1
|
Le Garrec S, Martins-Bessa D, Wolff M, Delavaux-Nicot B, Mallet-Ladeira S, Serpentini CL, Benoist E, Bedos-Belval F, Fery-Forgues S. Dinuclear tricarbonylrhenium(I) complexes: impact of regioisomerism on the photoluminescence properties. Dalton Trans 2024; 53:16512-16529. [PMID: 39258561 DOI: 10.1039/d4dt01907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Dinuclear Re(I) complexes have proportionally been much less studied than mononuclear analogues. In particular, very little information is available about their solid-state emission properties. In this work, two structural isomers of dinuclear complexes (Bi-Re-metaPhe and Bi-Re-paraPhe), which differ by the relative position of the coordination spheres on a central phenyl ring, were synthesized and compared with each other and with the parent mononuclear compound (Mono-Re-Phe), from a theoretical and experimental point of view. In solution, the electronic, electrochemical and spectroscopic properties of the dinuclear complexes were almost identical, and rather close to those of the monomer. In the solid state, the photoluminescence (PL) efficiency of dimers was not higher than that of the monomer, but a clear mechanoresponsive luminescence (MRL) effect appeared only for the former ones. The positional isomerism influenced the amplitude of this effect, as well as the aggregation-induced emission (AIE) properties in a water-acetonitrile mixture. This study reveals the importance of positional isomerism to modulate the emission properties in the solid state. It also shows the advantage of dinuclear structures to access new MRL-active materials.
Collapse
Affiliation(s)
- Stéphen Le Garrec
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - David Martins-Bessa
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Mariusz Wolff
- Institut für Funktionelle Materialien und Katalyse, Universität Wien, Währinger Straße 38-42, 1090 Wien, Austria
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9th Street, 40-006 Katowice, Poland
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination, CNRS (UPR 8241), Université de Toulouse (UPS, INPT), 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Sonia Mallet-Ladeira
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse, ICT-UAR 2599, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Charles-Louis Serpentini
- Laboratoire SOFTMAT, CNRS UMR 5623, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Eric Benoist
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Florence Bedos-Belval
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Suzanne Fery-Forgues
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Chen X, Zhao C, Zhao Q, Yang Y, Yang S, Zhang R, Wang Y, Wang K, Qian J, Long L. Construction of a Colorimetric and Near-Infrared Ratiometric Fluorescent Sensor and Portable Sensing System for On-Site Quantitative Measurement of Sulfite in Food. Foods 2024; 13:1758. [PMID: 38890986 PMCID: PMC11171829 DOI: 10.3390/foods13111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Sulfites play imperative roles in food crops and food products, serving as sulfur nutrients for food crops and as food additives in various foods. It is necessary to develop an effective method for the on-site quantification of sulfites in food samples. Here, 7-(diethylamino) quinoline is used as a fluorescent group and electron donor, alongside the pyridinium salt group as an electron acceptor and the C=C bond as the sulfite-specific recognition group. We present a novel fluorescent sensor based on a mechanism that modulates the efficiency of intramolecular charge transfer (ICT), CY, for on-site quantitative measurement of sulfite in food. The fluorescent sensor itself exhibited fluorescence in the near-infrared light (NIR) region, effectively minimizing the interference of background fluorescence in food samples. Upon exposure to sulfite, the sensor CY displayed a ratiometric fluorescence response (I447/I692) with a high sensitivity (LOD = 0.061 μM), enabling accurate quantitative measurements in complex food environments. Moreover, sensor CY also displayed a colorimetric response to sulfite, making sensor CY measure sulfite in both fluorescence and colorimetric dual-signal modes. Sensor CY has been utilized for quantitatively measuring sulfite in red wine and sugar with recoveries between 99.65% and 101.90%, and the RSD was below 4.0%. The sulfite concentrations in live cells and zebrafish were also monitored via fluorescence imaging. Moreover, the sulfite assimilated by lettuce leaves was monitored, and the results demonstrated that excessive sulfite in leaf tissue could lead to leaf tissue damage. In addition, the sulfate-transformed sulfite in lettuce stem tissue was tracked, providing valuable insights for evaluating sulfur nutrients in food crops. More importantly, to accomplish the on-site quantitative measurement of sulfite in food samples, a portable sensing system was prepared. Sensor CY and the portable sensing system were successfully used for the on-site quantitative measurement of sulfite in food.
Collapse
Affiliation(s)
- Xiaodong Chen
- Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang 212013, China
| | - Chenglu Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiwei Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yunfei Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sanxiu Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rumeng Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Wang
- Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang 212013, China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Tian D, Qi X, Seididamyeh M, Zhang H, Phan A, Zhang Z, Geng X, Sultanbawa Y, Zhang R. A ratiometric fluorescence probe for bisulfite detection in live cells and meat samples. Methods 2024; 225:100-105. [PMID: 38565390 DOI: 10.1016/j.ymeth.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024] Open
Abstract
The development of reliable probe technology for the detection of bisulfite (HSO3-) in situ in food and biological samples is contributing significantly to food quality and safety assurance as well as community health. In this work, a responsive probe, EHDI, is developed for ratiometric fluorescence detection of HSO3- in aqueous solution, meat samples, and living cells. The probe is designed based on the HSO3- triggered 1,4-addition of electron deficit C = C bond of EHDI. As a result of this specific 1,4-addition, the π-conjugation system was destructed, resulting in blue shifts of the emission from 687 to 440 nm and absorption from 577 to 355 nm. The probe has good water solubility, high sensitivity and selectivity, allowing it to be used for imaging of HSO3- internalization and production endogenously. The capability of probe EHDI for HSO3- was then validated by traditional HPLC technology, enabling accurately detect HSO3- in beef samples. The successful development of this probe thus offers a new tool for investigating HSO3- in situ in food and biological conditions.
Collapse
Affiliation(s)
- Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xin Qi
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland 4068, Australia
| | - Maral Seididamyeh
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland 4068, Australia
| | - Huayue Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Anh Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland 4068, Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xuhui Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Deep-sea Composition Detection Technology of Liaoning Province, 457 Zhongshan Road, Dalian 116023, China
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland 4068, Australia.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia; ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, Queensland 4068, Australia.
