NP-4. Sci Rep 2024; 14:19163. [PMID: 39160246 PMCID: PMC11333486 DOI: 10.1038/s41598-024-70197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The effect of silver nanoparticles (Ag NPs) obtained in the presence of royal jelly (RJ) on the growth of yeast Candida guilliermondii NP-4, on the total and H+-ATPase activity, as well as lipid peroxidation process and antioxidant enzymes (superoxide dismutase (SOD), catalase) activity was studied. It has been shown that RJ-mediated Ag NPs have a fungicide and fungistatic effects at the concentrations of 5.4 µg mL-1 and 27 µg mL-1, respectively. Under the influence of RJ-mediated Ag NPs, a decrease in total and H+-ATPase activity in yeast homogenates by ~ 90% and ~ 80% was observed, respectively. In yeast mitochondria total and H+-ATPase activity depression was detected by ~ 80% and ~ 90%, respectively. The amount of malondialdehyde in the Ag NPs exposed yeast homogenate increased ~ 60%, the catalase activity increased ~ 70%, and the SOD activity-~ 30%. The obtained data indicate that the use of RJ-mediated Ag NPs have a diverse range of influence on yeast cells. This approach may be important in the field of biomedical research aimed at evaluating the development of oxidative stress in cells. It may also contribute to a more comprehensive understanding of antimicrobial properties of RJ-mediated Ag NPs and help control the proliferation of pathogenic fungi.
Collapse
Affiliation(s)
- Seda Marutyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia.
| | - Hasmik Karapetyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Lusine Khachatryan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Anna Muradyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Syuzan Marutyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Anna Poladyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia.
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia.
- Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 1 A. Manoogian, 0025, Yerevan, Armenia.
| |
Collapse
|
3
|
Khalifa SAM, Shetaia AA, Eid N, Abd El-Wahed AA, Abolibda TZ, El Omri A, Yu Q, Shenashen MA, Hussain H, Salem MF, Guo Z, Alanazi AM, El-Seedi HR. Green Innovation and Synthesis of Honeybee Products-Mediated Nanoparticles: Potential Approaches and Wide Applications. Bioengineering (Basel) 2024; 11:829. [PMID: 39199787 PMCID: PMC11351265 DOI: 10.3390/bioengineering11080829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Bee products, abundant in bioactive ingredients, have been utilized in both traditional and contemporary medicine. Their antioxidant, antimicrobial, and anti-inflammatory properties make them valuable for food, preservation, and cosmetics applications. Honeybees are a vast reservoir of potentially beneficial products such as honey, bee pollen, bee bread, beeswax, bee venom, and royal jelly. These products are rich in metabolites vital to human health, including proteins, amino acids, peptides, enzymes, sugars, vitamins, polyphenols, flavonoids, and minerals. The advancement of nanotechnology has led to a continuous search for new natural sources that can facilitate the easy, low-cost, and eco-friendly synthesis of nanomaterials. Nanoparticles (NPs) are actively synthesized using honeybee products, which serve dual purposes in preventive and interceptive treatment strategies due to their richness in essential metabolites. This review aims to highlight the potential role of bee products in this line and their applications as catalysts and food preservatives and to point out their anticancer, antibacterial, antifungal, and antioxidant underlying impacts. The research used several online databases, namely Google Scholar, Science Direct, and Sci Finder. The overall findings suggest that these bee-derived substances exhibit remarkable properties, making them promising candidates for the economical and eco-friendly production of NPs.
Collapse
Affiliation(s)
- Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Neurology and Psychiatry Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Aya A. Shetaia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
| | - Nehal Eid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Tariq Z. Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| | - Abdelfatteh El Omri
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 3050, Qatar;
- Vice President for Medical and Health Sciences Office, QU-Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Qiang Yu
- Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China;
| | - Mohamed A. Shenashen
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-Shi 305-0047, Ibaraki-Ken, Japan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany;
| | - Mohamed F. Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, GEBRI, University of Sadat City, Sadat City P.O. Box 79, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Abdulaziz M. Alanazi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| |
Collapse
|
4
|
Franco D, Leonardi AA, Rizzo MG, Palermo N, Irrera A, Calabrese G, Conoci S. Biological Response Evaluation of Human Fetal Osteoblast Cells and Bacterial Cells on Fractal Silver Dendrites for Bone Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1107. [PMID: 36986001 PMCID: PMC10054653 DOI: 10.3390/nano13061107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Prosthetic joint replacement is the most widely used surgical approach to repair large bone defects, although it is often associated with prosthetic joint infection (PJI), caused by biofilm formation. To solve the PJI problem, various approaches have been proposed, including the coating of implantable devices with nanomaterials that exhibit antibacterial activity. Among these, silver nanoparticles (AgNPs) are the most used for biomedical applications, even though their use has been limited by their cytotoxicity. Therefore, several studies have been performed to evaluate the most appropriate AgNPs concentration, size, and shape to avoid cytotoxic effects. Great attention has been focused on Ag nanodendrites, due to their interesting chemical, optical, and biological properties. In this study, we evaluated the biological response of human fetal osteoblastic cells (hFOB) and P. aeruginosa and S. aureus bacteria on fractal silver dendrite substrates produced by silicon-based technology (Si_Ag). In vitro results indicated that hFOB cells cultured for 72 h on the Si_Ag surface display a good cytocompatibility. Investigations using both Gram-positive (S. aureus) and Gram-negative (P. aeruginosa) bacterial strains incubated on Si_Ag for 24 h show a significant decrease in pathogen viability, more evident for P. aeruginosa than for S. aureus. These findings taken together suggest that fractal silver dendrite could represent an eligible nanomaterial for the coating of implantable medical devices.
