1
|
Gray NAG, Emslie DJH. Thorium(IV) and Uranium(IV) Thioether and Selenoether Complexes: Synthesis and An-ER 2 (E = S, Se) Bonding Comparison. Inorg Chem 2024; 63:18884-18891. [PMID: 39324595 DOI: 10.1021/acs.inorgchem.4c03074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Reactions of the rigid thioether- and selenoether-containing ligand salts [{Li(AE2Ph2)}2] (E = S or Se; AE2Ph2 = 4,5-bis(phenylchalcogenido)-2,7,9,9-tetramethylacridanide) with ThCl4(dme)2 or UCl4 (for E = Se) afforded the actinide chalcogenoether complexes [(AE2Ph2)2ThCl2] (E = S (1), Se (2)), and [(ASe2Ph2)2UCl2] (3). X-ray crystal structures of 1-3 revealed tetravalent actinide cations complexed to two κ3-coordinated AE2Ph2 ligands, with Th-ER2 and U-ER2 distances below the sum of the covalent radii. Complexes 1-3 provide extremely rare examples of thorium-thioether, thorium-selenoether, and uranium-selenoether bonds, and 1 and 2 contain the shortest known Th-SR2 and Th-SeR2 distances. DFT and QTAIM calculations confirm the presence of significant An(IV)-ER2 interactions in 1-3 and provide insight into the extent of covalency in the An-ER2 bonds.
Collapse
Affiliation(s)
- Novan A G Gray
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - David J H Emslie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
2
|
Hsueh FC, Barluzzi L, Rajeshkumar T, Scopelliti R, Zivkovic I, Maron L, Mazzanti M. Synthesis, structure and redox properties of single-atom bridged diuranium complexes supported by aryloxides. Dalton Trans 2024; 53:13416-13426. [PMID: 39051943 PMCID: PMC11320667 DOI: 10.1039/d4dt01819b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Single-atom (group 15 and group 16 anions) bridged dimetallic complexes of low oxidation state uranium provide a convenient route to implement multielectron transfer and promote magnetic communication in uranium chemistry, but remain extremely rare. Here we report the synthesis, redox and magnetic properties of N3-, O2-, and S2- bridged diuranium complexes supported by bulky aryloxide ligands. The U(IV)/U(IV) nitride [Cs(THF)8][(U(OAr)3)2(μ-N)], 1 could be prepared and characterized but could not be reduced. Reduction of the neutral U(IV)/U(IV) complexes [(U(OAr)3)2(μ-X)] A (X = O) and B (X = S) led to the isolation and characterization of the U(IV)/U(III) and U(III)/U(III) analogues. Complexes [(K(THF)4)2(U(OAr)2)2(μ-S)2], 5 and [K(2.2.2-cryptand)]2[(U(OAr)3)2(μ-S)], 6 are the first examples of U(III) sulphide bridged complexes. Computational studies and redox properties allow the reactivity of the dimetallic complexes to be related to their electronic structure.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Luciano Barluzzi
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Toulouse, Cedex 4, France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Toulouse, Cedex 4, France
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
3
|
Batov MS, Del Rosal I, Scopelliti R, Fadaei-Tirani F, Zivkovic I, Maron L, Mazzanti M. Multimetallic Uranium Nitride Cubane Clusters from Dinitrogen Cleavage. J Am Chem Soc 2023; 145:26435-26443. [PMID: 37991736 DOI: 10.1021/jacs.3c10617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Dinitrogen cleavage provides an attractive but poorly studied route to the assembly of multimetallic nitride clusters. Here, we show that the monoelectron reduction of the dinitrogen complex [{U(OC6H2-But3-2,4,6)3}2(μ-η2:η2-N2)], 1, allows us to generate, for the first time, a uranium complex presenting a rare triply reduced N2 moiety ((μ-η2:η2-N2)•3-). Importantly, the bound dinitrogen can be further reduced, affording the U4N4 cubane cluster, 3, and the U6N6 edge-shared cubane cluster, 4, thus showing that (N2)•3- can be an intermediate in nitride formation. The tetranitride cluster showed high reactivity with electrophiles, yielding ammonia quantitatively upon acid addition and promoting CO cleavage to yield quantitative conversion of nitride into cyanide. These results show that dinitrogen reduction provides a versatile route for the assembly of large highly reactive nitride clusters, with U6N6 providing the first example of a molecular nitride of any metal formed from a complete cleavage of three N2 molecules.