| |
Collapse
|
5
|
Lan J, Liu L, Li Z, Zeng R, Chen L, He Y, Wei H, Ding Y, Zhang T. A multi-signal mitochondria-targeted fluorescent probe for simultaneously distinguishing biothiols and realtime visualizing its metabolism in cancer cells and tumor models. Talanta 2024; 267:125104. [PMID: 37703779 DOI: 10.1016/j.talanta.2023.125104] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
Biothiols and its metabolite SO2 derivatives play vital roles in various physiological processes. Although a few probes have been designed for monitoring the metabolism of biothiols, developing multi-signal fluorescent probes with practicability for simultaneously distinguishing biothiols (GSH, Cys and Hcy) and real-time visualizing SO2 derivatives is an enormous challenge. To better visualize biothiols metabolism in vitro and vivo, we developed a novel multi-signal NIR fluorescent probe (probe 2) with mitochondria-targeted for distinguishing biothiols and its metabolism, based on an ICT-PET synergetic mechanism. Probe 2 with dual recognition sites distinguishing detected Cys/Hcy (Red-Green), GSH (Green) and SO32- (Blue) via three channels. First probe 2 distinguished Cys and GSH to estimate main biothiols in living cells through the ratio changes of two well-defined emission bands (Red-Green), and then imaged its metabolite SO2 with ratiometric fluorescence (Red-Blue), eliminating the interference by different biothiols. Notably, probe 2 exhibits satisfactory sensitivity (detection limit: 0.21, 0.13, 0.14 and 3.06 μM for Cys, Hcy, GSH and SO32-, respectively), high selectivity, reliability at physiological pH, and rapid fluorescence response (within 10 min). Given these advantages, probe 2 has been successfully applied to the real-time monitor GSH metabolic process in MCF-7 cells and biothiols metabolism in breast cancer, suggesting biothiols metabolic changes might be a diagnostic indicator during cancer treatment. So probe 2 is a convenient and efficient tool for understanding the physiological functions of biothiols and its metabolism.
Collapse
Affiliation(s)
- Jinshuai Lan
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yitian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Ding
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Zhang B, Shi L, Ma X, Yang D, Sun H, Tang Y, Zhang X. "One stone, two birds": a mitochondria-targeted fluorescent probe for the detection of viscosity and HSO 3- in living cells. Analyst 2023; 148:3798-3805. [PMID: 37462402 DOI: 10.1039/d3an00905j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The material transport and physiological events of mitochondria need to be supported by a suitable microenvironment. For example, high viscosity will seriously hinder material exchange, and SO2, as the precursor of HSO3-, is an endogenous signal molecule that plays a key role in information transmission. It is very important to detect viscosity and HSO3- in mitochondria. Here, we developed a dual-responsive fluorescent probe (named Hcy-NT) to image the changes in mitochondrial viscosity and HSO3- in a "killing two birds with one stone" manner. Hcy-NT showed an OFF-ON fluorescence signal for the increase in cell viscosity induced by nystatin, while an ON-OFF fluorescence signal for intracellular and endogenous HSO3-. Its limits of detection for HSO3- were calculated by both absorption and fluorescence methods, which were 1.200 and 1.291 μM, respectively. This work provides a valuable tool for the study of viscosity and HSO3- related physiological processes and the diagnosis of potential diseases.
Collapse
Affiliation(s)
- Buyue Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Lei Shi
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Xiaoying Ma
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Dawei Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongxia Sun
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiufeng Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
7
|
Hou MJ, Wang ZQ, Chen JT, Tan ZK, Mao GJ, Chen DH, Li Y, Li CY. A dual-channel fluorescent nanoprobe for accurate cancer diagnosis by sequential detection of adenosine triphosphate and sulfur dioxide. Talanta 2023; 265:124815. [PMID: 37348355 DOI: 10.1016/j.talanta.2023.124815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Cancer is one of the major diseases that seriously endanger the health of all mankind. Accurate diagnosis of early cancer is the most promising way to reduce cancer harm and improve patient survival. However, many developed fluorescent probes for cancer imaging only have the function of identifying one marker, which cannot meet the needs of accurate diagnosis. Here, a fluorescent nanoprobe (CPH@ZIF-90) utilizing ZIF-90 to encapsulate SO2-sensitive dye (CPH) is synthesized for the sequential detection of ATP and SO2. The nanoprobe first interacts with ATP to release CPH, thus increasing the fluorescence at 685 nm and realizing the near-infrared (NIR) fluorescence detection of ATP. Then, SO2 acts on the released CPH through nucleophilic addition, affecting the π-conjugated structure of CPH and resulting in enhanced fluorescence at 580 nm. CPH@ZIF-90 exhibits satisfactory sensitivity and selectivity for sequential detection of ATP and SO2. Excitedly, CPH@ZIF-90 can sequentially image the endogenous ATP and SO2 in cells, showing sensitive fluorescence changes in dual channels (red and green). Due to the NIR emission properties of CPH@ZIF-90 and its ability to enrich in tumor, it is applied to monitor ATP and SO2 in mice and distinguish normal mice from tumor mice. The ability of CPH@ZIF-90 to sequentially detect two cancer-related biomarkers makes it provide meaningful assistance in accurate early diagnosis of cancer.
Collapse
Affiliation(s)
- Mei-Jia Hou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Jun-Tao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Zhi-Ke Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Dong-Hua Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China.
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
8
|
Du Y, Pan C, Cao C. A mitochondria-targetable fluorescent probe for sulfur dioxide detection and visualisation in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122275. [PMID: 36580753 DOI: 10.1016/j.saa.2022.122275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Sulfur dioxide (SO2) is a one of reactive sulfur species (RSS) that plays significant roles in many physiological processes. While abnormal levels of SO2 in mitochondria have been related to various diseases. Hence, developing suitable fluorescent probe for monitoring SO2 is significant in living organisms. In this research, we designed and synthesized a mitochondrial-target probe Mito-NPH featuring the graft of a strong electron-withdrawing 4-pyridiniumylacrylonitrile unit to an electron-donating naphthalenic unit that intramolecular charge transfer (ICT) process happened. The probe Mito-NPH underwent a nucleophilic addition of HSO3-/SO32-to give fluorescent emission signal change from red to blue and exhibited specific response toward HSO3-/SO32-over other analytes. Moreover, Mito-NPH showed ultrafast response rate (within 10 s) for HSO3-. Importantly, cell imaging results demonstrated that the probe can sense endogenous SO2 in mitochondria.
Collapse
Affiliation(s)
- Yuting Du
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China.
| | - Caixia Pan
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Chunjuan Cao
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| |
Collapse
|
9
|
Phosphorescent Ir(III) Complexes for Biolabeling and Biosensing. Top Curr Chem (Cham) 2022; 380:35. [PMID: 35948820 DOI: 10.1007/s41061-022-00389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/27/2022] [Indexed: 10/15/2022]
Abstract
Cyclometalated Ir(III) complexes exhibit strong phosphorescence emission with lifetime of submicroseconds to several microseconds at room temperature. Their synthetic versatility enables broad control of physical properties, such as charge and lipophilicity, as well as emission colors. These favorable properties have motivated the use of Ir(III) complexes in luminescent bioimaging applications. This review examines the recent progress in the development of phosphorescent biolabels and sensors based on Ir(III) complexes. It begins with a brief introduction about the basic principles of the syntheses and photophysical processes of cyclometalated Ir(III) complexes. Focus is placed on illustrating the broad imaging utility of Ir(III) complexes. Phosphorescent labels illuminating intracellular organelles, including mitochondria, lysosomes, and cell membranes, are summarized. Ir(III) complexes capable of visualization of tumor spheroids and parasites are also introduced. Facile chemical modification of the cyclometalating ligands endows the Ir(III) complexes with strong sensing ability. Sensors of temperature, pH, CO2, metal ions, anions, biosulfur species, reactive oxygen species, peptides, and viscosity have recently been added to the molecular imaging tools. This diverse utility demonstrates the potential of phosphorescent Ir(III) complexes toward bioimaging applications.
