1
|
Liu CX, Zhao F, Gu Q, You SL. Enantioselective Rh(I)-Catalyzed C-H Arylation of Ferroceneformaldehydes. ACS CENTRAL SCIENCE 2023; 9:2036-2043. [PMID: 38033798 PMCID: PMC10683487 DOI: 10.1021/acscentsci.3c00748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 12/02/2023]
Abstract
As an important class of platform molecules, planar chiral ferrocene carbonyl compounds could be transformed into various functional groups offering facile synthesis of chiral ligands and catalysts. However, developing efficient and straightforward methods for accessing enantiopure planar chiral ferrocene carbonyl compounds, especially ferroceneformaldehydes, remains highly challenging. Herein, we report a rhodium(I)/phosphoramidite-catalyzed enantioselective C-H bond arylation of ferroceneformaldehydes. Readily available aryl halides such as aryl iodides, aryl bromides, and even aryl chlorides are suitable coupling partners in this transformation, leading to a series of planar chiral ferroceneformaldehydes in good yields and excellent enantioselectivity (up to 83% yield and >99% ee). The aldehyde group could be transformed into diverse functional groups smoothly, and enantiopure Ugi's amine and PPFA analogues could be synthesized efficiently. The latter was found to be a highly efficient ligand in Pd-catalyzed asymmetric allylic alkylation reactions. Mechanistic experiments supported the formation of imine intermediates as the key step during the reaction.
Collapse
Affiliation(s)
| | | | - Qing Gu
- New Cornerstone Science Laboratory,
State Key Laboratory of Organometallic Chemistry, Shanghai Institute
of Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Shu-Li You
- New Cornerstone Science Laboratory,
State Key Laboratory of Organometallic Chemistry, Shanghai Institute
of Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| |
Collapse
|
2
|
Zheng H, Liu C, Wang X, Liu Y, Chen B, Hu Y, Chen Q. Catalytic Undirected Meta-Selective C-H Borylation of Metallocenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304672. [PMID: 37632714 PMCID: PMC10625117 DOI: 10.1002/advs.202304672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 08/28/2023]
Abstract
Metallocenes are privileged backbones in the fields of synthetic chemistry, catalysis, polymer science, etc. Direct C-H functionalization is undoubtedly the simplest approach for tuning the properties of metallocenes. However, owing to the presence of multiple identical C(sp2 )-H sites, this protocol often suffers from low reactivity and selectivity issues, especially for the regioselective synthesis of 1,3-difunctionalized metallocenes. Herein, an efficient iridium-catalyzed meta-selective C-H borylation of metallocenes is reported. With no need of preinstalled directing groups, this approach enables a rapid synthesis of various boronic esters based on benzoferrocenes, ferrocenes, ruthenocene, and related half sandwich complex. A broad range of electron-deficient and -rich functional groups are all compatible with the process. Notably, C-H borylation of benzoferrocenes takes place exclusively at the benzene ring, which is likely ascribed to the shielding effect of pentamethylcyclopentadiene. The synthetic utility is further demonstrated by easy scalability to gram quantities, the conversion of boron to heteroatoms including N3 , SePh, and OAc, as well as diverse cross-coupling reactions.
Collapse
Affiliation(s)
- Hao Zheng
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chang‐Hui Liu
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiao‐Yu Wang
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yan Liu
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Bing‐Zhi Chen
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- School of Chemical Engineering and TechnologyChina University of Mining and TechnologyXuzhouJiangsu221116P. R. China
| | - Qing‐An Chen
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
3
|
Biesen L, Hartmann Y, Müller TJJ. Diaroyl-S,N-ketene Acetals: Red-Shifted Solid-State and Aggregation-Induced Emitters from a One-Pot Synthesis. Chemistry 2023; 29:e202301908. [PMID: 37475616 DOI: 10.1002/chem.202301908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Symmetric and unsymmetric diaroyl-S,N-ketene acetals can be readily accessed in consecutive syntheses in good to excellent yields by exploiting the inherent nucleophilic character of the methine position. Different aroyl-S,N-ketene acetals as well as acid chlorides yield a library of 19 diaroyl compounds with substitution and linker pattern-tunable emission properties, leading to a significant red-shift of emission in the solid and aggregated state, which was thoroughly investigated. Additionally, the stability of the luminescent aggregates is highly increased. In a follow-up one-pot procedure, pyrazolo-S,N-ketene acetals can easily be accessed employing a nucleophilic cyclocondensation.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Yannic Hartmann
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
4
|
Cao F, Wang Y, Feng P, Hu J, Yang Y, Zhang H. Pd-Catalyzed Asymmetric Oxidative C-H/C-H Cross-Coupling Reaction between Ferrocenes and Azoles. J Org Chem 2023; 88:5752-5759. [PMID: 37083480 DOI: 10.1021/acs.joc.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The asymmetric C-H bond functionalization reaction is one of the most efficient and straightforward methods for the synthesis of optically active molecules. Herein, our work discovered a Pd-catalyzed asymmetric oxidative C-H/C-H cross-coupling reaction of ferrocenes with azoles such as oxazoles and thiazoles. Mono-N-protected amino acid as chiral ligands with palladium(II) has been demonstrated as an effective catalytic system in a weakly azine-directed asymmetric C-H bond functionalization reaction. This method offers a powerful strategy for constructing various substituted planar chiral ferrocenes via a dual C-H bond activation pathway in medium yields (up to 70%) with good enantioselectivity (up to 95.3:4.7 er) under mild conditions.
