1
|
Liu Q, Engelhart CA, Wallach JB, Tiwari D, Ge P, Manna A, Panda S, McCue WM, Wong TY, Sharma S, Jayasinghe YP, Fuller J, Ronning DR, Bockman MR, Cheung A, Dartois V, Zimmerman MD, Schnappinger D, Aldrich CC. Metabolically Stable Adenylation Inhibitors of Biotin Protein Ligase as Antibacterial Agents. J Med Chem 2025. [PMID: 39823202 DOI: 10.1021/acs.jmedchem.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The antibacterial agent Bio-AMS is metabolized in vivo through hydrolysis of the central acyl-sulfamide linker leading to high clearance and release of a moderately cytotoxic metabolite M1. Herein, we disclose analogues designed to prevent the metabolism of the central acyl-sulfamide moiety through steric hindrance or attenuation of the acyl-sulfamide electrophilicity. Bio-9 was identified as a metabolically stable analogue with a single-digit nanomolar dissociation constant for biotin protein ligase (BPL) and minimum inhibitory concentrations (MICs) against Mycobacterium tuberculosis and Staphylococcus aureus ranging from 0.2 to 20 μM. The antibacterial activity of Bio-9 was dependent on BPL expression level and was more than 70-fold better against a strain underexpressing BPL and, conversely, more than 5-fold less effective against a strain overexpressing BPL. Pharmacokinetic and metabolic studies demonstrated that Bio-9 was metabolically stable in vivo, showing negligible hydrolysis that translated to substantially reduced clearance and concomitantly boosted drug exposure and half-life compared to Bio-AMS.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Joshua B Wallach
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Divya Tiwari
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Peng Ge
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Adhar Manna
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Subhankar Panda
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - William M McCue
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Tsung-Yun Wong
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Yahani P Jayasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jessica Fuller
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Matthew R Bockman
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Ambrose Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Matthew D Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Amiri A, Abedanzadeh S, Davaeil B, Shaabani A, Moosavi-Movahedi AA. Protein click chemistry and its potential for medical applications. Q Rev Biophys 2024; 57:e6. [PMID: 38619322 DOI: 10.1017/s0033583524000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A revolution in chemical biology occurred with the introduction of click chemistry. Click chemistry plays an important role in protein chemistry modifications, providing specific, sensitive, rapid, and easy-to-handle methods. Under physiological conditions, click chemistry often overlaps with bioorthogonal chemistry, defined as reactions that occur rapidly and selectively without interfering with biological processes. Click chemistry is used for the posttranslational modification of proteins based on covalent bond formations. With the contribution of click reactions, selective modification of proteins would be developed, representing an alternative to other technologies in preparing new proteins or enzymes for studying specific protein functions in different biological processes. Click-modified proteins have potential in diverse applications such as imaging, labeling, sensing, drug design, and enzyme technology. Due to the promising role of proteins in disease diagnosis and therapy, this review aims to highlight the growing applications of click strategies in protein chemistry over the last two decades, with a special emphasis on medicinal applications.
Collapse
Affiliation(s)
- Ahmad Amiri
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Bagher Davaeil
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ahmad Shaabani
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
3
|
Shulaeva MM, Zueva IV, Nikolaev AE, Saifina LF, Sharafutdinova DR, Babaev VM, Semenov VE, Petrov KA. Conjugates of nucleobases with triazole-hydroxamic acids for the reactivation of acetylcholinesterase and treatment of delayed neurodegeneration induced by organophosphate poisoning. Bioorg Chem 2023; 141:106858. [PMID: 37774432 DOI: 10.1016/j.bioorg.2023.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/26/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023]
Abstract
A series of new uncharged conjugates of adenine, 3,6-dimetyl-, 1,6-dimethyl- and 6-methyluracil with 1,2,4-triazole-3-hydroxamic and 1,2,3-triazole-4-hydroxamic acid moieties were synthesized and studied as reactivators of organophosphate-inhibited cholinesterase. It is shown that triazole-hydroxamic acids can reactivate acetylcholinesterase (AChE) inhibited by paraoxon (POX) in vitro, offering reactivation constants comparable to those of pralidoxime (2-PAM). However, in contrast to 2-PAM, triazole-hydroxamic acids demonstrated the ability to reactivate AChE in the brain of rats poisoned with POX. At a dose of 200 mg/kg (i.v.), the lead compound 3e reactivated 22.6 ± 7.3% of brain AChE in rats poisoned with POX. In a rat model of POX-induced delayed neurodegeneration, compound 3e reduced the neuronal injury labeled with FJB upon double administration 1 and 3 h after poisoning. Compound 3e was also shown to prevent memory impairment of POX-poisoned rats as tested in a Morris water maze.
Collapse
Affiliation(s)
- Marina M Shulaeva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation
| | - Anton E Nikolaev
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation
| | - Liliya F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation
| | - Dilyara R Sharafutdinova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation
| | - Vasily M Babaev
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation
| | - Vyacheslav E Semenov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation.