Collapse
|
10
|
A fluorescent probe for monitoring sulfite in living cells with large Stokes shift and rapid response. Anal Biochem 2022; 654:114800. [DOI: 10.1016/j.ab.2022.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
|
11
|
Dou WT, Han HH, Sedgwick AC, Zhu GB, Zang Y, Yang XR, Yoon J, James TD, Li J, He XP. Fluorescent probes for the detection of disease-associated biomarkers. Sci Bull (Beijing) 2022; 67:853-878. [PMID: 36546238 DOI: 10.1016/j.scib.2022.01.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
Fluorescent probes have emerged as indispensable chemical tools to the field of chemical biology and medicine. The ability to detect intracellular species and monitor physiological processes has not only advanced our knowledge in biology but has provided new approaches towards disease diagnosis. In this review, we detail the design criteria and strategies for some recently reported fluorescent probes that can detect a wide range of biologically important species in cells and in vivo. In doing so, we highlight the importance of each biological species and their role in biological systems and for disease progression. We then discuss the current problems and challenges of existing technologies and provide our perspective on the future directions of the research area. Overall, we hope this review will provide inspiration for researchers and prove as useful guide for the development of the next generation of fluorescent probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
12
|
Wang J, Xu W, Wang Y, Hua J. Diketopyrrolopyrrole-based fluorescent probe for endogenous bisulfite detection and bisulfite triggered phototoxicity specific in liver cancer cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120098. [PMID: 34252742 DOI: 10.1016/j.saa.2021.120098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
As the main existing form of SO2 derivatives, bisulfite showed closely relationship to many diseases. In this work, a new fluorescent probe (SDPP-DM) based on thienyl-substituted diketopyrrolopyrrole (SDPP) was designed and synthesized for the detection of endogenous bisulfite. The probe displayed obvious color changes from green to pink towards bisulfite due to the reduced conjugated length caused by the addition to the α,β-unsaturated double bond of its structure, and the change of the fluorescence intensity of SDPP-DM (I/I0) was about 16 folds. In addition, SDPP-DM was prepared a test strip for bisulfite identified by naked eye through color and fluorescence changes. Besides, SDPP-DM was successfully applied to imaging and discriminating different endogenous bisulfite levels in normal and cancer cells of liver. More importantly, the ROS generation and cell viability tests showed the phototoxicity of SDPP-DM triggered by bisulfite, indicating the specific phototoxicity of SDPP-DM towards liver cancer cells than normal liver cells.
Collapse
Affiliation(s)
- Jian Wang
- The Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China; Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237 Shanghai, PR China
| | - Weibo Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Yu Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China.
| | - Jianli Hua
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237 Shanghai, PR China.
| |
Collapse
|
13
|
Wang Y, Chen RX, Tian R, Li Y, Guo Z, Fang Y, Zhang Q, Chen S, Wang KP, Hu ZQ. A mitochondria-targeted fluorescent probe for real-time imaging SO 2/H 2O 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120134. [PMID: 34271238 DOI: 10.1016/j.saa.2021.120134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/05/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Studies have shown that changes in the redox state of cells might be closely related to pathological and physiological processes. Sulfur dioxide and hydrogen peroxide, as a significant redox couple in living cells, are endogenously produced by cells. Here, we report a long-wavelength fluorescent probe to reversibly monitor sulfur dioxide and hydrogen peroxide. This probe (NBD) displayed high selectivity and sensitivity, which could be accumulated in mitochondria for real-time imaging of SO2/H2O2. These results indicated that NBD would be an ideal tool for monitoring the redox cycle state in living cells.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ru-Xing Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Tian
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zongxia Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ying Fang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qi Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shaojin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
14
|
Li D, Tian X, Liu Z, Liu J, Han G, Liu B, Zhao J, Zhang R, Tian Y, Zhang Z. Revealing Sulfur Dioxide Regulation to Nucleophagy in Embryo Development by an Adaptive Coloration Probe. Anal Chem 2021; 93:13667-13672. [PMID: 34591458 DOI: 10.1021/acs.analchem.1c03109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding signaling molecules in regulating organelles dynamics and programmed cell death is critical for embryo development but is also challenging because current imaging probes are incapable of simultaneously imaging the signaling molecules and the intracellular organelles they interact with. Here, we report a chemically and environmentally dual-responsive imaging probe that can react with gasotransmitters and label cell nuclei in distinctive fluorescent colors, similar to the adaptive coloration of chameleons. Using this intracellular chameleon-like probe in three-dimensional (3D) super-resolution dynamic imaging of live cells, we discovered SO2 as a critical upstream signaling molecule that activates nucleophagy in programmed cell death. An elevated level of SO2 prompts kiss fusion between the lysosomal and nuclear membranes and nucleus shrinkage and rupture. Significantly, we revealed that the gasotransmitter SO2 is majorly generated in the yolk, induces autophagy there at the initial stage of embryo development, and is highly related to the development of the auditory nervous system.
Collapse
Affiliation(s)
- Dandan Li
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Xiaohe Tian
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Zhengjie Liu
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, China
| | - Jiejie Liu
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Guangmei Han
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, China
| | - Bianhua Liu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Zhao
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, China
| | - Yupeng Tian
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, China
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering, Information Materials and Intelligent Sensing Laboratory of Anhui Province, and Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, Anhui, China
| |
Collapse
|
15
|
Liu Y, Wu L, Dai Y, Li Y, Qi S, Du J, Yang Q, Xu H, Li Y. A novel fluorescent probe based on a triphenylamine derivative for the detection of HSO 3- with high sensitivity and selectivity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3667-3675. [PMID: 34337634 DOI: 10.1039/d1ay00800e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel highly active fluorescence chemical sensor (TBQN) for HSO3- was synthesized by the Knoevenagel reaction based on triphenylamine-benzothiazole as a new fluorophore. The probe possessed good selectivity toward HSO3- and anti-interference ability with common ions. The fluorescence and UV-vis spectra of the TBQN probe were significantly changed after the addition of HSO3-. At the same time, the probe solution released obvious green fluorescence. Moreover, the limit of detection for HSO3- was calculated to be 3.19 × 10-8 M. The TBQN probe displayed a rapid response to HSO3- and it took about 3 min to complete the recognition. The detection mechanism is the nucleophilic addition reaction between HSO3- and -C[double bond, length as m-dash]C- in the probe molecule. The π-conjugation and ICT (intramolecular charge transfer) transition in the TBQN molecule were destroyed by this addition, which resulted in the change of the fluorescence before and after the addition of HSO3-. Then, the mechanism was verified by theoretical calculations, 1H NMR measurements and mass spectroscopy. In addition, the probe showed low cytotoxicity and could be used for biological imaging in RAW264.7 cells.