Collapse
Affiliation(s)
- Mikhail S Batov
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Iker Del Rosal
- Laboratoire de Physique et Chimie des Nano-Objets, Institut National des Sciences Appliquées, 31077 Toulouse Cedex 4, France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-Objets, Institut National des Sciences Appliquées, 31077 Toulouse Cedex 4, France
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Su J, Gong Y, Batista ER, Lucena AF, Maria L, Marçalo J, Van Stipdonk MJ, Berden G, Martens J, Oomens J, Gibson JK, Yang P. Unusual Actinyl Complexes with a Redox-Active N,S-Donor Ligand. Inorg Chem 2023. [PMID: 37390399 DOI: 10.1021/acs.inorgchem.3c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Understanding the fundamental chemistry of soft N,S-donor ligands with actinides across the series is critical for separation science toward sustainable nuclear energy. This task is particularly challenging when the ligands are redox active. We herein report a series of actinyl complexes with a N,S-donor redox-active ligand that stabilizes different oxidation states across the actinide series. These complexes are isolated and characterized in the gas phase, along with high-level electronic structure studies. The redox-active N,S-donor ligand in the products, C5H4NS, acts as a monoanion in [UVIO2(C5H4NS-)]+ but as a neutral radical with unpaired electrons localized on the sulfur atom in [NpVO2(C5H4NS•)]+ and [PuVO2(C5H4NS•)]+, resulting in different oxidation states for uranium and transuranic elements. This is rationalized by considering the relative energy levels of actinyl(VI) 5f orbitals and S 3p lone pair orbitals of the C5H4NS- ligand and the cooperativity between An-N and An-S bonds that provides additional stability for the transuranic elements.
Collapse
Affiliation(s)
- Jing Su
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu Gong
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ana F Lucena
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Leonor Maria
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Joaquim Marçalo
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Michael J Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jonathan Martens
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
5
|
Straub M, Peña J, Flury V, Froidevaux P. Uranium stability in a large wetland soil core probed by electron acceptors, carbonate amendments and wet-dry cycling in a long-term lysimeter experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149783. [PMID: 34482132 DOI: 10.1016/j.scitotenv.2021.149783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Understanding the hydro-biogeochemical conditions that impact the mobility of uranium (U) in natural or artificial wetlands is essential for the management of contaminated environments. Field-based research indicates that high organic matter content and saturation of the soil from the water table create favorable conditions for U accumulation. Despite the installation of artificial wetlands for U remediation, the processes that can release U from wetland soils to underlying aquifers are poorly understood. Here we used a large soil core from a montane wetland in a 6 year lysimeter experiment to study the stability of U accumulated to levels of up to 6000 ppm. Amendments with electron acceptors showed that the wetland soil can reduce sulfate and Fe(III) in large amounts without significant release of U into the soil pore water. However, amendment with carbonate (5 mM, pH 7.5) resulted in a large discharge of U. After a six-month period of imposed drought, the re-flooding of the core led to the release of negligible amounts of U into the pore water. This long-term experiment demonstrates that U is strongly bound to organic matter and that its stability is only challenged by carbonate complexation.