Collapse
Affiliation(s)
- Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
| | - Antonio Alessio Leonardi
- Department of Physic and Astronomy, University of Catania (Italy), Via Santa Sofia 64, 95123 Catania, Italy
- CNR IMM, Catania Università, Via Santa Sofia 64, 95123 Catania, Italy
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
| | - Nicoletta Palermo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
| | - Alessia Irrera
- CNR URT Lab SENS, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
- CNR URT Lab SENS, Beyond NANO, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
5
|
Royal Jelly Components Encapsulation in a Controlled Release System—Skin Functionality and Biochemical Activity for Skin Applications. Pharmaceuticals (Basel) 2022; 15:ph15080907. [PMID: 35893731 PMCID: PMC9332036 DOI: 10.3390/ph15080907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
Royal jelly is a yellowish-white substance with a gel texture that is secreted from the hypopharyngeal and mandibular glands of young worker bees. It consists mainly of water (50–56%), proteins (18%), carbohydrates (15%), lipids (3–6%), minerals (1.5%), and vitamins, and has many beneficial properties such as antimicrobial, anti-inflammatory, anticancer, antioxidant, antidiabetic, immunomodulatory, and anti-aging. Royal jelly has been used since ancient times in traditional medicine, cosmetics and as a functional food due to its high nutritional value. The main bioactive substances are royalactin, and 10-hydroxy-2-decenoic acid (10-HDA). Other important bioactive molecules with antioxidant and photoprotective skin activity are polyphenols. However, they present difficulties in extraction and in use as they are unstable physicochemically, and a higher temperature causes color change and component degradation. In the present study, a new encapsulation and delivery system consisting of liposomes and cyclodextrins incorporating royal jelly has been developed. The new delivery system aims to the elimination of the stability disadvantages of royal jelly’s sensitive component 10-HDA, but also to the controlled release of its ingredients and, more particularly, 10-HDA, for an enhanced bioactivity in cosmeceutical applications.
Collapse
|
6
|
Ag Nanoflowers and Nanodendrites Synthesized by a Facile Method and Their Antibacterial Activity. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Gevorgyan S, Schubert R, Yeranosyan M, Gabrielyan L, Trchounian A, Lorenzen K, Trchounian K. Antibacterial activity of royal jelly-mediated green synthesized silver nanoparticles. AMB Express 2021; 11:51. [PMID: 33796941 PMCID: PMC8017077 DOI: 10.1186/s13568-021-01213-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
The application of green synthesis in nanotechnology is growing day by day. It's a safe and eco-friendly alternative to conventional methods. The current research aimed to study raw royal jelly's potential in the green synthesis of silver nanoparticles and their antibacterial activity. Royal jelly served as a reducing and oxidizing agent in the green synthesis technology of colloidal silver nanoparticles. The UV-Vis maximum absorption at ~ 430 nm and fluorescence emission peaks at ~ 487 nm confirmed the presence of Ag NPs. Morphology and structural properties of Ag NPs and the effect of ultrasound studies revealed: (i) the formation of polydispersed and spherical particles with different sizes; (ii) size reduction and homogeneity increase by ultrasound treatment. Antibacterial activity of different concentrations of green synthesized Ag NPs has been assessed on Gram-negative S. typhimurium and Gram-positive S. aureus, revealing higher sensitivity on Gram-negative bacteria.
Collapse
Affiliation(s)
- Susanna Gevorgyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Robin Schubert
- European X-ray Free Electron Laser GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Mkrtich Yeranosyan
- Institute of Chemical Physics, NAS RA, Paruir Sevak 5/2, 0014, Yerevan, Armenia
- Military Aviation University Named After Marshal A. Khamperyants, Arshakunyats 89, 0007, Yerevan, Armenia
| | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Armen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Kristina Lorenzen
- European X-ray Free Electron Laser GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia.
| |
Collapse
|
8
|
Ţălu Ş, Matos RS, Pinto EP, Rezaee S, Mardani M. Stereometric and fractal analysis of sputtered Ag-Cu thin films. SURFACES AND INTERFACES 2020. [DOI: 10.1016/j.surfin.2020.100650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Vazquez-Rodriguez A, Vasto-Anzaldo XG, Leon-Buitimea A, Zarate X, Morones-Ramirez JR. Antibacterial and Antibiofilm Activity of Biosynthesized Silver Nanoparticles Coated With Exopolysaccharides Obtained From Rhodotorula mucilaginosa. IEEE Trans Nanobioscience 2020; 19:498-503. [DOI: 10.1109/tnb.2020.2985101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
“Green” synthesis of Ag2S nanoparticles, study of their properties and bioimaging applications. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01365-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Sadovnikov SI, Rempel AA, Gusev AI. Nanostructured silver sulfide: synthesis of various forms and their application. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4803] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The results of experimental studies on nanostructured silver sulfide are analyzed and generalized. The influence of small particle size on nonstoichiometry of silver sulfide is discussed. Methods for the synthesis of various forms of nanostructured Ag2S including nanopowders, stable colloidal solutions, quantum dots, core – shell nanoparticles and heteronanostructures are described. The advantages and drawbacks of different synthetic procedures are analyzed. Main fields of application of nanostructured silver sulfide are considered.