Collapse
Affiliation(s)
- Yan Liu
- College of Chemistry, Jilin University, Changchun, 130021, Jilin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li J, Ma X, Yang W, Guo C, Zhai J, Xie X. Enhanced Sulfite-Selective Sensing and Cell Imaging with Fluorescent Nanoreactors Containing a Ratiometric Lipid Peroxidation Sensor. Anal Chem 2021; 93:11758-11764. [PMID: 34410685 DOI: 10.1021/acs.analchem.1c02167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The detection of SO2 and its derivatives is indispensable for monitoring atmospheric, water quality, and biological fluctuation of oxidative stress and metabolism of biothiols within native cellular contexts. In this article, the brush copolymer nanoreactors containing amine-terminated PDMS were used to encapsulate the fluorescent indicator C11-BDP, forming sulfite-sensitive nanoreactors (ssNRs). Surprisingly, the ssNRs were found to be highly selective to sulfite over a range of reactive oxygen/nitrogen/sulfur species and anions, which was not observed with freely dissolved indicators. The ssNRs showed a rapid response (t95 = 65 s), an excellent detection limit (0.7 μM), and a very high sensitivity (ca. 1000-fold ratiometric intensity change) to sulfite. For cellular studies, the ssNRs exhibited negligible toxicity and could be endocytosed into endosomes and lysosomes. Finally, the ssNRs allowed us to visualize the different responses of three different types of cells (pre-adipocytes, RAW264.7, and HeLa cells) to external stimuli in the culture media with sulfites and lipopolysaccharides.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xueqing Ma
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chao Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Zhang H, Zhang DY, Shen J, Mao ZW. 3D CoPt nanostructures hybridized with iridium complexes for multimodal imaging and combined photothermal-chemotherapy. J Inorg Biochem 2021; 219:111429. [PMID: 33780685 DOI: 10.1016/j.jinorgbio.2021.111429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/07/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Combined photothermal-chemotherapy has shown great potential in improving the efficiency of tumor treatment. In this article, we have designed a new type of nanocomposite Ir-CoPt-PVP composed of cobalt/platinum alloy nanoparticles (CoPt) and iridium(III) complex (Ir) for combined photothermal therapy (PTT) and chemotherapy. The obtained CoPt was synthesized by a simple solvothermal method and modified by polyvinyl pyrrolidone (PVP), which exhibited excellent photothermal efficiency and stability, and can also be a bimodal bioimaging contrast agent in photothermal imaging (PTI) and photoacoustic imaging (PAI). Furthermore, the combination therapy has shown obvious tumor cell-growth inhibition in vitro. Overall, the results revealed the great potential of Ir-CoPt-PVP nanocomposites in improving therapeutic efficiency by photothermal-chemotherapy and photothermal/photoacoustic imaging.
Collapse
Affiliation(s)
- Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dong-Yang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
18
|
Synthesis, structures and anticancer potentials of five platinum(II) complexes with benzothiazole-benzopyran targeting mitochondria. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Responsive small-molecule luminescence probes for sulfite/bisulfite detection in food samples. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116199] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Li Z, Zhu Y, Gong X, Zhang Y, Xing M, Ma S, Guan R, Cao D, Liu Z. Bisulfite recognition properties of two benzothiazole inner salt compounds. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Yu X, Li P, Sun Y, Zhou S, Cao D, Liu Z. Discriminable anion sensing properties of 3-pyrenyl-2-pyridyl-acrylonitrile and its methylate. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Zhang W, Xi X, Wang YL, Du Z, Liu C, Liu J, Song B, Yuan J, Zhang R. Responsive ruthenium complex probe for phosphorescence and time-gated luminescence detection of bisulfite. Dalton Trans 2020; 49:5531-5538. [PMID: 32270143 DOI: 10.1039/c9dt04614c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sensitive and selective quantification of specific analytes is of great significance in analytical and environmental sciences, as well as in the food industry. Herein, we report the design, synthesis, characterization, and application of a responsive ruthenium(ii) complex probe, Ru-azo, for phosphorescence and time-gated luminescence (TGL) detection of bisulfite, an important additive in the food industry. Upon a specific nucleophilic addition reaction between bisulfite and the azo group of Ru-azo, a new ruthenium(ii) complex, Ru-SO3, was obtained, which resulted in a remarkable increase in phosphorescence intensity, allowing the bisulfite detection to be achieved. In addition, long-lived emissions of Ru-azo (τ = 258 ns) and Ru-SO3 (τ = 261 ns) also enabled the TGL detection of bisulfite in autofluorescence-rich food samples. Through theoretical computations, the photoinduced electron transfer (PET) process within the ruthenium(ii) complex was validated, which unveiled the rationality of the luminescence "off-on" response of Ru-azo to bisulfite. The probe showed advantages of good water solubility, and high sensitivity, selectivity and accuracy for responding to bisulfite, facilitating its application in phosphorescence and TGL detection of bisulfite in aqueous and food samples.
Collapse
Affiliation(s)
- Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang W, Huo F, Cheng F, Yin C. Employing an ICT-FRET Integration Platform for the Real-Time Tracking of SO 2 Metabolism in Cancer Cells and Tumor Models. J Am Chem Soc 2020; 142:6324-6331. [PMID: 32130860 DOI: 10.1021/jacs.0c00992] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutathione (GSH) mediates a wide variety of biological events and human diseases. Although it has been the subject of intense study in recent years, a further understanding of its molecular mechanisms and metabolism routes in living cells has remained limited due to a lack of appropriate analytical tools. Sulfur dioxide (SO2), an important metabolite of GSH, is usually associated with the symptoms of neurological disorders, cardiovascular diseases, and lung cancer. Herein, a novel multisignal fluorescent probe was rationally designed and exploited for the simultaneous detection of GSH and its metabolite SO2 via an ICT-FRET synergetic mechanism. The probe shows completely reversed fluorescence responses toward GSH (enhanced red emission) and SO2 (annihilated red fluorescence) with high selectivity and sensitivity. In particular, the probe displayed completely different fluorescent signals (blue-shift) with SO2 in the presence of GSH, thereby allowing the imaging of the metabolism process of GSH to SO2 in two independent channels without spectral cross interference. Given these advantages, this probe has been successfully applied to the real-time monitoring of the SO2 metabolic process in living cells and mice models, and it has thus been found that GSH can metabolize SO2 by enzymatic reaction with TST (thiosulfate sulphurtransferase); additionally, SO2 was transformed into sulfate under SUOX (sulfite oxidase). We anticipate that this research will provide a convenient and efficient tool for understanding the interrelated physiological functions of GSH and SO2 in more biosystems.