Collapse
Affiliation(s)
- Marietta Straub
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jasquelin Peña
- Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland; Civil and Environmental Engineering, University of California, Davis, United States of America
| | - Virginie Flury
- Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
| | - Pascal Froidevaux
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Modder DK, Batov MS, Rajeshkumar T, Sienkiewicz A, Zivkovic I, Scopelliti R, Maron L, Mazzanti M. Assembling Diuranium Complexes in Different States of Charge with a Bridging Redox-Active Ligand. Chem Sci 2022; 13:11294-11303. [PMID: 36320571 PMCID: PMC9533398 DOI: 10.1039/d2sc03592h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Radical-bridged diuranium complexes are desirable for their potential high exchange coupling and single molecule magnet (SMM) behavior, but remain rare. Here we report for the first time radical-bridged diuranium(iv) and diuranium(iii) complexes. Reaction of [U{N(SiMe3)2}3] with 2,2′-bipyrimidine (bpym) resulted in the formation of the bpym-bridged diuranium(iv) complex [{((Me3Si)2N)3UIV}2(μ-bpym2−)], 1. Reduction with 1 equiv. KC8 reduces the complex, affording [K(2.2.2-cryptand)][{((Me3Si)2N)3U}2(μ-bpym)], 2, which is best described as a radical-bridged UIII–bpym˙−–UIII complex. Further reduction of 1 with 2 equiv. KC8, affords [K(2.2.2-cryptand)]2[{((Me3Si)2N)3UIII}2(μ-bpym2−)], 3. Addition of AgBPh4 to complex 1 resulted in the oxidation of the ligand, yielding the radical-bridged complex [{((Me3Si)2N)3UIV}2(μ-bpym˙−)][BPh4], 4. X-ray crystallography, electrochemistry, susceptibility data, EPR and DFT/CASSCF calculations are in line with their assignments. In complexes 2 and 4 the presence of the radical-bridge leads to slow magnetic relaxation. Convenient routes to dinuclear complexes of uranium where two uranium centers are bridged by the redox-active ligand bpym were identified resulting in unique and stable radical-bridged dimetallic complexes of U(iii) and U(iv) showing SMM behaviour.![]()
Collapse
Affiliation(s)
- Dieuwertje K Modder
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Mikhail S Batov
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées Cedex 4 31077 Toulouse France
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- ADSresonances Sàrl Route de Genève 60B 1028 Préverenges Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées Cedex 4 31077 Toulouse France
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
7
|
Gray NAG, Price JS, Emslie DJH. Uranium(IV) Thio- and Selenoether Complexes: Syntheses, Structures, and Computational Investigation of U-ER 2 Interactions. Chemistry 2021; 28:e202103580. [PMID: 34875126 DOI: 10.1002/chem.202103580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 11/07/2022]
Abstract
Rigid thioether- and selenoether-containing pincer proligands H[AS2 Ph 2 ] (1) and H[ASe2 Ph 2 ] (2) were synthesized, and deprotonation provided the potassium salts [K(AS2 Ph 2 )(dme)] (3) and [K(ASe2 Ph 2 )(dme)2 ] (4). Reaction of two equivalents of 3 or 4 with [UI4 (dioxane)2 ] afforded the uranium thioether complex [(AS2 Ph 2 )2 UI2 ] (5) and the first example of a uranium-selenoether complex, [(ASe2 Ph 2 )2 UI2 ] (6). X-ray structures revealed distorted square antiprismatic geometries in which the AE2 Ph 2 ligands are κ3 -coordinated. The nature of the U-ER2 bonding in 5 and 6, as well as methyl-free analogues of 5 and 6 and a hypothetical ether analogue, was investigated computationally (including NBO, AIM, and ELF calculations) illustrating increasing covalency from O to S to Se.
Collapse
Affiliation(s)
- Novan A G Gray
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Jeffrey S Price
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - David J H Emslie
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
8
|
Liu K, Yu JP, Wu QY, Tao XB, Kong XH, Mei L, Hu KQ, Yuan LY, Chai ZF, Shi WQ. Rational Design of a Tripodal Ligand for U(IV): Synthesis and Characterization of a U–Cl Species and Insights into Its Reactivity. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s
Republic of China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xue-Bing Tao
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, People’s Republic of China
| | - Xiang-He Kong
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, People’s Republic of China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
9
|