Collapse
Affiliation(s)
- Feifei Cao
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Yanjiao Wang
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Pengcheng Feng
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Jianfeng Hu
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021, PR China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, PR China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd., Huairou District, Beijing 101400, PR China
| | - Hao Zhang
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021, PR China
| |
Collapse
|
5
|
Zhou L, Cheng HG, Li L, Wu K, Hou J, Jiao C, Deng S, Liu Z, Yu JQ, Zhou Q. Synthesis of planar chiral ferrocenes via enantioselective remote C-H activation. Nat Chem 2023:10.1038/s41557-023-01176-3. [PMID: 37069268 DOI: 10.1038/s41557-023-01176-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/08/2023] [Indexed: 04/19/2023]
Abstract
Planar chiral ferrocenes are widely studied structures in asymmetric catalysis, materials science and medicinal chemistry. Although synthetic methods for 1,2-disubstituted planar chiral ferrocenes are well known, methods for the direct construction of 1,3-disubstituted planar chiral ferrocenes remain elusive. Here we report a modular platform for the construction of planar chirality in 1,3-disubstituted ferrocenes/ruthenocenes via an enantioselective relay remote C-H activation strategy. This method demonstrates a mechanism for remote enantiocontrol via enantiodetermining initial C‒H activation at the C2 position, enabled by a chiral mono-N-protected natural amino-acid ligand, and subsequent relay to the remote C3 position by a bridgehead-substituted norbornene mediator. A wide variety of 1,3-disubstituted planar chiral metallocenes are prepared with high enantioselectivity (96‒99% e.e.). The reaction shows good functional-group tolerance and high step-economy, and aryl iodides/bromides are compatible as coupling partners. The resulting metallocenes can be readily derivatized to yield planar chiral ligands and catalysts for asymmetric catalysis as well as building blocks for other applications.
Collapse
Affiliation(s)
- Lan Zhou
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, P. R. China
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, P. R. China.
- Suzhou Institute of Wuhan University, Suzhou, Jiangsu, P. R. China.
| | - Lisha Li
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, P. R. China
| | - Kevin Wu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jing Hou
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, P. R. China
| | - Chengkang Jiao
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, P. R. China
| | - Shuang Deng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, P. R. China
| | - Zirui Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, P. R. China
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, P. R. China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
6
|
Ling L, Song Z, Shan H, Wang C, Li S, Wang Y, Hu J, Chen Q, Zhang H, Yang Y. Design and synthesis of a new family of planar and central chiral ferrocenyl phosphine ligands. Chem Commun (Camb) 2023; 59:2739-2742. [PMID: 36744593 DOI: 10.1039/d2cc06492h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A family of planar chiral indene-fused ferrocenes were prepared through an intramolecular asymmetric C-H arylation in excellent yields (up to 99%) with excellent enantioselectivities (up to 99% ee). They were thereafter successfully transformed to chiral ferrocenyl phosphines, featuring both planar and central chiralities, in good yields (up to 83%) and excellent diastereoselectivities (up to 99% de) through highly diastereoselective phosphination. This protocol offers a general method for planar and central chiral ferrocenyl phosphines. The potential applications of the newly developed ligands were demonstrated by a Pd-catalyzed enantioselective allylic alkylation reaction, in which high enantioselectivity (92% ee) and good yield (89%) were obtained.
Collapse
Affiliation(s)
- Li Ling
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Zeli Song
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - He Shan
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Chao Wang
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Shouting Li
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Yanjiao Wang
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Jianfeng Hu
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Qian Chen
- College of Chemical Engineering, Southwest Forestry University, Kunming, 650224, P. R. China
| | - Hao Zhang
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China. .,National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd., Huairou District, Beijing 101400, P. R. China
| |
Collapse
|
7
|
Wang H, Li H, Chen X, Zhou C, Li S, Yang YF, Li G. Asymmetric Remote meta-C–H Activation Controlled by a Chiral Ligand. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hang Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiling Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chunlin Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
An Y, Zhang XY, Ding YN, Li Y, Liu XY, Liang YM. Enantioselective Synthesis of Both Axially and Planar Chiral Ferrocenes via Axial-to-Planar Diastereoinduction. Org Lett 2022; 24:7294-7299. [PMID: 36178106 DOI: 10.1021/acs.orglett.2c02707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ferrocenes with planar chirality have emerged as an important class of scaffolds for ligands in asymmetric catalysis; however, ferrocene molecules with polychiral structures have not been well explored. Herein, both axially and planar chiral ferrocenes were synthesized via palladium/chiral norbornene cooperative catalysis and axial-to-planar diastereoinduction. In this work, chiral norbornene was used to stereoselectively control the aromatic axial chirality, and further selectivity induced C(sp2)-H activation for ferrocene planar chirality. Based on density functional theory calculations, the catalytic model of chiral norbornene with the substrate and the axial-to-planar diastereoinduction process were confirmed.