Collapse
Affiliation(s)
- Weijie Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R. China
| | - Fangqin Cheng
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
24
|
Liu Y, Wu Y, Zhang D, Xi Y, Yu S, Zhong H, He K, Li D, Wei W, Cao Y, Gan N. A BODIPY‐Hemicyanine‐Based Water‐Soluble Dual‐Color Fluorescence Probe for Colorimetric Monitoring of Intracellular Endogenous Sulfur Dioxide and Bioimaging Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.201904900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ying Liu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Yong‐Xiang Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Dailiang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and ChemicalEngineering, Hunan University Changsha 410082 China
| | - Yang Xi
- Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of MedicineNingbo University, Ningbo Zhejiang 315211 China
| | - Shengrong Yu
- School of Chemistry & Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Hongmei Zhong
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Kangdi He
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Dian Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Wen‐Ting Wei
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Yuting Cao
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| | - Ning Gan
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical EngineeringNingbo University Ningbo, Zhejiang 315211 China
| |
Collapse
|
25
|
Metal complexes for mitochondrial bioimaging. J Inorg Biochem 2020; 204:110985. [DOI: 10.1016/j.jinorgbio.2019.110985] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023]
|
26
|
Li G, Zhu D, Wang X, Su Z, Bryce MR. Dinuclear metal complexes: multifunctional properties and applications. Chem Soc Rev 2020; 49:765-838. [DOI: 10.1039/c8cs00660a] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dinuclear metal complexes have enabled breakthroughs in OLEDs, photocatalytic water splitting and CO2reduction, DSPEC, chemosensors, biosensors, PDT and smart materials.
Collapse
Affiliation(s)
- Guangfu Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Dongxia Zhu
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xinlong Wang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhongmin Su
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
- School of Chemistry and Environmental Engineering
| | | |
Collapse
|
27
|
Shao TM, Wei ZZ, Luo XL, Qin QP, Tan MX, Zeng JJ, Liang CJ, Liang H. High cytotoxic and apoptotic effects of platinum( ii) complexes bearing the 4-acridinol ligand. NEW J CHEM 2020. [DOI: 10.1039/d0nj04753h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
4-Acridinol platinum(ii) complex PtA induces SK-OV-3/DDP cell apoptosis that is mediated by the mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Tai-Ming Shao
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Zu-Zhuang Wei
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- P. R. China
| | - Xiao-Ling Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Jia-Jing Zeng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
28
|
Proximity effects on the phosphorescent properties of dinuclear salicylaldiminato cyclometalated iridium(III) complexes linked with polymethylene spacers. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Wang KN, Cao Q, Liu LY, Zhao ZJ, Liu W, Zhou DJ, Tan CP, Xia W, Ji LN, Mao ZW. Charge-driven tripod somersault on DNA for ratiometric fluorescence imaging of small molecules in the nucleus. Chem Sci 2019; 10:10053-10064. [PMID: 32055359 PMCID: PMC6991190 DOI: 10.1039/c9sc03594j] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022] Open
Abstract
Although fluorescence tracing of small bioactive molecules in living cells has been extensively studied, it is still a challenging task to detect their variations in the nucleus mainly due to the impermeable nuclear membrane and nucleic acid interference. Herein, we take advantage of the nucleic acid enriched environment in the nucleus to establish a strategy, named "charge-driven tripod somersault on DNA", for ratiometric fluorescence imaging of small bioactive molecules in the nucleus. Taking SO2 derivatives as a typical target analyte, a tripodal probe has been constructed by conjugating two DNA binding groups containing a SO2 derivative reaction site. Mechanism studies demonstrate that upon encountering and reacting with SO3 2-/HSO3 -, a charge variation occurs at the responsive arm of the tripodal probe, triggering a tripod somersault on DNA, resulting in the conformational rearrangement of the DNA binding modes with DNA-modulated fluorescence change, which allows the second emission feature to emerge. In this strategy, probe-DNA binding is not influenced by RNA or non-specific protein association, thus making it ideal for tracing nucleus-localized analytes. The application of this strategy has realized both in vitro and in vivo ratiometric fluorescence imaging of the variations of endogenous SO2 derivatives in the nucleus for the first time, with high specificity and selectivity. Also, in theory, this strategy opens up a new avenue for the design of fluorescence probes for the nucleus-localized biological analytes.
Collapse
Affiliation(s)
- Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China . ;
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China . ;
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China . ;
| | - Zi-Jian Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China . ;
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China . ;
| | - Dan-Jie Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China . ;
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China . ;
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China . ;
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China . ;
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China . ;
| |
Collapse
|
30
|
Ma W, Ge X, Xu Z, Zhang S, He X, Li J, Xia X, Chen X, Liu Z. Theranostic Lysosomal Targeting Anticancer and Antimetastatic Agents: Half-Sandwich Iridium(III) Rhodamine Complexes. ACS OMEGA 2019; 4:15240-15248. [PMID: 31552370 PMCID: PMC6751730 DOI: 10.1021/acsomega.9b01863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 05/17/2023]
Abstract
Two rhodamine-modified half-sandwich Ir(III) complexes with the general formula [(Cpx)Ir(ĈN) Cl] were synthesized and characterized, where Cpx is 1-biphenyl-2,3,4,5-tetramethylcyclopentadienyl (Cpxbiph). Both complexes showed potent anticancer activity against A549, HeLa, and HepG2 cancer cells and normal cells, and altered ligands had an effect on proliferation resistance. The complex enters cells through energy dependence, and because of the different ligands, not only could it affect the anticancer ability of the complex but also could affect the degree of complex lysosome targeting, lysosomal damage, and further prove the antiproliferative mechanism of the complex. Excitingly, antimetastatic experiments demonstrated that complex 1 has the ability to block the migration of cancer cells. Furthermore, although the complex did not show a stronger ability to interfere with the coenzyme NAD+/NADH pair by transfer hydrogenation, the intracellular reactive oxygen species (ROS) content has shown a marked increase. NF-κB activity is increased by ROS regulation, and the role of ROS-NF-κB signaling pathway further induces apoptosis. Moreover, cell flow experiments also demonstrated that complex 1 blocked the cell cycle in S phase, but the complex did not cause significant changes in the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Wenli Ma
- Institute
of Anticancer Agents Development and Theranostic Application, The
Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, Department of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xingxing Ge
- Institute
of Anticancer Agents Development and Theranostic Application, The
Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, Department of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhishan Xu
- Institute
of Anticancer Agents Development and Theranostic Application, The
Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, Department of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Department
of Chemistry and Chemical Engineering, Shandong
Normal University, Jinan 250014, China
| | - Shumiao Zhang
- Institute
of Anticancer Agents Development and Theranostic Application, The
Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, Department of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiangdong He
- Institute
of Anticancer Agents Development and Theranostic Application, The
Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, Department of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - JuanJuan Li
- Institute
of Anticancer Agents Development and Theranostic Application, The
Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, Department of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaorong Xia
- Institute
of Anticancer Agents Development and Theranostic Application, The
Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, Department of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaobing Chen
- Institute
of Anticancer Agents Development and Theranostic Application, The
Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, Department of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Institute
of Anticancer Agents Development and Theranostic Application, The
Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical
Intermediates and Analysis of Natural Medicine, Department of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- E-mail:
| |
Collapse
|
31
|
Ma W, Zhang S, Tian Z, Xu Z, Zhang Y, Xia X, Chen X, Liu Z. Potential anticancer agent for selective damage to mitochondria or lysosomes: Naphthalimide-modified fluorescent biomarker half-sandwich iridium (III) and ruthenium (II) complexes. Eur J Med Chem 2019; 181:111599. [PMID: 31408807 DOI: 10.1016/j.ejmech.2019.111599] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Abstract
In this work, five naphthalimide-modified half-sandwich iridium and ruthenium complexes ([(η5-Cpx)Ir(NˆN)Cl]PF6, [(η6-p-cym)Ru(NˆN)Cl]PF6) have been presented. The anticancer activities of the complexes against various cancer cell lines were investigated, among them, complexes 2 and 4 showed better anticancer activity than cisplatin, and their anticancer activity is better than complex 5 without fluorophore. In addition, a series of biological tests of complex 2 were performed using flow cytometry, the results indicated that the complex could induce cell death in a variety of ways. By changing of the ligands, the complexes exhibited different photophysical properties, and the mechanism of action of the complexes entering the cell and inducing apoptosis are different. Moreover, complex 2 successfully targeted mitochondria, while complex 4 targeted lysosomes, causing mitochondrial damage and lysosomal damage to induce apoptosis. Excitingly, complex 2 has good antimetastatic ability to cancer cells. Furthermore, complexes 2 and 4 did not have a significant effect on the NADH binding reaction, but they had a moderate binding ability to BSA.