Cowie BE, Douair I, Maron L, Love JB, Arnold PL. Selective oxo ligand functionalisation and substitution reactivity in an oxo/catecholate-bridged U IV/U IV Pacman complex. Chem Sci 2020; 11:7144-7157. [PMID: 33033607 PMCID: PMC7499863 DOI: 10.1039/d0sc02297g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 02/05/2023] Open
Abstract
The oxo- and catecholate-bridged UIV/UIV Pacman complex [{(py)UIVOUIV(μ-O2C6H4)(py)}(LA)] A (LA = a macrocyclic "Pacman" ligand; anthracenylene hinge between N4-donor pockets, ethyl substituents on meso-carbon atom of each N4-donor pocket) featuring a bent UIV-O-UIV oxo bridge readily reacts with small molecule substrates to undergo either oxo-atom functionalisation or substitution. Complex A reacts with H2O or MeOH to afford [{(py)UIV(μ-OH)2UIV(μ-O2C6H4)(py)}(LA)] (1) and [{(py)UIV(μ-OH)(μ-OMe)UIV(μ-O2C6H4)(py)}(LA)] (2), respectively, in which the bridging oxo ligand in A is substituted for two bridging hydroxo ligands or one bridging hydroxo and one bridging methoxy ligand, respectively. Alternatively, A reacts with either 0.5 equiv. of S8 or 4 equiv. of Se to provide [{(py)UIV(μ-η2:η2-E2)UIV(μ-O2C6H4)(py)}(LA)] (E = S (3), Se (4)) respectively, in which the [E2]2- ion bridges the two UIV centres. To the best of our knowledge, complex A is the first example of either a d- or f-block bimetallic μ-oxo complex that activates elemental chalcogens. Complex A also reacts with XeF2 or 2 equiv. of Me3SiCl to provide [{(py)UIV(μ-X)2UIV(μ-O2C6H4)(py)}(LA)] (X = F (5), Cl (6)), in which the oxo ligand has been substituted for two bridging halido ligands. Reacting A with either XeF2 or Me3SiCl in the presence of O(Bcat)2 at room temperature forms [{(py)UIV(μ-X)(μ-OBcat)UIV(μ-O2C6H4)(py)}(LA)] (X = F (5A), Cl (6A)), which upon heating to 80 °C is converted to 5 and 6, respectively. In order to probe the importance of the bent UIV-O-UIV motif in A on the observed reactivity, the bis(boroxido)-UIV/UIV complex, [{(py)(pinBO)UIVOUIV(OBpin)(py)}(LA)] (B), featuring a linear UIV-O-UIV bond angle was treated with H2O and Me3SiCl. Complex B reacts with two equiv. of either H2O or Me3SiCl to provide [{(py)HOUIVOUIVOH(py)}(LA)] (7) and [{(py)ClUIVOUIVCl(py)}(LA)] (8), respectively, in which reactions occur preferentially at the boroxido ligands, with the μ-oxo ligand unchanged. The formal UIV oxidation state is retained in all of the products 1-8, and selective reactions at the bridging oxo ligand in A is facilitated by: (1) its highly nucleophilic character which is a result of a non-linear UIV-O-UIV bond angle causing an increase in U-O bond covalency and localisation of the lone pairs of electrons on the μ-oxo group, and (2) the presence of the bridging catecholate ligand, which destabilises a linear oxo-bridging geometry and stabilises the resulting products.
Collapse
Affiliation(s)
- Bradley E Cowie
- EaStCHEM School of Chemistry , The University of Edinburgh , Joseph Black Building, The King's Buildings , Edinburgh , EH9 3FJ , UK
| | - Iskander Douair
- Université de Toulouse , INSA , UPS , CNRS , UMR 5215 , LPCNO , 135 Avenue de Rangueil , F-31077 Toulouse , France
| | - Laurent Maron
- Université de Toulouse , INSA , UPS , CNRS , UMR 5215 , LPCNO , 135 Avenue de Rangueil , F-31077 Toulouse , France
| | - Jason B Love
- EaStCHEM School of Chemistry , The University of Edinburgh , Joseph Black Building, The King's Buildings , Edinburgh , EH9 3FJ , UK
| | - Polly L Arnold
- EaStCHEM School of Chemistry , The University of Edinburgh , Joseph Black Building, The King's Buildings , Edinburgh , EH9 3FJ , UK
| |
Collapse
|
10
|
Barluzzi L, Falcone M, Mazzanti M. Small molecule activation by multimetallic uranium complexes supported by siloxide ligands. Chem Commun (Camb) 2019; 55:13031-13047. [PMID: 31608910 DOI: 10.1039/c9cc05605j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis and reactivity of uranium compounds supported by the tris-tert-butoxysiloxide ligand is surveyed. The multiple binding modes of the tert-butoxysiloxide ligand have proven very well suited to stabilize highly reactive homo- and heteropolymetallic complexes of uranium that have shown an unusual high reactivity towards small molecules such as CO2, CS2, chalcogens and azides. Moreover, these ligands have allowed the isolation of dinuclear nitride and oxide bridged complexes of uranium in various oxidation states. The ability of the tris-tert-butoxysiloxide ligands to trap alkali ions in these nitride or oxide complexes leads to unprecedented ligand based and metal based reduction and functionalization of N2, CO, CO2 and H2.