Collapse
Affiliation(s)
- Yang An
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiao-Yan Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
9
|
Müller S, Lee W, Song JY, Kang E, Joo JM. Nondirected Pd-catalyzed aerobic C-H alkenylation of ruthenocene and ferrocene. Chem Commun (Camb) 2022; 58:10809-10812. [PMID: 36069397 DOI: 10.1039/d2cc04208h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd-catalyzed alkenylations of metallocenes via C-H activation were developed using electronically tunable pyrazolonaphthyridine (PzNPy) ligands. Ferrocene was alkenylated using the most electron-deficient ligand in the series, whereas the less reactive ruthenocene needed balancing of the electrophilicity and stability of catalysts. Various alkenes were installed, allowing fine-tuning of redox potentials.
Collapse
Affiliation(s)
- Sven Müller
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea. .,Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Interdisciplinary Center for Molecular Materials (ICMM), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Woohyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea.
| | - Jae Yeong Song
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea.
| | - Eunsu Kang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea.
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
10
|
Gupta A, Das R, Chamoli A, Choithramani A, Kumar H, Patel S, Khude D, Bothra G, Wangdale K, Ghosh Chowdhury M, Rathod R, Mandoli A, Shard A. A Series of Ferrocene-Containing Pyrazolo[1,5- a]pyrimidines Induce a Strong Antiproliferative Effect against Oral Cancer Cells. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Astha Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Ambika Chamoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Asmita Choithramani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Hansal Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Datta Khude
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Gourav Bothra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Khushal Wangdale
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Rajeshwari Rathod
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
11
|
Electrochemically driven regioselective C-H phosphorylation of group 8 metallocenes. Nat Commun 2022; 13:3496. [PMID: 35715392 PMCID: PMC9206016 DOI: 10.1038/s41467-022-31178-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023] Open
Abstract
Metallocenes are privileged backbones for synthesis and catalysis. However, the direct dehydrogenative C−H functionalization of unsymmetric metallocenes suffers from reactivity and selectivity issues. Herein, we report an electrochemically driven regioselective C−H phosphorylation of group 8 metallocenes. Mechanistic investigations indicate this dehydrogenative cross coupling occurs through an electrophilic radical substitution of the metallocene with a phosphoryl radical, facilitated by the metallocene itself. This work not only offers an efficient and divergent synthesis of phosphorylated metallocenes, but also provides a guide to interpret the reactivity and regioselectivity for the C−H functionalization of unsymmetric metallocenes. Metallocene-based phosphines are compounds with potential use in catalysis. Here, the authors report the electrochemical regioselective functionalization of group 8 metallocenes with phosphine oxides; over 60 examples of phosphorylated (benzo)ferrocenes and ruthenocenes can be accessed via this method without the need for a preinstalled directing group.
Collapse
|
12
|
Zhang ZZ, Huang DY, Shi BF. Recent advances in the synthesis of ferrocene derivatives via 3d transition metal-catalyzed C-H functionalization. Org Biomol Chem 2022; 20:4061-4073. [PMID: 35521690 DOI: 10.1039/d2ob00558a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In recent years, transition-metal-catalyzed C-H functionalization has gradually developed into a powerful tool for the synthesis of ferrocenes in an atom- and step-economic fashion. However, despite significant achievements, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. The use of inexpensive and sustainable 3d metals in the C-H functionalization of ferrocenes remains challenging, especially the development of asymmetric versions. Herein, we summarize the remarkable recent progress in the synthesis of ferrocenes by 3d transition metal-catalyzed C-H activation until December 2021.
Collapse
Affiliation(s)
- Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China.
| | - Dan-Ying Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
13
|
Qiao L, Zhang AA, Chen J, Li GW, Gao YY, Fan B, Liu L. Palladium-Catalyzed Disilylation of 2-Bromoarylferrocenes: An Efficient Approach to 1-Trimethylsilyl-2-(2-trimethylsilylaryl)ferrocenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Wang Q, Nie YH, Liu CX, Zhang WW, Wu ZJ, Gu Q, Zheng C, You SL. Rhodium(III)-Catalyzed Enantioselective C–H Activation/Annulation of Ferrocenecarboxamides with Internal Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Quannan Wang
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Yu-Han Nie
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Chen-Xu Liu
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Wen Zhang
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Zhi-Jie Wu
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
15
|
Zou X, Li Y, Ke Z, Xu S. Chiral Bidentate Boryl Ligand-Enabled Iridium-Catalyzed Enantioselective Dual C–H Borylation of Ferrocenes: Reaction Development and Mechanistic Insights. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoliang Zou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yinwu Li
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
16
|
|
17
|
Yu X, Zhang ZZ, Niu JL, Shi BF. Coordination-assisted, transition-metal-catalyzed enantioselective desymmetric C–H functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in transition-metal-catalyzed enantioselective desymmetric C–H functionalization are summarized.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
18
|
Dai L, Xu D, Mao Y, Zhu J, Yang M. Structures and Synthetic Strategies of Chiral Oxazolinyl Ferrocene Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Cao F, Chen Q, Shan H, Ling L, Hu J, Zhang H. Pd(II)-Catalyzed Azine-Assisted Enantioselective Oxidative C-H/C-H Cross-Coupling of Ferrocenes with Various Heteroarenes. J Org Chem 2021; 87:479-487. [PMID: 34913339 DOI: 10.1021/acs.joc.1c02485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium(II)-catalyzed enantioselective oxidative cross-coupling of ferrocenes with heteroarenes is described. Mono-N-protected amino acids can be used as sources of chirality. With azine as an efficient directing group, various substituted planar chiral ferrocenes were obtained via a dual C-H bond activation pathway in medium yields (up to 72%) with good enantioselectivity (up to 89.4:10.6 er) under mild conditions.