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan 420088, Russian Federation; Kazan Federal University, Kremlyovskaya str., 18, Kazan 420008, Russian Federation
| |
Collapse
|
4
|
Kassu M, Parvatkar PT, Milanes J, Monaghan NP, Kim C, Dowgiallo M, Zhao Y, Asakawa AH, Huang L, Wagner A, Miller B, Carter K, Barrett KF, Tillery LM, Barrett LK, Phan IQ, Subramanian S, Myler PJ, Van Voorhis WC, Leahy JW, Rice CA, Kyle DE, Morris J, Manetsch R. Shotgun Kinetic Target-Guided Synthesis Approach Enables the Discovery of Small-Molecule Inhibitors against Pathogenic Free-Living Amoeba Glucokinases. ACS Infect Dis 2023; 9:2190-2201. [PMID: 37820055 PMCID: PMC10644346 DOI: 10.1021/acsinfecdis.3c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 10/13/2023]
Abstract
Pathogenic free-living amoebae (pFLA) can cause life-threatening central nervous system (CNS) infections and warrant the investigation of new chemical agents to combat the rise of infection from these pathogens. Naegleria fowleri glucokinase (NfGlck), a key metabolic enzyme involved in generating glucose-6-phosphate, was previously identified as a potential target due to its limited sequence similarity with human Glck (HsGlck). Herein, we used our previously demonstrated multifragment kinetic target-guided synthesis (KTGS) screening strategy to identify inhibitors against pFLA glucokinases. Unlike the majority of previous KTGS reports, our current study implements a "shotgun" approach, where fragments were not biased by predetermined binding potentials. The study resulted in the identification of 12 inhibitors against 3 pFLA glucokinase enzymes─NfGlck, Balamuthia mandrillaris Glck (BmGlck), and Acanthamoeba castellanii Glck (AcGlck). This work demonstrates the utility of KTGS to identify small-molecule binders for biological targets where resolved X-ray crystal structures are not readily accessible.
Collapse
Affiliation(s)
- Mintesinot Kassu
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Prakash T. Parvatkar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Jillian Milanes
- Eukaryotic
Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Neil P. Monaghan
- Eukaryotic
Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Chungsik Kim
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Matthew Dowgiallo
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Yingzhao Zhao
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Ami H. Asakawa
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Lili Huang
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Alicia Wagner
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Brandon Miller
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Karissa Carter
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Kayleigh F. Barrett
- Center
for Emerging and Re-emerging Infectious Diseases (CERID), Division
of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | - Logan M. Tillery
- Center
for Emerging and Re-emerging Infectious Diseases (CERID), Division
of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | - Lynn K. Barrett
- Center
for Emerging and Re-emerging Infectious Diseases (CERID), Division
of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | - Isabelle Q. Phan
- Center for Global Infectious Diseases Research, Seattle Children’s Research Center, Seattle, Washington 98109, United States
| | - Sandhya Subramanian
- Center for Global Infectious Diseases Research, Seattle Children’s Research Center, Seattle, Washington 98109, United States
| | - Peter J. Myler
- Center for Global Infectious Diseases Research, Seattle Children’s Research Center, Seattle, Washington 98109, United States
| | - Wesley C. Van Voorhis
- Center
for Emerging and Re-emerging Infectious Diseases (CERID), Division
of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98109, United States
| | - James W. Leahy
- Department of Chemistry, University
of
South Florida, Tampa, Florida 33620, United States
| | - Christopher A. Rice
- Department
of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Institute for Drug Discovery (PIDD), Purdue
University, West Lafayette, Indiana 47907, United States
- Purdue Institute
of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Dennis E. Kyle
- Department
of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - James Morris
- Eukaryotic
Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Roman Manetsch
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Center
for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett
Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Nacheva K, Kulkarni SS, Kassu M, Flanigan D, Monastyrskyi A, Iyamu ID, Doi K, Barber M, Namelikonda N, Tipton JD, Parvatkar P, Wang HG, Manetsch R. Going beyond Binary: Rapid Identification of Protein-Protein Interaction Modulators Using a Multifragment Kinetic Target-Guided Synthesis Approach. J Med Chem 2023; 66:5196-5207. [PMID: 37000900 PMCID: PMC10620989 DOI: 10.1021/acs.jmedchem.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 04/03/2023]
Abstract
Kinetic target-guided synthesis (KTGS) is a powerful screening approach that enables identification of small molecule modulators for biomolecules. While many KTGS variants have emerged, a majority of the examples suffer from limited throughput and a poor signal/noise ratio, hampering reliable hit detection. Herein, we present our optimized multifragment KTGS screening strategy that tackles these limitations. This approach utilizes selected reaction monitoring liquid chromatography tandem mass spectrometry for hit detection, enabling the incubation of 190 fragment combinations per screening well. Consequentially, our fragment library was expanded from 81 possible combinations to 1710, representing the largest KTGS screening library assembled to date. The expanded library was screened against Mcl-1, leading to the discovery of 24 inhibitors. This work unveils the true potential of KTGS with respect to the rapid and reliable identification of hits, further highlighting its utility as a complement to the existing repertoire of screening methods used in drug discovery.
Collapse
Affiliation(s)
- Katya Nacheva
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Sameer S. Kulkarni
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Mintesinot Kassu
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - David Flanigan
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Sciences, Hillsborough Community College, Tampa, Florida 33619, United States
| | - Andrii Monastyrskyi
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Iredia D. Iyamu
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Kenichiro Doi
- Department
of Pediatrics, Division of Pediatric Hematology and Oncology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Megan Barber
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Niranjan Namelikonda
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jeremiah D. Tipton
- Proteomics
and Mass Spectrometry Core Facility, University
of South Florida, Tampa, Florida 33620, United States
| | - Prakash Parvatkar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Hong-Gang Wang
- Department
of Pediatrics, Division of Pediatric Hematology and Oncology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Roman Manetsch
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Center for
Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett
Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Dong R, Yang X, Wang B, Ji X. Mutual leveraging of proximity effects and click chemistry in chemical biology. Med Res Rev 2023; 43:319-342. [PMID: 36177531 DOI: 10.1002/med.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Nature has the remarkable ability to realize reactions under physiological conditions that normally would require high temperature and other forcing conditions. In doing so, often proximity effects such as simultaneous binding of two reactants in the same pocket and/or strategic positioning of catalytic functional groups are used as ways to achieve otherwise kinetically challenging reactions. Though true biomimicry is challenging, there have been many beautiful examples of how to leverage proximity effects in realizing reactions that otherwise would not readily happen under near-physiological conditions. Along this line, click chemistry is often used to endow proximity effects, and proximity effects are also used to further leverage the facile and bioorthogonal nature of click chemistry. This review brings otherwise seemingly unrelated topics in chemical biology and drug discovery under one unifying theme of mutual leveraging of proximity effects and click chemistry and aims to critically analyze the biomimicry use of such leveraging effects as powerful approaches in chemical biology and drug discovery. We hope that this review demonstrates the power of employing mutual leveraging proximity effects and click chemistry and inspires the development of new strategies that will address unmet needs in chemistry and biology.