Collapse
Affiliation(s)
- Luciano Barluzzi
- I Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Marta Falcone
- I Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Marinella Mazzanti
- I Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Rosenzweig MW, Hümmer J, Scheurer A, Lamsfus CA, Heinemann FW, Maron L, Mazzanti M, Meyer K. A complete series of uranium(iv) complexes with terminal hydrochalcogenido (EH) and chalcogenido (E) ligands E = O, S, Se, Te. Dalton Trans 2019; 48:10853-10864. [PMID: 30950469 DOI: 10.1039/c9dt00530g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here report the synthesis and characterization of a complete series of terminal hydrochalcogenido, U-EH, and chalcogenido uranium(iv) complexes, U≡E (with E = O, S, Se, Te), supported by the (Ad,MeArOH)3tacn (1,4,7-tris(3-(1-adamantyl)-5-methyl-2-hydroxybenzyl)-1,4,7-triazacyclononane) ligand system. Reaction of H2E with the trivalent precursor [((Ad,MeArO)3tacn)U] (1) yields the corresponding uranium(iv) hydrochalcogenido complexes [((Ad,MeArO)3tacn)U(EH)] (2). Subsequent deprotonation of the terminal hydrochalcogenido species with KN(SiMe3)2, in the presence of 2.2.2-cryptand, gives access to the uranium(iv) complexes with terminal chalcogenido ligands [K(2.2.2-crypt)][((Ad,MeArO)3tacn)U≡E] (3). In order to study the influence of the varying terminal chalogenido ligands on the overall molecular and electronic structure, all complexes were studied by single-crystal X-ray diffractometry, UV/vis/NIR, electronic absorption, and IR vibrational spectroscopy as well as SQUID magnetometry and computational analyses (DFT, MO, NBO).
Collapse
Affiliation(s)
- Michael W Rosenzweig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Julian Hümmer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Carlos Alvarez Lamsfus
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| |
Collapse
|
12
|
Arnold PL, Puig-Urrea L, Wells JAL, Yuan D, Cruickshank FL, Young RD. Applications of boroxide ligands in supporting small molecule activation by U(iii) and U(iv) complexes. Dalton Trans 2019; 48:4894-4905. [PMID: 30924481 DOI: 10.1039/c8dt05051a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The boroxide ligand [OBAr2]- (Ar = Mes, Trip) is shown to be able to support both UIII and UIV centres for the first time. The synthesis and structures of homoleptic and heteroleptic UIII and UIV complexes are reported. The UX3 complex with larger substituents, [U(OBTrip2)3]2, exhibits greater thermal stability compared to less encumbered [U(OBMes2)3]2 but reacts with a smaller range of the small molecules tested to date. Initial studies on their capacity to participate in small molecule chemistry show that dark purple [U(OBMes2)3]2 binds and/or reductively activates a variety of small molecules such as pyridine-oxide, triphenylphosphineoxide, sulfur, and dicyclohexylcarbodiimide. While [U(OBMes2)3]2 shows no reaction with CO or CO2, [U(OBTrip2)3]2 is oxidised by both, in the former case forming [U(OBTrip2)4], and in the latter case forming a small quantity of the structurally characterised μ-carbonate product [(μ-CO3){U(OBTrip2)3}2].
Collapse
Affiliation(s)
- Polly L Arnold
- EaStCHEM School of Chemistry, Joseph Black Building, The King's Buildings, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | | | | | | | | | | |
Collapse
|
13
|
Wu W, Rehe D, Hrobárik P, Kornienko AY, Emge TJ, Brennan JG. Molecular Thorium Compounds with Dichalcogenide Ligands: Synthesis, Structure, 77Se NMR Study, and Thermolysis. Inorg Chem 2018; 57:14821-14833. [DOI: 10.1021/acs.inorgchem.8b02555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen Wu
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - David Rehe
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Anna Y. Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G. Brennan
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
14
|
Ma YZ, Bestgen S, Gamer MT, Konchenko SN, Roesky PW. Polysulfid-Koordinationscluster der Lanthanoide. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying-Zhao Ma
- Institut für Anorganische Chemie; Karlsruher Institut für Technologie; Engesserstraße 15 76131 Karlsruhe Deutschland
| | - Sebastian Bestgen
- Institut für Anorganische Chemie; Karlsruher Institut für Technologie; Engesserstraße 15 76131 Karlsruhe Deutschland
| | - Michael T. Gamer