Collapse
Affiliation(s)
- Feifei Cao
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Qian Chen
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - He Shan
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Li Ling
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021, PR China
| | - Jianfeng Hu
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021, PR China
| | - Hao Zhang
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021, PR China
| |
Collapse
|
20
|
Plevová K, Kisszékelyi P, Vargová D, Andrejčák S, Tóth V, Fertáľ L, Rakovský E, Filo J, Šebesta R. Diastereoselective Double C-H Functionalization of Chiral Ferrocenes with Heteroaromatics. Chemistry 2021; 27:15501-15507. [PMID: 34524717 DOI: 10.1002/chem.202102624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 01/08/2023]
Abstract
Diastereoselective double C-H heteroarylation of chiral ferrocenes provides valuable compounds with multiple functionalities using mild reaction conditions and simple reagents. Pd-Complexes with chiral mono-protected amino acids afforded corresponding heteroarylated ferrocenyl amines in good yields and high diastereomeric purities. In this way, a variety of indole, thiophene, pyrrole, or furan substituents were introduced to the ferrocene moiety. Furthermore, a range of relevant functional groups, for example ketone, ester, chloro, nitro, or silyl, are tolerated by this method. An alternative combination of amino acid and ferrocenyl amine configurations was leveraged to provide the complementary diastereomeric products. The products of C-H heteroarylation can be transformed into corresponding phosphines. Absolute configurations of CH-activation products were confirmed by the combination of X-ray crystallographic analysis and CD spectroscopy. 19 F NMR kinetic study and DFT calculations provided insights into the reaction mechanism and reasons governing stereoinduction.
Collapse
Affiliation(s)
- Kristína Plevová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava Mlynska dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Péter Kisszékelyi
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava Mlynska dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Denisa Vargová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava Mlynska dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Samuel Andrejčák
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava Mlynska dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Viktor Tóth
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava Mlynska dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Lukáš Fertáľ
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava Mlynska dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Erik Rakovský
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava Mlynska dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Juraj Filo
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava Mlynska dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava Mlynska dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
21
|
Zhou T, Jiang MX, Qian PF, Yao QJ, Xu XT, Zhang K, Shi BF. Synthesis of Chiral Sulfoxides via Pd(II)-Catalyzed Enantioselective C-H Alkynylation/Kinetic Resolution of 2-(Arylsulfinyl)pyridines. Org Lett 2021; 23:7910-7915. [PMID: 34605653 DOI: 10.1021/acs.orglett.1c02918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A Pd(II)-catalyzed enantioselective C-H alkynylation of 2-(arylsulfinyl)pyridines via kinetic resolution using cheap and commercially available l-pGlu-OH as a chiral ligand is reported. A wide range of 2-(arylsulfinyl)pyridines were compatible with this protocol, giving the alkynylation products and recovered sulfoxides in high yields with high enantioselectivities (up to 99% ee). Furthermore, the enantioenriched products can be easily transformed to several other types of chiral sulfoxide scaffolds with the retention of enantiopurity.
Collapse
Affiliation(s)
- Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Meng-Xue Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
22
|
Zhang AA, Chen C, Gao Y, Mo M, Shen RZ, Zhang YH, Ishida N, Murakami M, Liu L. Planar chiral 2-(trifluoromethyl)quinoline-fused ferrocenes via palladium(0)-catalyzed C-H functionalization of trifluoroacetimidoyl chlorides. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
23
|
Zhang ZZ, Liao G, Chen HM, Shi BF. Thioamide-Directed Cp*Co(III)-Catalyzed C-H Allylation of Ferrocenes. Org Lett 2021; 23:2626-2631. [PMID: 33711894 DOI: 10.1021/acs.orglett.1c00533] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, the first Cp*Co(III)-catalyzed C-H allylation of ferrocene thioamides with allyl carbonates has been developed. This reaction is compatible with a wide range of functional groups, providing various allylated ferrocene derivatives in up to 90% yields. In addition, the C-H allylation protocol is also compatible with the use of vinylcyclopropanes as allylating reagents by merging C-H and C-C activation into one catalytic system. Mechanistic studies revealed that the thiocarbonyl-directing group plays a vital role in C-H activation.