The bibliography includes 184 references.
Collapse
|
12
|
Sadovnikov SI, Gusev AI. Universal Approach to the Synthesis of Silver Sulfide in the Forms of Nanopowders, Quantum Dots, Core‐Shell Nanoparticles, and Heteronanostructures. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600881] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stanislav I. Sadovnikov
- Institute of Solid State Chemistry Ural Branch of the Russian Academy of Sciences Pervomaiskaya 91 620990 Ekaterinburg Russia
| | - Aleksandr I. Gusev
- Institute of Solid State Chemistry Ural Branch of the Russian Academy of Sciences Pervomaiskaya 91 620990 Ekaterinburg Russia
| |
Collapse
|
13
|
Antimicrobial polysulfone blended ultrafiltration membranes prepared with Ag/Cu2O hybrid nanowires. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Luna C, Chávez VHG, Barriga-Castro ED, Núñez NO, Mendoza-Reséndez R. Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 141:43-50. [PMID: 25659741 DOI: 10.1016/j.saa.2014.12.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/24/2014] [Accepted: 12/17/2014] [Indexed: 05/25/2023]
Abstract
Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices.
Collapse
Affiliation(s)
- Carlos Luna
- Centro de Investigación en Ciencias Físico Matemáticas/Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás de los Garza, 66450 Nuevo León, Mexico.
| | - V H G Chávez
- Centro de Investigación en Ciencias Físico Matemáticas/Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás de los Garza, 66450 Nuevo León, Mexico
| | - Enrique Díaz Barriga-Castro
- Centro de Investigación en Ciencias Físico Matemáticas/Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás de los Garza, 66450 Nuevo León, Mexico
| | - Nuria O Núñez
- Instituto de Ciencia de Materiales de Sevilla, CSIC-US, Avda. Americo Vespucio n° 49, Isla de la Cartuja, 41092 Sevilla, Spain
| | - Raquel Mendoza-Reséndez
- Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás de los Garza, 66450 Nuevo León, Mexico
| |
Collapse
|
15
|
Yang P, Dong H, Xia J, Xu A, Shi J, He J, Ding J, Li D. Synthesis of fluorescent and low cytotoxicity phenol formaldehyde resin (PFR)@Ag composites for cell imaging and antibacterial activity. LUMINESCENCE 2015; 30:1413-7. [DOI: 10.1002/bio.2907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/08/2015] [Accepted: 02/26/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Ping Yang
- School of Chemical Engineering; Anhui University of Science and Technology; Huainan Anhui 232001 People's Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing University of Technology; Nanjing 210009 China
| | - Hao Dong
- School of Chemical Engineering; Anhui University of Science and Technology; Huainan Anhui 232001 People's Republic of China
| | - Jun Xia
- The Station of Police; Huainan 232001 People's Republic of China
| | - Andong Xu
- School of Chemical Engineering; Anhui University of Science and Technology; Huainan Anhui 232001 People's Republic of China
| | - Jianjun Shi
- School of Chemical Engineering; Anhui University of Science and Technology; Huainan Anhui 232001 People's Republic of China
| | - Jie He
- School of Chemical Engineering; Anhui University of Science and Technology; Huainan Anhui 232001 People's Republic of China
| | - Jianzhong Ding
- School of Chemical Engineering; Anhui University of Science and Technology; Huainan Anhui 232001 People's Republic of China
| | - Dewei Li
- School of Chemical Engineering; Anhui University of Science and Technology; Huainan Anhui 232001 People's Republic of China
| |
Collapse
|
16
|
Qian W, Li M, Chen L, Zhang J, Dong C. Improving thermo-electrochemical cell performance by constructing Ag–MgO–CNTs nanocomposite electrodes. RSC Adv 2015. [DOI: 10.1039/c5ra19182c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ag–MgO–CNTs nanocomposites were conveniently prepared using a electrophoretic deposition method, leading to significantly improved thermo-electrochemical cell performances.
Collapse
Affiliation(s)
- Weijin Qian
- Institute of Micro-nano Structure & Optoelectronics
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Mengjie Li
- Institute of Micro-nano Structure & Optoelectronics
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Lihong Chen
- Institute of Micro-nano Structure & Optoelectronics
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Jianghui Zhang
- Institute of Micro-nano Structure & Optoelectronics
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Changkun Dong
- Institute of Micro-nano Structure & Optoelectronics
- Wenzhou University
- Wenzhou 325035
- P. R. China
| |
Collapse
|