- Institut für Anorganische Chemie; Karlsruher Institut für Technologie; Engesserstraße 15 76131 Karlsruhe Deutschland
| | - Sergey N. Konchenko
- Institut für Anorganische Chemie; Karlsruher Institut für Technologie; Engesserstraße 15 76131 Karlsruhe Deutschland
- Nikolaev Institute of Inorganic Chemistry SB RAS; Prosp. Lavrentieva 3 630090 Novosibirsk Russland
- Novosibirsk State University; Pirogova str. 2 630090 Novosibirsk Russland
| | - Peter W. Roesky
- Institut für Anorganische Chemie; Karlsruher Institut für Technologie; Engesserstraße 15 76131 Karlsruhe Deutschland
| |
Collapse
|
15
|
Ma YZ, Bestgen S, Gamer MT, Konchenko SN, Roesky PW. Polysulfide Coordination Clusters of the Lanthanides. Angew Chem Int Ed Engl 2017; 56:13249-13252. [DOI: 10.1002/anie.201707578] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Ying-Zhao Ma
- Institute of Inorganic Chemistry; Karlsruhe Institute of Technology; Engesserstrasse 15 76131 Karlsruhe Germany
| | - Sebastian Bestgen
- Institute of Inorganic Chemistry; Karlsruhe Institute of Technology; Engesserstrasse 15 76131 Karlsruhe Germany
| | - Michael T. Gamer
- Institute of Inorganic Chemistry; Karlsruhe Institute of Technology; Engesserstrasse 15 76131 Karlsruhe Germany
| | - Sergey N. Konchenko
- Institute of Inorganic Chemistry; Karlsruhe Institute of Technology; Engesserstrasse 15 76131 Karlsruhe Germany
- Nikolaev Institute of Inorganic Chemistry SB RAS; Prosp. Lavrentieva 3 630090 Novosibirsk Russia
- Novosibirsk State University; Pirogova str. 2 630090 Novosibirsk Russia
| | - Peter W. Roesky
- Institute of Inorganic Chemistry; Karlsruhe Institute of Technology; Engesserstrasse 15 76131 Karlsruhe Germany
| |
Collapse
|
16
|
Coughlin EJ, Zeller M, Bart SC. Neodymium(III) Complexes Capable of Multi-Electron Redox Chemistry. Angew Chem Int Ed Engl 2017; 56:12142-12145. [PMID: 28763142 DOI: 10.1002/anie.201705423] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 11/09/2022]
Abstract
A family of neodymium complexes featuring a redox-active ligand in three different oxidation states has been synthesized, including the iminoquinone (L0 ) derivative, (dipp iq)2 NdI3 (1-iq), the iminosemiquinone (L1- ) compound, (dipp isq)2 NdI(THF) (1-isq), and the amidophenolate (L2- ) [K(THF)2 ][(dipp ap)2 Nd(THF)2 ] (1-ap) and [K(18-crown-6)][(dipp ap)2 Nd(THF)2 ] (1-ap crown) species. Full spectroscopic and structural characterization of each derivative established the +3 neodymium oxidation state with redox chemistry occurring at the ligand rather than the neodymium center. Oxidation with elemental chalcogens showed the reversible nature of the ligand-mediated reduction process, forming the iminosemiquinone metallocycles, [K(18-crown-6)][(dipp isq)2 Nd(S5 )] (2-isq crown) and [K(18-crown-6)(THF)][(dipp isq)2 Nd(Se5 )] (3-isq crown), which are characterized to contain a 6-membered twist-boat ring.
Collapse
Affiliation(s)
- Ezra J Coughlin
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthias Zeller
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Suzanne C Bart
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
17
|
Stuber MA, Kornienko AY, Emge TJ, Brennan JG. Tetrametallic Thorium Compounds with Th 4E 4 (E = S, Se) Cubane Cores. Inorg Chem 2017; 56:10247-10256. [PMID: 28832125 DOI: 10.1021/acs.inorgchem.7b00950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrametallic thorium compounds with a Th4E4 core (E = S, Se) having a distorted cubane structure can be prepared by ligand-based reductions of elemental E with thorium chalcogenolates, prepared by in situ oxidation of Th metal with a 3:1 mixture of PhEEPh and F5C6EEC6F5. Four compounds, (py)8Th4S4(μ2-SPh)4(SC6F5)4, (py)8Th4S4(μ2-SPh)4(SeC6F5)4, (py)8Th4Se4(μ2-SePh)4(SeC6F5)4, and (py)8Th4Se4(μ2-SePh)4(SC6F5)4, were isolated and characterized by NMR spectroscopy and X-ray diffraction. These compounds clearly demonstrate the chemical impact of ring fluorination, with the less-nucleophilic EC6F5 ligands occupying the terminal binding sites and the EPh ligands bridging two metal centers. For this series of compounds, crystal packing and intermolecular π···π and H-bonding interactions result in a consistent motif and crystallization in a body-centered tetragonal unit cell. Solution-state 77Se NMR spectroscopy reveals that the solid-state structures are maintained in pyridine.