Collapse
Affiliation(s)
- Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Gang Liao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Hao-Ming Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.,Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
24
|
Xie J, Liang R, Jia Y. Recent Advances of Catalytic Enantioselective Heck Reactions and
Reductive‐Heck
Reactions. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000464] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jia‐Qi Xie
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Ren‐Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yi‐Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green‐Chemical Synthesis Technology, Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| |
Collapse
|
25
|
Lou SJ, Zhuo Q, Nishiura M, Luo G, Hou Z. Enantioselective C-H Alkenylation of Ferrocenes with Alkynes by Half-Sandwich Scandium Catalyst. J Am Chem Soc 2021; 143:2470-2476. [PMID: 33529525 DOI: 10.1021/jacs.0c13166] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The enantioselective C-H alkenylation of ferrocenes with alkynes is, in principle, a straightforward and atom-efficient route for the construction of planar-chiral ferrocene scaffolds bearing alkene functionality but has remained scarcely explored to date. Here we report for the first time the highly enantioselective C-H alkenylation of quinoline- and pyridine-substituted ferrocenes with alkynes by a half-sandwich scandium catalyst. This protocol features broad substrate scope, high enantioselectivity, and 100% atom efficiency, selectively affording a new family of planar-chiral ferrocenes bearing N/alkene functionalities. The mechanistic details have been clarified by DFT analyses. The use of a quinoline/alkene-functionalized ferrocene product as a chiral ligand for asymmetric catalysis is also demonstrated.
Collapse
Affiliation(s)
- Shao-Jie Lou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
26
|
He C, Zu B, Guo Y, Ke J. Transient- and Native-Directing-Group-Enabled Enantioselective C–H Functionalization. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1372-6627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AbstractIn recent years, transition-metal-catalyzed enantioselective C–H bond functionalization using chiral transient directing groups (cTDGs) or native directing groups (NDGs) has emerged as a powerful and attractive synthetic approach to streamline the synthesis of chiral molecules. This short review focuses on recent advances on imine-based cTDGs strategies and native amine and carboxylic acid directed strategies for the asymmetric functionalization of various C–H bonds. We have endeavored to highlight the great potential of this methodology and hope that this review will inspire further research in this area.1 Introduction2 Transient-Directing-Group-Enabled Enantioselective C–H Functionalization2.1 Generation of Central Chirality2.2 Generation of Axial Chirality2.3 Generation of Planar Chirality3 Native-Directing-Group-Enabled Enantioselective C–H Functionalization3.1 Native Amines as Directing Groups3.2 Native Carboxylic Acids as Directing Groups4 Conclusions and Outlook
Collapse
Affiliation(s)
- Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology
| | - Bing Zu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology
| | - Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology
| |
Collapse
|
27
|
Mou Q, Zhao R, Niu R, Fukagawa S, Shigeno T, Yoshino T, Matsunaga S, Sun B. Cp*Ir( iii)/chiral carboxylic acid-catalyzed enantioselective C–H alkylation of ferrocene carboxamides with diazomalonates. Org Chem Front 2021. [DOI: 10.1039/d1qo01344k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An achiral Cp*Ir(iii)/chiral carboxylic acid-catalysed enantioselective C–H alkylation of ferrocene carboxamides with diazomalonates was achieved, providing planar chiral alkylated ferrocenes in up to 94 : 6 er.
Collapse
Affiliation(s)
- Qi Mou
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Ruyuan Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Ruihan Niu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Seiya Fukagawa
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Taiki Shigeno
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Bo Sun
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| |
Collapse
|
28
|
Liu L, Liu H, Zuo Z, Zhang AA, Li Z, Meng T, Wu W, Hua Y, Mao G. Synthesis of planar chiral isoquinolinone-fused ferrocenes through palladium-catalyzed C-H functionalization reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Thorat RA, Jain S, Sattar M, Yadav P, Mandhar Y, Kumar S. Synthesis of Chiral-Substituted 2-Aryl-ferrocenes by the Catellani Reaction. J Org Chem 2020; 85:14866-14878. [PMID: 33196212 DOI: 10.1021/acs.joc.0c01360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A palladium-catalyzed and norbornene-mediated methodology has been developed for the synthesis of chiral 2-aryl-ferroceneamides from chiral 2-iodo-N,N-diisopropylferrocencarboxamide, iodoarenes, and alkenes using a JohnPhos ligand and potassium carbonate as a base in dimethylformamide at 105 °C. The developed three-component coupling protocol allows the compatibility of electron-withdrawing fluoro, chloro, ester, and nitro and electron-donating methyl, methoxy, dimethoxy, benzyl ether-substituted iodo-benzenes, other iodoarenes, such as iodo-naphthalene, heteroarenes, such as iodothiophene, and terminating substrates, such as methyl, ethyl, tert-butyl acrylates, and substituted styrenes with 2-iodo-N,N-diisopropylferrocencarboxamide. Furthermore, the developed three-component Catellani method proceeded with the retention of the configuration of the planar chiral ferrocene, which depends on the role of the participating carbon-iodine bond in ferrocene. Consequently, the developed protocol enabled the formation of densely substituted chiral 2-aryl ferroceneamides, exhibiting good to excellent enantioselectivity. The conversion of an ester of the synthesized chiral 2-aryl ferroceneamides has also been carried out to further accommodate the easily expendable acid and alcohol functionalities.