Collapse
Affiliation(s)
- Ru Dong
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Bosc D, Camberlein V, Gealageas R, Castillo-Aguilera O, Deprez B, Deprez-Poulain R. Kinetic Target-Guided Synthesis: Reaching the Age of Maturity. J Med Chem 2019; 63:3817-3833. [PMID: 31820982 DOI: 10.1021/acs.jmedchem.9b01183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kinetic target-guided synthesis (KTGS) is an original discovery strategy allowing a target to catalyze the irreversible synthesis of its own ligands from a pool of reagents. Although pioneered almost two decades ago, it only recently proved its usefulness in medicinal chemistry, as exemplified by the increasing number of protein targets used, the wider range of target and pocket types, and the diversity of therapeutic areas explored. In recent years, two new leads for in vivo studies were released. Amidations and multicomponent reactions expanded the armamentarium of reactions beyond triazole formation and two new examples of in cellulo KTGS were also disclosed. Herein, we analyze the origins and the chemical space of both KTGS ligands and warhead-bearing reagents. We review the KTGS timeline focusing on recent cases in order to give medicinal chemists the full scope of this strategy which has great potential for hit discovery and hit or lead optimization.
Collapse
Affiliation(s)
- Damien Bosc
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Virgyl Camberlein
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Ronan Gealageas
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Omar Castillo-Aguilera
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France.,Institut Universitaire de France, F- 75005 Paris, France
| |
Collapse
|
8
|
Lee KJ, Tieu W, Blanco-Rodriguez B, Paparella AS, Yu J, Hayes A, Feng J, Marshall AC, Noll B, Milne R, Cini D, Wilce MCJ, Booker GW, Bruning JB, Polyak SW, Abell AD. Sulfonamide-Based Inhibitors of Biotin Protein Ligase as New Antibiotic Leads. ACS Chem Biol 2019; 14:1990-1997. [PMID: 31407891 DOI: 10.1021/acschembio.9b00463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report the design, synthesis, and evaluation of a series of inhibitors of Staphylococcus aureus BPL (SaBPL), where the central acyl phosphate of the natural intermediate biotinyl-5'-AMP (1) is replaced by a sulfonamide isostere. Acylsulfamide (6) and amino sulfonylurea (7) showed potent in vitro inhibitory activity (Ki = 0.007 ± 0.003 and 0.065 ± 0.03 μM, respectively) and antibacterial activity against S. aureus ATCC49775 with minimum inhibitory concentrations of 0.25 and 4 μg/mL, respectively. Additionally, the bimolecular interactions between the BPL and inhibitors 6 and 7 were defined by X-ray crystallography and molecular dynamics simulations. The high acidity of the sulfonamide linkers of 6 and 7 likely contributes to the enhanced in vitro inhibitory activities by promoting interaction with SaBPL Lys187. Analogues with alkylsulfamide (8), β-ketosulfonamide (9), and β-hydroxysulfonamide (10) isosteres were devoid of significant activity. Binding free energy estimation using computational methods suggests deprotonated 6 and 7 to be the best binders, which is consistent with enzyme assay results. Compound 6 was unstable in whole blood, leading to poor pharmacokinetics. Importantly, 7 has a vastly improved pharmacokinetic profile compared to that of 6 presumably due to the enhanced metabolic stability of the sulfonamide linker moiety.
Collapse
Affiliation(s)
- Kwang Jun Lee
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| | - William Tieu
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Beatriz Blanco-Rodriguez
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ashleigh S. Paparella
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jingxian Yu
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew Hayes
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jiage Feng
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew C. Marshall
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Benjamin Noll
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Robert Milne
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Danielle Cini
- Department of Biochemistry, School of Biomedical Science, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew C. J. Wilce
- Department of Biochemistry, School of Biomedical Science, Monash University, Clayton, Victoria 3800, Australia
| | - Grant W. Booker
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B. Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Steven W. Polyak
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D. Abell
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
9
|
Gladysz R, Vrijdag J, Van Rompaey D, Lambeir A, Augustyns K, De Winter H, Van der Veken P. Efforts towards an On‐Target Version of the Groebke–Blackburn–Bienaymé (GBB) Reaction for Discovery of Druglike Urokinase (uPA) Inhibitors. Chemistry 2019; 25:12380-12393. [DOI: 10.1002/chem.201901917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/18/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Rafaela Gladysz
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Johannes Vrijdag
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
- Laboratory of Medical BiochemistryDepartment of, Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Dries Van Rompaey
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Anne‐Marie Lambeir
- Laboratory of Medical BiochemistryDepartment of, Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry (UAMC)Department of Pharmaceutical SciencesUniversity of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| |
Collapse
|
10
|
Prasher P, Sharma M. Tailored therapeutics based on 1,2,3-1 H-triazoles: a mini review. MEDCHEMCOMM 2019; 10:1302-1328. [PMID: 31534652 PMCID: PMC6748286 DOI: 10.1039/c9md00218a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Contemporary drug discovery approaches rely on library synthesis coupled with combinatorial methods and high-throughput screening to identify leads. However, due to the multitude of components involved, a majority of optimization techniques face persistent challenges related to the efficiency of synthetic processes and the purity of compound libraries. These methods have recently found an upgradation as fragment-based approaches for target-guided synthesis of lead molecules with active involvement of their biological target. The click chemistry approach serves as a promising tool for tailoring the therapeutically relevant biomolecules of interest, improving their bioavailability and bioactivity and redirecting them as efficacious drugs. 1,2,3-1H-Triazole nucleus, being a planar and biologically acceptable scaffold, plays a crucial role in the design of biomolecular mimetics and tailor-made molecules with therapeutic relevance. This versatile scaffold also forms an integral part of the current fragment-based approaches for drug design, kinetic target guided synthesis and bioorthogonal methodologies.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
| |
Collapse
|
11
|
Agnew HD, Coppock MB, Idso MN, Lai BT, Liang J, McCarthy-Torrens AM, Warren CM, Heath JR. Protein-Catalyzed Capture Agents. Chem Rev 2019; 119:9950-9970. [PMID: 30838853 DOI: 10.1021/acs.chemrev.8b00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors. In fact, a large degree of generality has now been achieved. Various PCCs have demonstrated utility for selective protein detection, as allosteric or direct inhibitors, as modulators of protein folding, and as tools for in vivo tumor imaging. We provide a historical context for PCCs and place them within the broader scope of biological and synthetic aptamers. The development of PCCs is presented as (i) Generation I PCCs, which are branched ligands engineered through an iterative, nonepitope-targeted process, and (ii) Generation II PCCs, which are typically developed from macrocyclic peptide libraries and are precisely epitope-targeted. We provide statistical comparisons of Generation II PCCs relative to monoclonal antibodies in which the protein target is the same. Finally, we discuss current challenges and future opportunities of PCCs.