Collapse
Affiliation(s)
- Wenli Ma
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Shumiao Zhang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Zhishan Xu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China; Department of Chemistry and Chemical Engineering, Shandong Normal University, Jinan, 250014, China
| | - Yujiao Zhang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xiaorong Xia
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Xiaobing Chen
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
32
|
Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem Rev 2019; 119:10403-10519. [PMID: 31314507 DOI: 10.1021/acs.chemrev.9b00145] [Citation(s) in RCA: 679] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coumarins are a very large family of compounds containing the unique 2H-chromen-2-one motif, as it is known according to IUPAC nomenclature. Coumarin derivatives are widely found in nature, especially in plants and are constituents of several essential oils. Up to now, thousands of coumarin derivatives have been isolated from nature or produced by chemists. More recently, the coumarin platform has been widely adopted in the design of small-molecule fluorescent chemosensors because of its excellent biocompatibility, strong and stable fluorescence emission, and good structural flexibility. This scaffold has found wide applications in the development of fluorescent chemosensors in the fields of molecular recognition, molecular imaging, bioorganic chemistry, analytical chemistry, materials chemistry, as well as in the biology and medical science communities. This review focuses on the important progress of coumarin-based small-molecule fluorescent chemosensors during the period of 2012-2018. This comprehensive and critical review may facilitate the development of more powerful fluorescent chemosensors for broad and exciting applications in the future.
Collapse
Affiliation(s)
- Duxia Cao
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China
| | - Peter Verwilst
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Seyoung Koo
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | | | - Jong Seung Kim
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , China.,School of Chemistry and Chemical Engineering , Guangxi University , Nanning , Guangxi 530004 , P. R. China
| |
Collapse
|
33
|
Li K, Li LL, Zhou Q, Yu KK, Kim JS, Yu XQ. Reaction-based fluorescent probes for SO2 derivatives and their biological applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Feng G, Luo X, Lu X, Xie S, Deng L, Kang W, He F, Zhang J, Lei C, Lin B, Huang Y, Nie Z, Yao S. Engineering of Nucleic Acids and Synthetic Cofactors as Holo Sensors for Probing Signaling Molecules in the Cellular Membrane Microenvironment. Angew Chem Int Ed Engl 2019; 58:6590-6594. [DOI: 10.1002/anie.201901320] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Guangfu Feng
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Xingyu Luo
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Xu Lu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Lu Deng
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Fang He
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Jiaheng Zhang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Bin Lin
- Pharmaceutical Engineering & Key Laboratory of Structure-Based Drug Design & DiscoveryMinistry of EducationShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| |
Collapse
|
35
|
Feng G, Luo X, Lu X, Xie S, Deng L, Kang W, He F, Zhang J, Lei C, Lin B, Huang Y, Nie Z, Yao S. Engineering of Nucleic Acids and Synthetic Cofactors as Holo Sensors for Probing Signaling Molecules in the Cellular Membrane Microenvironment. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Guangfu Feng
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Xingyu Luo
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Xu Lu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Lu Deng
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Fang He
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Jiaheng Zhang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Bin Lin
- Pharmaceutical Engineering & Key Laboratory of Structure-Based Drug Design & DiscoveryMinistry of EducationShenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan University Changsha 410082 P. R. China
| |
Collapse
|
36
|
Gao H, Qi H, Peng Y, Qi H, Zhang C. Rapid "turn-on" photoluminescence detection of bisulfite in wines and living cells with a formyl bearing bis-cyclometalated Ir(iii) complex. Analyst 2019; 143:3670-3676. [PMID: 29974093 DOI: 10.1039/c8an00640g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new photoluminescence (PL) probe based on a formyl bearing bis-cyclometalated Ir(iii) complex, [Ir(ppy)2phen-CHO]+PF6- (1), is synthesized and applied to the selective detection of a bisulfite anion (HSO3-). Probe 1 is prepared using 2-phenylpyridine (ppy) as the C^N main ligand and 1,10-phenanthroline-5-carboxaldehyde (phen-CHO) as the N^N ancillary ligand. Probe 1 displayed excellent selective PL enhancement in response to HSO3- in acetic acid-sodium acetate buffer solution (pH = 5.0). The increase of PL signal is directly proportional to the concentration of HSO3- in the range of 2 μM to 45 μM with a detection limit of 0.9 μM using 50 μM probe 1 and in the range of 0.5 μM to 6 μM with a detection limit of 0.3 μM using 10 μM probe 1. More importantly, probe 1 can respond to HSO3- rapidly within 40 s. Furthermore, probe 1 was successfully applied to detect HSO3- in real white wines and the bioimaging of HSO3- in living cells. The superior properties of probe 1 make it of great potential use for studying the effects of HSO3- in other biosystems.
Collapse
Affiliation(s)
- Hongfang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.
| | | | | | | | | |
Collapse
|
37
|
Yang S, Wen X, Yang X, Li Y, Guo C, Zhou Y, Li H, Yang R. Visualizing Endogenous Sulfur Dioxide Derivatives in Febrile-Seizure-Induced Hippocampal Damage by a Two-Photon Energy Transfer Cassette. Anal Chem 2018; 90:14514-14520. [PMID: 30474971 DOI: 10.1021/acs.analchem.8b04355] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Febrile seizure (FS), a frequently encountered seizure disorder in pediatric populations, can cause hippocampus damage. It has been elucidated that sulfur dioxide (SO2) content is overproduced during the development of FS and related brain injury. Thus, monitoring in situ the level of endogenous SO2 in FS-related models is helpful to estimate the pathogenesis of FS-induced brain injury, but the effect detection method remains to be explored. Herein, we developed a two-photon energy transfer cassette based on an acedan-anthocyanidin scaffold, TP-Ratio-SO2, allowing us to achieve this purpose. TP-Ratio-SO2 specifically responds to SO2 derivatives (HSO3-/SO32-) in an ultrafast fashion (less than 3 s), and HSO3-/SO32- can be sensitively determined with a detection limit of 26 nM. Moreover, it exhibits significant changes in two well-resolved fluorescence emissions (Δλ = 140 nm) by reacting with HSO3-/SO32-, behaving as a ratiometric fluorescent sensor. Importantly, ratiometric imaging of endogenous SO2 derivatives generation in hyperpyretic U251 cells and in a rat model of FS-treated hippocampus damage was successfully carried out by TP-Ratio-SO2, demonstrating that it may be a promising tool for studying the role of SO2 in FS-associated neurological diseases.