Collapse
Affiliation(s)
- Raviraj Ananda Thorat
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Saket Jain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Moh Sattar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Prateek Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Yogesh Mandhar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
30
|
González‐Pelayo S, Bernardo O, Borge J, López LA. Synthesis of Metallocene Analogues of the Phenethylamine and Tetrahydroisoquinoline Scaffolds via Regioselective Ring Opening of 2‐Aryl‐
N
‐sulfonyl Aziridines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Silvia González‐Pelayo
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles” Universidad de Oviedo, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Julián Clavería 8 33006- Oviedo Spain
| | - Olaya Bernardo
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles” Universidad de Oviedo, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Julián Clavería 8 33006- Oviedo Spain
| | - Javier Borge
- Departamento de Química Física y Analítica Universidad de Oviedo Julián Clavería 8 33006- Oviedo Spain
| | - Luis A. López
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles” Universidad de Oviedo, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Julián Clavería 8 33006- Oviedo Spain
| |
Collapse
|
31
|
Phosphine-phosphonium ylides as ligands in palladium-catalysed C2-H arylation of benzoxazoles. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Achar TK, Maiti S, Jana S, Maiti D. Transition Metal Catalyzed Enantioselective C(sp2)–H Bond Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03743] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tapas Kumar Achar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sadhan Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
33
|
Dong WW, Li YN, Chang X, Shen C, Wang CJ. Chiral Ugi-Type Amines: Practical Synthesis, Ligand Development, and Asymmetric Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wu-Wei Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yi-Nan Li
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chong Shen
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
34
|
Yan L, Lan J, Cheng H, Li Y, Zhang M, Wu D, You J. Regioselective addition/annulation of ferrocenyl thioamides with 1,3-diynes via a sulfur-transfer rearrangement to construct extended π-conjugated ferrocenes with luminescent properties. Chem Sci 2020; 11:11030-11036. [PMID: 34123193 PMCID: PMC8162306 DOI: 10.1039/d0sc04597g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 11/21/2022] Open
Abstract
Herein a regioselective addition/annulation strategy of ferrocenyl (Fc) thioamides with alkynes to construct thienylferrocene (ThienylFc) structures, involving a rhodium-catalyzed C-H activation, an unusual C2-selective addition of 1,3-diyne, and an unexpected intramolecular sulfur-transfer rearrangement process is described. In this protocol, thioamide not only serves as a directing group to activate the ortho-C-H bond of the ferrocene, but also as a sulfur source to form the thiophene ring. The resulting carboxylic ester group after sulfur transfer can act as a linkage to construct extended π-conjugated ferrocenes (OCTFc) with luminescent properties. ThienylFc displays effective fluorescence quenching due to the photoinduced electron transfer (PET) from the Fc unit to the excited luminophore, which turns out to be a promising type of redox molecular switch. OCTFc exhibit relatively strong emission owing to their intramolecular charge transfer (ICT) characteristics. The ring-fused strategy is herein employed for the first time to construct luminescent materials based on ferrocenes, which provides inspiration for the development of novel organic optoelectronic materials, such as electroluminescent materials based on ferrocenes.
Collapse
Affiliation(s)
- Lipeng Yan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Hu Cheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Yihang Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Mangang Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Di Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| |
Collapse
|
35
|
Liu CX, Gu Q, You SL. Asymmetric C–H Bond Functionalization of Ferrocenes: New Opportunities and Challenges. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Yang K, Song M, Liu H, Ge H. Palladium-catalyzed direct asymmetric C-H bond functionalization enabled by the directing group strategy. Chem Sci 2020; 11:12616-12632. [PMID: 34123236 PMCID: PMC8163320 DOI: 10.1039/d0sc03052j] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023] Open
Abstract
In the past decade, selective C-C and C-heteroatom bond construction through palladium-catalyzed direct C-H bond functionalization has been extensively studied by employing a variety of directing groups. Within this category, direct asymmetric C(sp2)-H and C(sp3)-H activation for the construction of highly enantiomerically enriched skeletons still progressed at a slow pace. This minireview briefly introduces the major advances in the field for palladium-catalyzed direct asymmetric C-H bond functionalization via the directing group strategy.
Collapse
Affiliation(s)
- Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou Jiangsu 213164 China
| | - Mengjie Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou Jiangsu 213164 China
| | - Hao Liu
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409 USA
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409 USA
| |
Collapse
|
37
|
Liu L, Song H, Liu YH, Wu LS, Shi BF. Achiral CpxIr(III)/Chiral Carboxylic Acid Catalyzed Enantioselective C–H Amidation of Ferrocenes under Mild Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02049] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hong Song
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yan-Hua Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Le-Song Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
38
|
Chen H, Wang Y, Luan Y, Ye M. Enantioselective Twofold C−H Annulation of Formamides and Alkynes without Built‐in Chelating Groups. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hao Chen
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Yin‐Xia Wang
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Yu‐Xin Luan
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
39
|
Chen H, Wang YX, Luan YX, Ye M. Enantioselective Twofold C-H Annulation of Formamides and Alkynes without Built-in Chelating Groups. Angew Chem Int Ed Engl 2020; 59:9428-9432. [PMID: 32154983 DOI: 10.1002/anie.202001267] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/05/2020] [Indexed: 12/20/2022]
Abstract
Twofold C-H annulation of readily available formamides and alkynes without built-in chelating groups was achieved. Ni-Al bimetallic catalysis enabled by a bulky BINOL-derived chiral secondary phosphine oxide (SPO) ligand proved to be critical for high reactivity and high selectivity. This reaction uses readily available formamides as starting materials and provides a concise synthetic pathway to a broad range of chiral ferrocenes in 40-98 % yield and 93-99 % ee.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yin-Xia Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
40
|
Huang Y, Pi C, Cui X, Wu Y. Palladium(II)‐Catalyzed Enantioselective C−H Alkenylation of Ferrocenecarboxylic Acid. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yanzhen Huang
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan UniversitiesZhengzhou University Zhengzhou 450052 People's Republic of China
| | - Chao Pi
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan UniversitiesZhengzhou University Zhengzhou 450052 People's Republic of China
| | - Xiuling Cui
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan UniversitiesZhengzhou University Zhengzhou 450052 People's Republic of China
| | - Yangjie Wu
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan UniversitiesZhengzhou University Zhengzhou 450052 People's Republic of China
| |
Collapse
|
41
|
Jia L, Liu X, Zhang AA, Wang T, Hua Y, Li H, Liu L. Synthesis of planar chiral ferrocenes via a Pd(0)-catalyzed syn-carbopalladation/asymmetric C–H alkenylation process. Chem Commun (Camb) 2020; 56:1737-1740. [DOI: 10.1039/c9cc06529f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The Pd(0)-catalyzed tandem intermolecular syn-carbopalladation/asymmetric C–H alkenylation reaction of N-ferrocenyl propiolamides with aryl iodides has been realized, generating planar chiral ferrocene[1,2-d] pyrrolinones in good yields.