Collapse
Affiliation(s)
- Heather D Agnew
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - Matthew B Coppock
- Sensors and Electron Devices Directorate , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
| | - Matthew N Idso
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Bert T Lai
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - JingXin Liang
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Amy M McCarthy-Torrens
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Carmen M Warren
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - James R Heath
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| |
Collapse
|
12
|
Bockman MR, Engelhart CA, Dawadi S, Larson P, Tiwari D, Ferguson DM, Schnappinger D, Aldrich CC. Avoiding Antibiotic Inactivation in Mycobacterium tuberculosis by Rv3406 through Strategic Nucleoside Modification. ACS Infect Dis 2018; 4:1102-1113. [PMID: 29663798 DOI: 10.1021/acsinfecdis.8b00038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
5'-[ N-(d-biotinoyl)sulfamoyl]amino-5'-deoxyadenosine (Bio-AMS, 1) possesses selective activity against Mycobacterium tuberculosis ( Mtb) and arrests fatty acid and lipid biosynthesis through inhibition of the Mycobacterium tuberculosis biotin protein ligase ( MtBPL). Mtb develops spontaneous resistance to 1 with a frequency of at least 1 × 10-7 by overexpression of Rv3406, a type II sulfatase that enzymatically inactivates 1. In an effort to circumvent this resistance mechanism, we describe herein strategic modification of the nucleoside at the 5'-position to prevent enzymatic inactivation. The new analogues retained subnanomolar potency to MtBPL ( KD = 0.66-0.97 nM), and 5' R- C-methyl derivative 6 exhibited identical antimycobacterial activity toward: Mtb H37Rv, MtBPL overexpression, and an isogenic Rv3406 overexpression strain (minimum inhibitory concentration, MIC = 1.56 μM). Moreover, 6 was not metabolized by recombinant Rv3406 and resistant mutants to 6 could not be isolated (frequency of resistance <1.4 × 10-10) demonstrating it successfully overcame Rv3406-mediated resistance.
Collapse
Affiliation(s)
- Matthew R. Bockman
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Curtis A. Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Peter Larson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Divya Tiwari
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - David M. Ferguson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Unver MY, Gierse RM, Ritchie H, Hirsch AKH. Druggability Assessment of Targets Used in Kinetic Target-Guided Synthesis. J Med Chem 2018; 61:9395-9409. [DOI: 10.1021/acs.jmedchem.8b00266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M. Yagiz Unver
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Helmholtz Institute for Pharmaceutical Research (HIPS) − Helmholtz Centre for Infection Research (HZI), Department for Drug Design and Optimization, Campus Building E 8.1, 66123 Saarbrücken, Germany
| | - Robin M. Gierse
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Helmholtz Institute for Pharmaceutical Research (HIPS) − Helmholtz Centre for Infection Research (HZI), Department for Drug Design and Optimization, Campus Building E 8.1, 66123 Saarbrücken, Germany
| | - Harry Ritchie
- Helmholtz Institute for Pharmaceutical Research (HIPS) − Helmholtz Centre for Infection Research (HZI), Department for Drug Design and Optimization, Campus Building E 8.1, 66123 Saarbrücken, Germany
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Helmholtz Institute for Pharmaceutical Research (HIPS) − Helmholtz Centre for Infection Research (HZI), Department for Drug Design and Optimization, Campus Building E 8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
14
|
Paparella AS, Feng J, Blanco-Rodriguez B, Feng Z, Phetsang W, Blaskovich MA, Cooper MA, Booker GW, Polyak SW, Abell AD. A template guided approach to generating cell permeable inhibitors of Staphylococcus aureus biotin protein ligase. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Paparella AS, Lee KJ, Hayes AJ, Feng J, Feng Z, Cini D, Deshmukh S, Booker GW, Wilce MCJ, Polyak SW, Abell AD. Halogenation of Biotin Protein Ligase Inhibitors Improves Whole Cell Activity against Staphylococcus aureus. ACS Infect Dis 2018; 4:175-184. [PMID: 29131575 DOI: 10.1021/acsinfecdis.7b00134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the synthesis and evaluation of 5-halogenated-1,2,3-triazoles as inhibitors of biotin protein ligase from Staphylococcus aureus. The halogenated compounds exhibit significantly improved antibacterial activity over their nonhalogenated counterparts. Importantly, the 5-fluoro-1,2,3-triazole compound 4c displays antibacterial activity against S. aureus ATCC49775 with a minimum inhibitory concentration (MIC) of 8 μg/mL.