Collapse
Affiliation(s)
- Sheng Yang
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation , Changsha University of Science and Technology , Changsha 410114 , People's Republic of China
| | - Xidan Wen
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation , Changsha University of Science and Technology , Changsha 410114 , People's Republic of China
| | - Xiaoguang Yang
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation , Changsha University of Science and Technology , Changsha 410114 , People's Republic of China
| | - Yuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , People's Republic of China
| | - Chongchong Guo
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation , Changsha University of Science and Technology , Changsha 410114 , People's Republic of China
| | - Yibo Zhou
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation , Changsha University of Science and Technology , Changsha 410114 , People's Republic of China
| | - Heping Li
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation , Changsha University of Science and Technology , Changsha 410114 , People's Republic of China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation , Changsha University of Science and Technology , Changsha 410114 , People's Republic of China
| |
Collapse
|
38
|
Sen A, Desai AV, Samanta P, Dutta S, Let S, Ghosh SK. Post-synthetically modified metal–organic framework as a scaffold for selective bisulphite recognition in water. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.08.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Zhang D, Zheng Y, Zhang H, Sun J, Tan C, He L, Zhang W, Ji L, Mao Z. Delivery of Phosphorescent Anticancer Iridium(III) Complexes by Polydopamine Nanoparticles for Targeted Combined Photothermal-Chemotherapy and Thermal/Photoacoustic/Lifetime Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800581. [PMID: 30356964 PMCID: PMC6193176 DOI: 10.1002/advs.201800581] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/28/2018] [Indexed: 05/03/2023]
Abstract
Recently, phosphorescent iridium complexes have demonstrated great potential as anticancer and imaging agents. Dopamine is a melanin-like mimic of mussel adhesive protein that can self-polymerize to form polydopamine (PDA) nanoparticles that demonstrate favorable biocompatibility, near-infrared absorption, and photothermal effects. Herein, PDA nanoparticles are functionalized with β-cyclodextrin (CD) substitutions, which are further assembled with adamantane-modified arginine-glycine-aspartic acid (Ad-RGD) tripeptides to target integrin-rich tumor cells. The thus formed PDA-CD-RGD nanoparticles can deliver a phosphorescent iridium(III) complexes LysoIr ([Ir(ppy)2(l)]PF6, ppy = 2-phenylpyridine, L = (1-(2-quinolinyl)-β-carboline) to form a theranostic platform LysoIr@PDA-CD-RGD. It is demonstrated that LysoIr@PDA-CD-RGD can be applied for targeted combined cancer photothermal-chemotherapy and thermal/photoacoustic/two-photon phosphorescence lifetime imaging under both in vitro and in vivo conditions. This work provides a useful strategy to construct multifunctional nanocomposites for the optimization of metal-based anticancer agents for further biomedical applications.
Collapse
Affiliation(s)
- Dong‐Yang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Jing‐Hua Sun
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Liang He
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Wei Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Liang‐Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| |
Collapse
|
40
|
Guan R, Chen Y, Zeng L, Rees TW, Jin C, Huang J, Chen ZS, Ji L, Chao H. Oncosis-inducing cyclometalated iridium(iii) complexes. Chem Sci 2018; 9:5183-5190. [PMID: 29997872 PMCID: PMC6000986 DOI: 10.1039/c8sc01142g] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022] Open
Abstract
Oncosis is a non-apoptotic form of programmed cell death (PCD), which differs from apoptosis in both morphological changes and inner pathways, and might hold the key to defeating a major obstacle in cancer therapy - drug-resistance, which is often a result of the intrinsic apoptosis resistance of tumours. However, despite the fact that the term "oncosis" was coined and used much earlier than apoptosis, little effort has been made to discover new drugs which can initiate this form of cell death, in comparison to drugs inducing apoptosis or any other type of PCD. So herein, we present the synthesis of a series of mitochondria-targeting cyclometalated Ir(iii) complexes, which activated the oncosis-specific protein porimin and calpain in cisplatin-resistant cell line A549R, and determined their cytotoxicity against a wide range of drug-resistant cancer types. To the best of our knowledge, these complexes are the very first metallo-components to induce oncosis in drug-resistant cancer cells.
Collapse
Affiliation(s)
- Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
- College of Pharmacy and Health Sciences , St. John's University , New York , NY 11439 , USA
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Juanjuan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences , St. John's University , New York , NY 11439 , USA
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule , School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan , 400201 , P. R. China
| |
Collapse
|
41
|
Liu Y, Nie J, Niu J, Wang W, Lin W. An AIE + ESIPT ratiometric fluorescent probe for monitoring sulfur dioxide with distinct ratiometric fluorescence signals in mammalian cells, mouse embryonic fibroblast and zebrafish. J Mater Chem B 2018; 6:1973-1983. [PMID: 32254363 DOI: 10.1039/c8tb00075a] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sulfur dioxide (SO2) is associated with serious diseases including lung cancer, cardiovascular diseases, and many neurological disorders. However, discrimination of the physiological and pathological functions of SO2 in different living systems is restricted by the lack of functional molecular tools. To address this critical challenge, herein, we have developed a novel ratiometric probe, TPE-TE, for monitoring SO2 with distinct ratiometric fluorescence signals in mammalian cells, mouse embryonic fibroblasts, and zebrafish via a combination of an ESIPT mechanism and the aggregate fluorescence method for the first time. The TPE-TE exhibits well-resolved emission peaks, high sensitivity, excellent selectivity, and low cytotoxicity. Moreover, this probe possesses higher sensitivity in an aqueous solution than the current probes. Taking advantage of these prominent features, we have achieved the detection of endogenous and exogenous SO2 with distinct ratiometric fluorescence signals in mammalian cells and mouse embryonic fibroblast. For the detection of endogenous SO2, probe-loaded HeLa cells exhibited stronger ratiometric fluorescence signals than HepG2 cells. For the detection of exogenous SO2, it was found that macrophage cells exhibited stronger ratiometric fluorescence signals than cancer cells for the first time. Interestingly, mouse embryonic fibroblasts incubated with this probe showed unique ratiometric imaging. Moreover, TPE-TE could be suitable for ratiometric SO2 imaging in living zebrafish.