Collapse
Affiliation(s)
- Matthew A Stuber
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey , 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Anna Y Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey , 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey , 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G Brennan
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey , 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
18
|
Coughlin EJ, Zeller M, Bart SC. Neodymium(III) Complexes Capable of Multi‐Electron Redox Chemistry. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ezra J. Coughlin
- H.C. Brown Laboratory Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | - Matthias Zeller
- H.C. Brown Laboratory Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | - Suzanne C. Bart
- H.C. Brown Laboratory Department of Chemistry Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
19
|
Gardner BM, King DM, Tuna F, Wooles AJ, Chilton NF, Liddle ST. Assessing crystal field and magnetic interactions in diuranium-μ-chalcogenide triamidoamine complexes with U IV-E-U IV cores (E = S, Se, Te): implications for determining the presence or absence of actinide-actinide magnetic exchange. Chem Sci 2017; 8:6207-6217. [PMID: 28989654 PMCID: PMC5628351 DOI: 10.1039/c7sc01998j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/04/2017] [Indexed: 12/17/2022] Open
Abstract
We report the synthesis and characterisation of a family of diuranium(iv)-μ-chalcogenide complexes including a detailed examination of their electronic structures and magnetic behaviours. Treatment of [U(TrenTIPS)] [1, TrenTIPS = N(CH2CH2NSiPri3)3] with Ph3PS, selenium or tellurium affords the diuranium(iv)-sulfide, selenide, and telluride complexes [{U(TrenTIPS)}2(μ-E)] (E = S, 2; Se, 5; Te, 6). Complex 2 is also formed by treatment of [U(TrenTIPS){OP(NMe2)3}] (3) with Ph3PS, whereas treatment of 3 with elemental sulfur gives the diuranium(iv)-persulfido complex [{U(TrenTIPS)}2(μ-η2:η2-S2)] (4). Complexes 2-6 have been variously characterised by single crystal X-ray diffraction, NMR, IR, and optical spectroscopies, room temperature Evans and variable temperature SQUID magnetometry, elemental analyses, and complete active space self consistent field spin orbit calculations. The combined characterisation data present a self-consistent picture of the electronic structure and magnetism of 2, 5, and 6, leading to the conclusion that single-ion crystal field effects, and not diuranium magnetic coupling, are responsible for features in their variable-temperature magnetisation data. The presence of magnetic coupling is often implied and sometimes quantified by such data, and so this study highlights the importance of evaluating other factors, such as crystal field effects, that can produce similar magnetic observables, and to thus avoid misassignments of such phenomena.
Collapse
Affiliation(s)
- Benedict M Gardner
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - David M King
- School of Chemistry , The University of Nottingham , University Park , Nottingham , NG7 2RD , UK
| | - Floriana Tuna
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - Ashley J Wooles
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - Nicholas F Chilton
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - Stephen T Liddle
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| |
Collapse
|
20
|
Arnold PL, Stevens CJ, Bell NL, Lord RM, Goldberg JM, Nichol GS, Love JB. Multi-electron reduction of sulfur and carbon disulfide using binuclear uranium(iii) borohydride complexes. Chem Sci 2017; 8:3609-3617. [PMID: 30155206 PMCID: PMC6094157 DOI: 10.1039/c7sc00382j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/01/2017] [Indexed: 11/23/2022] Open
Abstract
The first use of a dinuclear UIII/UIII complex in the activation of small molecules is reported. The octadentate Schiff-base pyrrole, anthracene-hinged 'Pacman' ligand LA combines two strongly reducing UIII centres and three borohydride ligands in [M(THF)4][{U(BH4)}2(μ-BH4)(LA)(THF)2] 1-M, (M = Li, Na, K). The two borohydride ligands bound to uranium outside the macrocyclic cleft are readily substituted by aryloxide ligands, resulting in a single, weakly-bound, encapsulated endo group 1 metal borohydride bridging the two UIII centres in [{U(OAr)}2(μ-MBH4)(LA)(THF)2] 2-M (OAr = OC6H2t Bu3-2,4,6, M = Na, K). X-ray crystallographic analysis shows that, for 2-K, in addition to the endo-BH4 ligand the potassium counter-cation