Collapse
Affiliation(s)
- Ashleigh S. Paparella
- Department of Molecular
and Cellular Biology, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Kwang Jun Lee
- Department of Chemistry, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Andrew J. Hayes
- Department of Molecular
and Cellular Biology, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Jiage Feng
- Department of Chemistry, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
- Centre
for Nanoscale BioPhotonics (CNBP), University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Zikai Feng
- Department of Molecular
and Cellular Biology, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Danielle Cini
- School of Biomedical Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Sonali Deshmukh
- Department of Molecular
and Cellular Biology, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Grant W. Booker
- Department of Molecular
and Cellular Biology, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Matthew C. J. Wilce
- School of Biomedical Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Steven W. Polyak
- Department of Molecular
and Cellular Biology, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| | - Andrew D. Abell
- Department of Chemistry, University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
- Centre
for Nanoscale BioPhotonics (CNBP), University of Adelaide, North Tce, Adelaide, South Australia 5005, Australia
| |
Collapse
|
16
|
A green fluorescent protein-based assay for high-throughput ligand-binding studies of a mycobacterial biotin protein ligase. Microbiol Res 2017; 205:35-39. [PMID: 28942842 DOI: 10.1016/j.micres.2017.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 01/06/2023]
Abstract
Biotin protein ligase (BirA) has been identified as an emerging drug target in Mycobacterium tuberculosis due to its essential metabolic role. Indeed, it is the only enzyme capable of covalently attaching biotin onto the biotin carboxyl carrier protein subunit of the acetyl-CoA carboxylase. Despite recent interest in this protein, there is still a gap in cost-effective high-throughput screening assays for rapid identification of mycobacterial BirA-targeting inhibitors. We present for the first time the cloning, expression, purification of mycobacterial GFP-tagged BirA and its application for the development of a high-throughput assay building on the principle of differential scanning fluorimetry of GFP-tagged proteins. The data obtained in this study reveal how biotin and ATP significantly increase the thermal stability (ΔTm=+16.5°C) of M. tuberculosis BirA and lead to formation of a high affinity holoenzyme complex (Kobs=7.7nM). The new findings and mycobacterial BirA high-throughput assay presented in this work could provide an efficient platform for future anti-tubercular drug discovery campaigns.
Collapse
|
17
|
Panda D, Saha P, Das T, Dash J. Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor. Nat Commun 2017; 8:16103. [PMID: 28706243 PMCID: PMC5519986 DOI: 10.1038/ncomms16103] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 05/30/2017] [Indexed: 02/06/2023] Open
Abstract
The development of small molecules is essential to modulate the cellular functions of biological targets in living system. Target Guided Synthesis (TGS) approaches have been used for the identification of potent small molecules for biological targets. We herein demonstrate an innovative example of TGS using DNA nano-templates that promote Huisgen cycloaddition from an array of azide and alkyne fragments. A G-quadruplex and a control duplex DNA nano-template have been prepared by assembling the DNA structures on gold-coated magnetic nanoparticles. The DNA nano-templates facilitate the regioselective formation of 1,4-substituted triazole products, which are easily isolated by magnetic decantation. The G-quadruplex nano-template can be easily recovered and reused for five reaction cycles. The major triazole product, generated by the G-quadruplex inhibits c-MYC expression by directly targeting the c-MYC promoter G-quadruplex. This work highlights that the nano-TGS approach may serve as a valuable strategy to generate target-selective ligands for drug discovery. Identification of inhibitors can be accelerated by using the target as a template for ligand formation. Here the authors show that DNA-functionalised magnetic nanoparticles guide templating of G-quadruplex binding c-MYC inhibitors from an array of building blocks, and can be isolated by magnetic decanting.
Collapse
Affiliation(s)
- Deepanjan Panda
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Puja Saha
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Tania Das
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Jyotirmayee Dash
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
18
|
Bond TEH, Sorenson AE, Schaeffer PM. Functional characterisation of Burkholderia pseudomallei biotin protein ligase: A toolkit for anti-melioidosis drug development. Microbiol Res 2017; 199:40-48. [PMID: 28454708 DOI: 10.1016/j.micres.2017.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 01/17/2023]
Abstract
Burkholderia pseudomallei (Bp) is the causative agent of melioidosis. The bacterium is responsible for 20% of community-acquired sepsis cases and 40% of sepsis-related mortalities in northeast Thailand, and is intrinsically resistant to aminoglycosides, macrolides, rifamycins, cephalosporins, and nonureidopenicillins. There is no vaccine and its diagnosis is problematic. Biotin protein ligase (BirA) which is essential for fatty acid synthesis has been proposed as a drug target in bacteria. Very few bacterial BirA have been characterized, and a better understanding of these enzymes is necessary to further assess their value as drug targets. BirA within the Burkholderia genus have not yet been investigated. We present for the first time the cloning, expression, purification and functional characterisation of the putative Bp BirA and orthologous B. thailandensis (Bt) biotin carboxyl carrier protein (BCCP) substrate. A GFP-tagged Bp BirA was produced and applied for the development of a high-throughput (HT) assay based on our differential scanning fluorimetry of GFP-tagged proteins (DSF-GTP) principle as well as an electrophoretic mobility shift assay. Our biochemical data in combination with the new HT DSF-GTP and biotinylation activity assay could facilitate future drug screening efforts against this drug-resistant organism.