Collapse
Affiliation(s)
- Yong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | | | | | | | | |
Collapse
|
42
|
Wang W, Ji X, Du Z, Wang B. Sulfur dioxide prodrugs: triggered release of SO 2via a click reaction. Chem Commun (Camb) 2018; 53:1370-1373. [PMID: 28070577 DOI: 10.1039/c6cc08844a] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sulfur dioxide (SO2) is being recognized as a possible endogenous gasotransmitter with importance on par with that of NO, CO, and H2S. Herein we describe a series of SO2 prodrugs that are activated for SO2 release via a bioorthogonal click reaction. The release rate can be tuned by adjusting the substituents on the prodrug.
Collapse
Affiliation(s)
- Wenyi Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA.
| | - Xingyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA.
| | - Zhenming Du
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA.
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA.
| |
Collapse
|
43
|
Wu C, Li G, Han QB, Pei RJ, Liu JB, Ma DL, Leung CH. Real-time detection of oxalyl chloride based on a long-lived iridium(iii) probe. Dalton Trans 2018; 46:17074-17079. [PMID: 29188252 DOI: 10.1039/c7dt04054g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of luminescent iridium(iii) complexes were designed and evaluated for their ability to detect oxalyl chloride ((COCl)2) at ambient temperature. In the presence of (COCl)2, a double amidation reaction takes place at the diamino functionality of complex 1, leading to the switching-on of a long-lived red luminescence with a 9-fold enhanced emission. Complex 1 exhibited high sensitivity and selectivity, with a detection limit for (COCl)2 at 32 nM. Additionally, complex 1 can be used to detect (COCl)2 using a simple smartphone, allowing for the portable and real-time monitoring of (COCl)2.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ren-Jun Pei
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jin-Biao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China. and School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
44
|
You Y. Recent Progress on the Exploration of the Biological Utility of Cyclometalated Iridium(III) Complexes. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Youngmin You
- Division of Chemical Engineering and Materials Science; Ewha Womans University; Seoul 03760 Republic of Korea
| |
Collapse
|
45
|
Ma W, Tian Z, Zhang S, He X, Li J, Xia X, Chen X, Liu Z. Lysosome targeted drugs: rhodamine B modified N^N-chelating ligands for half-sandwich iridium(iii) anticancer complexes. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00620b] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We designed and synthesized four rhodamine-modified half-sandwich iridium complexes ([(η5-Cpx)Ir(N^N)Cl]PF6).
Collapse
Affiliation(s)
- Wenli Ma
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Shumiao Zhang
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Xiangdong He
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - JuanJuan Li
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Xiaorong Xia
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Xiaobing Chen
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| |
Collapse
|
46
|
Liu F, Wen J, Chen SS, Sun S. A luminescent bimetallic iridium(iii) complex for ratiometric tracking intracellular viscosity. Chem Commun (Camb) 2018; 54:1371-1374. [DOI: 10.1039/c7cc09723a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The luminescent bimetallic iridium probe C10 could distinguish cancer cells from normal cells and track viscosity changes during cell apoptosis.
Collapse
Affiliation(s)
- Fengyu Liu
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- District
- China
| | - Jia Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- China
| | - Su-Shing Chen
- Systems Biology Laboratory
- Department of Computer Information Science and Engineering
- University of Florida
- Gainesville
- USA
| | - Shiguo Sun
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources
- Ministry of Education, School of Pharmacy
- Shihezi University
- Shihezi
- China
| |
Collapse
|
47
|
Chevalier A, Renard PY, Romieu A. Azo-Based Fluorogenic Probes for Biosensing and Bioimaging: Recent Advances and Upcoming Challenges. Chem Asian J 2017; 12:2008-2028. [DOI: 10.1002/asia.201700682] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Arnaud Chevalier
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Pierre-Yves Renard
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS; University Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
- Institut Universitaire de France; 103, Boulevard Saint-Michel 75005 Paris France
| |
Collapse
|
48
|
A Colorimetric Fluorescent Probe for SO2 Derivatives-Bisulfite and Sulfite at Nanomolar Level. J Fluoresc 2017; 27:1767-1775. [DOI: 10.1007/s10895-017-2115-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023]
|
49
|
Zhu Y, Du W, Zhang M, Xu Y, Song L, Zhang Q, Tian X, Zhou H, Wu J, Tian Y. A series of water-soluble A-π-A' typological indolium derivatives with two-photon properties for rapidly detecting HSO 3 -/SO 3 2- in living cells. J Mater Chem B 2017; 5:3862-3869. [PMID: 32264248 DOI: 10.1039/c7tb00726d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It is believed that HSO3 - and SO3 2- play important roles in several physiological processes. However, probes with two-photon absorption to detect HSO3 - or SO3 2- in living cells are still limited. Herein, a series of novel indolium derivatives (L1-L4) with an A-π-A' structure was designed and synthesized as ratiometric probes to detect HSO3 -/SO3 2-in vitro. L3 and L4 display a colorimetric and ratiometric fluorescence dual response to HSO3 -/SO3 2- with a very fast (∼15 s) and high specificity, as well as low detection limits (∼22 nM). Furthermore, their detection is also carried out by using a two-photon excited fluorescence method. A nucleophilic addition reaction is proposed for the sensing mechanism, which is supported by MS, 1H NMR, and density functional theory (DFT) investigations. Importantly, L3 was successfully used for detecting intrinsically generated intracellular HSO3 -/SO3 2- in cancerous cells under one- and two-photon excited fluorescence imaging.
Collapse
Affiliation(s)
- Yingzhong Zhu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen MH, Wang FX, Cao JJ, Tan CP, Ji LN, Mao ZW. Light-Up Mitophagy in Live Cells with Dual-Functional Theranostic Phosphorescent Iridium(III) Complexes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13304-13314. [PMID: 28345337 DOI: 10.1021/acsami.7b01735] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phosphorescent Ir(III) complexes are expected to be new multifunctional theranostic platforms that enable the integration of imaging capabilities and anticancer properties. Mitophagy is an important selective autophagic process that degrades dysfunctional mitochondria. Until now, the regulation of mitophagy is still poorly understood. Herein, we present two phosphorescent cyclometalated iridium(III) complexes (Ir1 and Ir2) that can accumulate in mitochondria and induce mitophagy. Because of their intrinsic phosphorescence, they can specially image mitochondria and track mitochondrial morphological alterations. Mechanism studies show that Ir1 and Ir2 induce mitophagy by depolarization of mitochondrial membrane potential, depletion of cellular ATP, perturbation in mitochondrial metabolic status, and induction of oxidative stress. Moreover, no sign of apoptosis is observed in Ir1- and Ir2-treated cells under the same conditions that an obvious mitophagic response is initiated. We demonstrate that Ir1 is a promising theranostic agent that can induce mitophagy and visualize changes in mitochondrial morphology simultaneously.
Collapse
Affiliation(s)
- Mu-He Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Fang-Xin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Jian-Jun Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| |
Collapse
|