Collapse
Affiliation(s)
- Lixiang Jia
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals
- College of Chemistry and Chemical Engineering
- Shangqiu Normal University
- Shangqiu 476000
- P. R. China
| | - Xiaobing Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals
- College of Chemistry and Chemical Engineering
- Shangqiu Normal University
- Shangqiu 476000
- P. R. China
| | - An-An Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals
- College of Chemistry and Chemical Engineering
- Shangqiu Normal University
- Shangqiu 476000
- P. R. China
| | - Tao Wang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals
- College of Chemistry and Chemical Engineering
- Shangqiu Normal University
- Shangqiu 476000
- P. R. China
| | - Yuanzhao Hua
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Heng Li
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals
- College of Chemistry and Chemical Engineering
- Shangqiu Normal University
- Shangqiu 476000
- P. R. China
| |
Collapse
|
42
|
Gair JJ, Haines BE, Filatov AS, Musaev DG, Lewis JC. Di-Palladium Complexes are Active Catalysts for Mono-N-Protected Amino Acid-Accelerated Enantioselective C–H Functionalization. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03887] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Joseph J. Gair
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Brandon E. Haines
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Alexander S. Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Jared C. Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
43
|
Xiang JC, Wu ZJ, Gu Q, You SL. Palladium-Catalyzed C-H Diarylation of Ferrocenecarboxylic Acids with Aryl Iodides. J Org Chem 2019; 84:13144-13149. [PMID: 31342746 DOI: 10.1021/acs.joc.9b01503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Palladium-catalyzed C-H diarylation of ferrocenes is described. In the presence of 10 mol % Pd(OAc)2, direct C-H diarylation reactions of commercially available ferrocenecarboxylic acid with aryl iodides proceeded smoothly to afford diarylated ferrocenes bearing a variety of functional groups in moderate to good yields. The carboxylic group could also act as a remote directing group to result in the third arylation on the other Cp ring of ferrocene.
Collapse
Affiliation(s)
- Jia-Chen Xiang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China.,Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , China
| | - Zhi-Jie Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China.,School of Physical Science and Technology , ShanghaiTech University , 100 Haike Road , Shanghai 201210 , China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China.,School of Physical Science and Technology , ShanghaiTech University , 100 Haike Road , Shanghai 201210 , China
| |
Collapse
|
44
|
Cai ZJ, Liu CX, Wang Q, Gu Q, You SL. Thioketone-directed rhodium(I) catalyzed enantioselective C-H bond arylation of ferrocenes. Nat Commun 2019; 10:4168. [PMID: 31519893 PMCID: PMC6744407 DOI: 10.1038/s41467-019-12181-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Planar chiral ferrocenes have received great attention in both academia and industry. Although remarkable progresses have been made over the past decade, the development of efficient and straightforward methods for the synthesis of enantiopure planar chiral ferrocenes remains highly challenging. Herein, we report a rhodium(I)/phosphonite catalyzed thioketone-directed enantioselective C-H bond arylation of ferrocenes. Readily available aryl iodides are used as the coupling partners in this transformation, leading to a series of planar chiral ferrocenes in good yields and excellent enantioselectivities (up to 86% yield, 99% ee). Of particular note, heteroaryl coupled ferrocenes, which are difficult to access with previous approaches, can be obtained in satisfactory results.
Collapse
Affiliation(s)
- Zhong-Jian Cai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Chen-Xu Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qiang Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| |
Collapse
|
45
|
Xing YY, Liu JB, Sun QM, Sun CZ, Huang F, Chen DZ. A Computational Mechanistic Study of Pd(II)-Catalyzed Enantioselective C(sp 3)-H Borylation: Roles of APAO Ligands. J Org Chem 2019; 84:10690-10700. [PMID: 31419383 DOI: 10.1021/acs.joc.9b01227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A computational mechanistic study has been performed on Pd(II)-catalyzed enantioselective reactions involving acetyl-protected aminomethyl oxazolines (APAO) ligands that significantly improved reactivity and selectivity in C(sp3)-H borylation. The results support a mechanism including initiation of C(sp3)-H bond activation generating a five-membered palladacycle and ligand exchange, followed by HPO42--promoted transmetalation. These resulting Pd(II) complexes further undergo sequential reductive elimination by coordination of APAO ligands and protonation to afford the enantiomeric products and deliver Pd(0) complexes, which will then proceed by oxidation and deprotonation to regenerate the catalyst. The C(sp3)-H activation is found to be the rate- and enantioselectivity-determining step, in which the APAO ligand acts as the proton acceptor to form the two enantioselectivity models. The results demonstrate that the diverse APAO ligands control the enantioselectivity by differentiating the distortion and interaction between the major and minor pathways.