Collapse
Affiliation(s)
- Thomas E H Bond
- Comparative Genomics Centre, James Cook University, DB21, James Cook Drive, Townsville, QLD 4811, Australia
| | - Alanna E Sorenson
- Comparative Genomics Centre, James Cook University, DB21, James Cook Drive, Townsville, QLD 4811, Australia
| | - Patrick M Schaeffer
- Comparative Genomics Centre, James Cook University, DB21, James Cook Drive, Townsville, QLD 4811, Australia.
| |
Collapse
|
19
|
Wang Y, Zhu J, Zhang L. Discovery of Cell-Permeable O-GlcNAc Transferase Inhibitors via Tethering in Situ Click Chemistry. J Med Chem 2016; 60:263-272. [DOI: 10.1021/acs.jmedchem.6b01237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yue Wang
- School
of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Jingjing Zhu
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Lianwen Zhang
- College
of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and
Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Feng J, Paparella AS, Tieu W, Heim D, Clark S, Hayes A, Booker GW, Polyak SW, Abell AD. New Series of BPL Inhibitors To Probe the Ribose-Binding Pocket of Staphylococcus aureus Biotin Protein Ligase. ACS Med Chem Lett 2016; 7:1068-1072. [PMID: 27994739 DOI: 10.1021/acsmedchemlett.6b00248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/10/2016] [Indexed: 01/11/2023] Open
Abstract
Replacing the labile adenosinyl-substituted phosphoanhydride of biotinyl-5'-AMP with a N1-benzyl substituted 1,2,3-triazole gave a new truncated series of inhibitors of Staphylococcus aureus biotin protein ligase (SaBPL). The benzyl group presents to the ribose-binding pocket of SaBPL based on in silico docking. Halogenated benzyl derivatives (12t, 12u, 12w, and 12x) proved to be the most potent inhibitors of SaBPL. These derivatives inhibited the growth of S. aureus ATCC49775 and displayed low cytotoxicity against HepG2 cells.
Collapse
Affiliation(s)
- Jiage Feng
- Department of Chemistry, §Department of Molecular and Cellular Biology, and ‡Centre for Nanoscale
BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - William Tieu
- Department of Chemistry, §Department of Molecular and Cellular Biology, and ‡Centre for Nanoscale
BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Sarah Clark
- Department of Chemistry, §Department of Molecular and Cellular Biology, and ‡Centre for Nanoscale
BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | - Andrew D. Abell
- Department of Chemistry, §Department of Molecular and Cellular Biology, and ‡Centre for Nanoscale
BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
21
|
Biotin Protein Ligase Is a Target for New Antibacterials. Antibiotics (Basel) 2016; 5:antibiotics5030026. [PMID: 27463729 PMCID: PMC5039522 DOI: 10.3390/antibiotics5030026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/02/2022] Open
Abstract
There is a desperate need for novel antibiotic classes to combat the rise of drug resistant pathogenic bacteria, such as Staphylococcus aureus. Inhibitors of the essential metabolic enzyme biotin protein ligase (BPL) represent a promising drug target for new antibacterials. Structural and biochemical studies on the BPL from S. aureus have paved the way for the design and development of new antibacterial chemotherapeutics. BPL employs an ordered ligand binding mechanism for the synthesis of the reaction intermediate biotinyl-5′-AMP from substrates biotin and ATP. Here we review the structure and catalytic mechanism of the target enzyme, along with an overview of chemical analogues of biotin and biotinyl-5′-AMP as BPL inhibitors reported to date. Of particular promise are studies to replace the labile phosphoroanhydride linker present in biotinyl-5′-AMP with alternative bioisosteres. A novel in situ click approach using a mutant of S. aureus BPL as a template for the synthesis of triazole-based inhibitors is also presented. These approaches can be widely applied to BPLs from other bacteria, as well as other closely related metabolic enzymes and antibacterial drug targets.
Collapse
|
22
|
Kinetic target-guided synthesis in drug discovery and chemical biology: a comprehensive facts and figures survey. Future Med Chem 2016; 8:381-404. [DOI: 10.4155/fmc-2015-0007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
For the last 15 years, kinetic target-guided syntheses, including in situ click chemistry, have been used as alternative methods to find ligands to therapeutically relevant proteins. In this review, a comprehensive survey of biological targets used in kinetic target-guided synthesis covers historical and recent examples. The chemical reactions employed and practical aspects, including controls, library sizes and product detection, are presented. A particular focus is on the reagents and warhead selection and design with a critical overview of the challenges encountered. As protein supply remains a key success factor, it appears that increased efforts should be taken toward miniaturization in order to expand the scope of this strategy and qualify it as a fully fledged drug discovery tool.
Collapse
|
23
|
Mechanisms of biotin-regulated gene expression in microbes. Synth Syst Biotechnol 2016; 1:17-24. [PMID: 29062923 PMCID: PMC5640590 DOI: 10.1016/j.synbio.2016.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 12/23/2022] Open
Abstract
Biotin is an essential micronutrient that acts as a co-factor for biotin-dependent metabolic enzymes. In bacteria, the supply of biotin can be achieved by de novo synthesis or import from exogenous sources. Certain bacteria are able to obtain biotin through both mechanisms while others can only fulfill their biotin requirement through de novo synthesis. Inability to fulfill their cellular demand for biotin can have detrimental consequences on cell viability and virulence. Therefore understanding the transcriptional mechanisms that regulate biotin biosynthesis and transport will extend our knowledge about bacterial survival and metabolic adaptation during pathogenesis when the supply of biotin is limited. The most extensively characterized protein that regulates biotin synthesis and uptake is BirA. In certain bacteria, such as Escherichia coli and Staphylococcus aureus, BirA is a bi-functional protein that serves as a transcriptional repressor to regulate biotin biosynthesis genes, as well as acting as a ligase to catalyze the biotinylation of biotin-dependent enzymes. Recent studies have identified two other proteins that also regulate biotin synthesis and transport, namely BioQ and BioR. This review summarizes the different transcriptional repressors and their mechanism of action. Moreover, the ability to regulate the expression of target genes through the activity of a vitamin, such as biotin, may have biotechnological applications in synthetic biology.