Collapse
Affiliation(s)
- Yang-Yang Xing
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Jian-Biao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Qing-Min Sun
- Shandong Kaisheng New Materials Co., Ltd. , Zibo 255185 , People's Republic of China
| | - Chuan-Zhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - De-Zhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , People's Republic of China
| |
Collapse
|
46
|
Song Z, Yu Y, Yu L, Liu D, Wu Q, Xia Z, Xiao Y, Tan Z. Synthesis of Ferrocenyl Alkyne–Cu(I) π-Complexes via Copper-Promoted 8-Aminoquinoline-Directed C–H Bond Alkynylations. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zenan Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yongqi Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Da Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Qianlong Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Zhen Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
47
|
Batuecas M, Luo J, Gergelitsová I, Krämer K, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. Catalytic Asymmetric C-H Arylation of (η 6-Arene)Chromium Complexes: Facile Access to Planar-Chiral Phosphines. ACS Catal 2019; 9:5268-5278. [PMID: 32064145 PMCID: PMC7011738 DOI: 10.1021/acscatal.9b00918] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Indexed: 12/20/2022]
Abstract
A catalytic asymmetric direct C-H arylation of (η6-arene)chromium complexes to obtain planar-chiral compounds is reported. The use of the hemilabile ligand H8-BINAP(O) is key to providing high enantioselectivity in this transformation. We show that this methodology opens the door to the synthesis of a variety of planar-chiral chromium derivatives which can be easily transformed into planar chiral mono- or diphosphines. Mechanistic studies, including synthesis and characterization of Pd and Ag complexes and their detection in the reaction mixture, suggest a Pd-catalyzed/Ag-promoted catalytic system where Ag carries out the C-H activation step.
Collapse
Affiliation(s)
- María Batuecas
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Junfei Luo
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Ivana Gergelitsová
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Katrina Krämer
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Daniel Whitaker
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | | | - Igor Larrosa
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
48
|
Feng Y, Zhang H, Yu Y, Yang L, Cui X. Ferrocene-Initiated Oxidative Cyclization of Benzaldehyde with Alkyne: New Strategy to Substituted Indenones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yadong Feng
- Engineering Research Center of Molecular Medicine of Ministry of Education; Key Laboratory of Fujian Molecular Medicine; Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences; Huaqiao University; 361021 Xiamen P. R. China
- College of Environment and Public Health; Department of Science and Technology for Inspection; Xiamen Huaxia University; 361024 Xiamen China
| | - Hong Zhang
- Engineering Research Center of Molecular Medicine of Ministry of Education; Key Laboratory of Fujian Molecular Medicine; Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences; Huaqiao University; 361021 Xiamen P. R. China
| | - Yunliang Yu
- Engineering Research Center of Molecular Medicine of Ministry of Education; Key Laboratory of Fujian Molecular Medicine; Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences; Huaqiao University; 361021 Xiamen P. R. China
| | - Lei Yang
- Engineering Research Center of Molecular Medicine of Ministry of Education; Key Laboratory of Fujian Molecular Medicine; Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences; Huaqiao University; 361021 Xiamen P. R. China
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education; Key Laboratory of Fujian Molecular Medicine; Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences; Huaqiao University; 361021 Xiamen P. R. China
| |
Collapse
|
49
|
Wang B, Zhou Y, Xu N, Xu X, Xu X, Jin Z. Palladium(II)-Catalyzed Remote meta-C-H Functionalization of Aromatic Tertiary Amines. Org Lett 2019; 21:1885-1889. [PMID: 30821983 DOI: 10.1021/acs.orglett.9b00499] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pd(II)-catalyzed remote C-H olefination of aromatic tertiary amines was achieved with high meta selectivity. With the assistance of an elaborated template, C-H functionalization of unreactive aryl tertiary amines, hindered by the p-π conjugation between the lone-pair electrons of the nitrogen atom and the phenyl ring, was realized with high meta regioselectivity via a quaternary ammonium salt assembly. The results demonstrate that apart from the distance and geometry of the template, the conformation of the arene substrate also plays a crucial role in the templated-assisted remote C-H functionalization.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yu Zhou
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Niuniu Xu
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiufang Xu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiaohua Xu
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Zhong Jin
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
50
|
Liu YH, Li PX, Yao QJ, Zhang ZZ, Huang DY, Le MD, Song H, Liu L, Shi BF. Cp*Co(III)/MPAA-Catalyzed Enantioselective Amidation of Ferrocenes Directed by Thioamides under Mild Conditions. Org Lett 2019; 21:1895-1899. [DOI: 10.1021/acs.orglett.9b00511] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yan-Hua Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Peng-Xiang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Qi-Jun Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhuo-Zhuo Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Dan-Ying Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Minh Dong Le
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hong Song
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lei Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|