Collapse
|
24
|
Toguchi S, Hirose T, Yorita K, Fukui K, Sharpless KB, Ōmura S, Sunazuka T. In Situ Click Chemistry for the Identification of a Potent D-Amino Acid Oxidase Inhibitor. Chem Pharm Bull (Tokyo) 2016; 64:695-703. [DOI: 10.1248/cpb.c15-00867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shohei Toguchi
- Graduate School of Infection Control Sciences, Kitasato University
| | - Tomoyasu Hirose
- Graduate School of Infection Control Sciences, Kitasato University
- The Kitasato Institute for Life Sciences, Kitasato University
| | | | | | | | - Satoshi Ōmura
- The Kitasato Institute for Life Sciences, Kitasato University
| | - Toshiaki Sunazuka
- Graduate School of Infection Control Sciences, Kitasato University
- The Kitasato Institute for Life Sciences, Kitasato University
| |
Collapse
|
25
|
Hirose T, Sunazuka T, Ōmura S. Rapid Identification via <i>In Situ</i> Click Chemistry of a Novel Chitinase Inhibitor. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.1090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tomoyasu Hirose
- Kitasato Institute for Life Sciences, Kitasato University
- Graduate School of Infection Control Sciences, Kitasato University
| | - Toshiaki Sunazuka
- Kitasato Institute for Life Sciences, Kitasato University
- Graduate School of Infection Control Sciences, Kitasato University
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University
| |
Collapse
|
26
|
Bockman MR, Kalinda AS, Petrelli R, De la Mora-Rey T, Tiwari D, Liu F, Dawadi S, Nandakumar M, Rhee KY, Schnappinger D, Finzel BC, Aldrich CC. Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors. J Med Chem 2015; 58:7349-7369. [PMID: 26299766 PMCID: PMC4667793 DOI: 10.1021/acs.jmedchem.5b00719] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), responsible for both latent and symptomatic tuberculosis (TB), remains the second leading cause of mortality among infectious diseases worldwide. Mycobacterial biotin protein ligase (MtBPL) is an essential enzyme in Mtb and regulates lipid metabolism through the post-translational biotinylation of acyl coenzyme A carboxylases. We report the synthesis and evaluation of a systematic series of potent nucleoside-based inhibitors of MtBPL that contain modifications to the ribofuranosyl ring of the nucleoside. All compounds were characterized by isothermal titration calorimetry (ITC) and shown to bind potently with K(D)s ≤ 2 nM. Additionally, we obtained high-resolution cocrystal structures for a majority of the compounds. Despite fairly uniform biochemical potency, the whole-cell Mtb activity varied greatly with minimum inhibitory concentrations (MIC) ranging from 0.78 to >100 μM. Cellular accumulation studies showed a nearly 10-fold enhancement in accumulation of a C-2'-α analogue over the corresponding C-2'-β analogue, consistent with their differential whole-cell activity.
Collapse
Affiliation(s)
- Matthew R. Bockman
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alvin S. Kalinda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA,Center for Drug Design, Academic Health Center, University of Minnesota, MN 55455 USA
| | - Riccardo Petrelli
- Center for Drug Design, Academic Health Center, University of Minnesota, MN 55455 USA
| | - Teresa De la Mora-Rey
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Divya Tiwari
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Feng Liu
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Surrendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Madhumitha Nandakumar
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Kyu Y. Rhee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Barry C. Finzel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA,Center for Drug Design, Academic Health Center, University of Minnesota, MN 55455 USA,Corresponding Author Footnote: To whom correspondence should be addressed. Phone 612-625-7956. Fax 612-626-3114.
| |
Collapse
|
27
|
Alumasa JN, Keiler KC. Clicking on trans-translation drug targets. Front Microbiol 2015; 6:498. [PMID: 26042115 PMCID: PMC4436901 DOI: 10.3389/fmicb.2015.00498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022] Open
Affiliation(s)
- John N Alumasa
- Department of Biochemistry and Molecular Biology, Pennsylvania State University University Park, PA, USA
| | - Kenneth C Keiler
- Department of Biochemistry and Molecular Biology, Pennsylvania State University University Park, PA, USA
| |
Collapse
|
28
|
Tieu W, Polyak SW, Paparella AS, Yap MY, Soares da Costa TP, Ng B, Wang G, Lumb R, Bell JM, Turnidge JD, Wilce MCJ, Booker GW, Abell AD. Improved Synthesis of Biotinol-5'-AMP: Implications for Antibacterial Discovery. ACS Med Chem Lett 2015; 6:216-20. [PMID: 25699152 DOI: 10.1021/ml500475n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022] Open
Abstract
An improved synthesis of biotinol-5'-AMP, an acyl-AMP mimic of the natural reaction intermediate of biotin protein ligase (BPL), is reported. This compound was shown to be a pan inhibitor of BPLs from a series of clinically important bacteria, particularly Staphylococcus aureus and Mycobacterium tuberculosis, and kinetic analysis revealed it to be competitive against the substrate biotin. Biotinol-5'-AMP also exhibits antibacterial activity against a panel of clinical isolates of S. aureus and M. tuberculosis with MIC values of 1-8 and 0.5-2.5 μg/mL, respectively, while being devoid of cytotoxicity to human HepG2 cells.
Collapse
Affiliation(s)
- William Tieu
- School
of Chemistry and Physics, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre
for Molecular Pathology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Steven W. Polyak
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre
for Molecular Pathology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ashleigh S. Paparella
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Min Y. Yap
- School
of Biomedical Science, Monash University, Victoria 3800, Australia
| | - Tatiana P. Soares da Costa
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Belinda Ng
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Geqing Wang
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Richard Lumb
- Microbiology
and Infectious Diseases Directorate, SA Pathology, Women’s and Children’s Hospital, Adelaide, South Australia 5006, Australia
| | - Jan M. Bell
- Microbiology
and Infectious Diseases Directorate, SA Pathology, Women’s and Children’s Hospital, Adelaide, South Australia 5006, Australia
| | - John D. Turnidge
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
- Microbiology
and Infectious Diseases Directorate, SA Pathology, Women’s and Children’s Hospital, Adelaide, South Australia 5006, Australia
| | | | - Grant W. Booker
- School
of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre
for Molecular Pathology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D. Abell
- School
of Chemistry and Physics, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre
for Molecular Pathology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
29
|
Oueis E, Sabot C, Renard PY. New insights into the kinetic target-guided synthesis of protein ligands. Chem Commun (Camb) 2015; 51:12158-69. [DOI: 10.1039/c5cc04183j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review describes the recent applications of the kinetic target guided synthesis and highlights the new advances of this strategy.
Collapse
Affiliation(s)
- Emilia Oueis
- Biomedical Sciences Research Council
- University of St. Andrews
- St. Andrews KY16 9ST
- UK
| | - Cyrille Sabot
- Normandie University
- COBRA
- UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS
- Cedex
- France
| | - Pierre-Yves Renard
- Normandie University
- COBRA
- UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS
- Cedex
- France
| |
Collapse
|
30
|
Tieu W, Jarrad AM, Paparella AS, Keeling KA, Soares da Costa TP, Wallace JC, Booker GW, Polyak SW, Abell AD. Heterocyclic acyl-phosphate bioisostere-based inhibitors of Staphylococcus aureus biotin protein ligase. Bioorg Med Chem Lett 2014; 24:4689-4693. [DOI: 10.1016/j.bmcl.2014.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 01/17/2023]
|
31
|
Oueis E, Nachon F, Sabot C, Renard PY. First enzymatic hydrolysis/thio-Michael addition cascade route to synthesis of AChE inhibitors. Chem Commun (Camb) 2014; 50:2043-5. [DOI: 10.1039/c3cc48871c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Oueis E, Santoni G, Ronco C, Syzgantseva O, Tognetti V, Joubert L, Romieu A, Weik M, Jean L, Sabot C, Nachon F, Renard PY. Reaction site-driven regioselective synthesis of AChE inhibitors. Org Biomol Chem 2014; 12:156-61. [DOI: 10.1039/c3ob42109k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Shi C, Tiwari D, Wilson DJ, Seiler CL, Schnappinger D, Aldrich CC. Bisubstrate Inhibitors of Biotin Protein Ligase in Mycobacterium tuberculosis Resistant to Cyclonucleoside Formation. ACS Med Chem Lett 2013; 4. [PMID: 24363833 DOI: 10.1021/ml400328a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is the leading cause bacterial infectious diseases mortality. Biotin protein ligase (BirA) globally regulates lipid metabolism in Mtb through the posttranslational biotinylation of acyl coenzyme A carboxylases (ACCs) involved in lipid biosynthesis and is essential for Mtb survival. We previously developed a rationally designed bisubstrate inhibitor of BirA that displays potent enzyme inhibition and whole-cell activity against multidrug resistant and extensively drug resistant Mtb strains. Here we present the design, synthesis and evaluation of a focused series of inhibitors, which are resistant to cyclonucleoside formation, a key decomposition pathway of our initial analogue. Improved chemical stability is realized through replacement of the adenosyl N-3 nitrogen and C-5' oxygen atom with carbon as well as incorporation of bulky group on the nucleobase to prevent the required syn-conformation necessary for proper alignment of N-3 with C-5'.
Collapse
Affiliation(s)
- Ce Shi
- Center
for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Divya Tiwari
- Department
of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Daniel J. Wilson
- Center
for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher L. Seiler
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dirk Schnappinger
- Department
of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Courtney C. Aldrich
- Center
for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
34
|
Soares da Costa TP, Yap MY, Perugini MA, Wallace JC, Abell AD, Wilce MCJ, Polyak SW, Booker GW. Dual roles of F123 in protein homodimerization and inhibitor binding to biotin protein ligase fromStaphylococcus aureus. Mol Microbiol 2013; 91:110-20. [DOI: 10.1111/mmi.12446] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2013] [Indexed: 12/17/2022]
Affiliation(s)
| | - Min Y. Yap
- School of Biomedical Science; Monash University; Victoria 3800 Australia
| | - Matthew A. Perugini
- Department of Biochemistry; La Trobe Institute for Molecular Science; La Trobe University; Victoria 3086 Australia
| | - John C. Wallace
- School of Molecular and Biomedical Science; University of Adelaide; South Australia 5005 Australia
| | - Andrew D. Abell
- School of Chemistry and Physics; University of Adelaide; South Australia 5005 Australia
- Centre for Molecular Pathology; University of Adelaide; South Australia 5005 Australia
| | | | - Steven W. Polyak
- School of Molecular and Biomedical Science; University of Adelaide; South Australia 5005 Australia
- Centre for Molecular Pathology; University of Adelaide; South Australia 5005 Australia
| | - Grant W. Booker
- School of Molecular and Biomedical Science; University of Adelaide; South Australia 5005 Australia
- Centre for Molecular Pathology; University of Adelaide; South Australia 5005 Australia
| |
Collapse
|