is also incorporated into the cleft through η5-interactions with the pyrrolides instead of extraneous donor solvent. As such, 2-K has a significantly higher solubility in non-polar solvents and a wider U-U separation compared to the 'ate' complex 1. The cooperative reducing capability of the two UIII centres now enforced by the large and relatively flexible macrocycle is compared for the two complexes, recognising that the borohydrides can provide additional reducing capability, and that the aryloxide-capped 2-K is constrained to reactions within the cleft. The reaction between 1-Na and S8 affords an insoluble, presumably polymeric paramagnetic complex with bridging uranium sulfides, while that with CS2 results in oxidation of each UIII to the notably high UV oxidation state, forming the unusual trithiocarbonate (CS3)2- as a ligand in [{U(CS3)}2(μ-κ2:κ2-CS3)(LA)] (4). The reaction between 2-K and S8 results in quantitative substitution of the endo-KBH4 by a bridging persulfido (S2)2- group and oxidation of each UIII to UIV, yielding [{U(OAr)}2(μ-κ2:κ2-S2)(LA)] (5). The reaction of 2-K with CS2 affords a thermally unstable adduct which is tentatively assigned as containing a carbon disulfido (CS2)2- ligand bridging the two U centres (6a), but only the mono-bridged sulfido (S)2- complex [{U(OAr)}2(μ-S)(LA)] (6) is isolated. The persulfido complex (5) can also be synthesised from the mono-bridged sulfido complex (6) by the addition of another equivalent of sulfur.
Collapse
Affiliation(s)
- Polly L Arnold
- EaStCHEM School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JF , UK . ; ; ; Tel: +44 (0)131 6505429
| | - Charlotte J Stevens
- EaStCHEM School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JF , UK . ; ; ; Tel: +44 (0)131 6505429
| | - Nicola L Bell
- EaStCHEM School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JF , UK . ; ; ; Tel: +44 (0)131 6505429
| | - Rianne M Lord
- EaStCHEM School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JF , UK . ; ; ; Tel: +44 (0)131 6505429
| | - Jonathan M Goldberg
- Department of Chemistry , University of Washington , Box 351700 , Seattle , WA 98195-1700 , USA
| | - Gary S Nichol
- EaStCHEM School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JF , UK . ; ; ; Tel: +44 (0)131 6505429
| | - Jason B Love
- EaStCHEM School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JF , UK . ; ; ; Tel: +44 (0)131 6505429
| |
Collapse
|
21
|
Hohloch S, Pankhurst JR, Jaekel EE, Parker BF, Lussier DJ, Garner ME, Booth CH, Love JB, Arnold J. Benzoquinonoid-bridged dinuclear actinide complexes. Dalton Trans 2017; 46:11615-11625. [PMID: 28831470 DOI: 10.1039/c7dt02728a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the coordination chemistry of benzoquinonoid-bridged dinluclear thorium(iv) and uranium(iv) complexes with the tripodal ligand tris[2-amido(2-pyridyl)ethyl]amine ligand,L.
Collapse
Affiliation(s)
- Stephan Hohloch
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - James R. Pankhurst
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | | | - Bernard F. Parker
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - Daniel J. Lussier
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - Mary E. Garner
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - Corwin H. Booth
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Jason B. Love
- EaStCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
| | - John Arnold
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
22
|
Rehe D, Kornienko AY, Emge TJ, Brennan JG. Thorium Compounds with Bonds to Sulfur or Selenium: Synthesis, Structure, and Thermolysis. Inorg Chem 2016; 55:6961-7. [DOI: 10.1021/acs.inorgchem.6b00645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Rehe
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Anna Y. Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G. Brennan
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
23
|
King DM, Gardner BM, Lewis W, Liddle ST. Uranium halide complexes stabilized by a new sterically demanding tripodal tris( N-adamantylamidodimethylsilyl)methane ligand. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1187267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- David M. King
- School of Chemistry, The University of Nottingham, Nottingham, UK
| | | | - William Lewis
- School of Chemistry, The University of Nottingham, Nottingham, UK
| | | |
Collapse
|
24
|
|
25
|
Andrez J, Pécaut J, Scopelliti R, Kefalidis CE, Maron L, Rosenzweig MW, Meyer K, Mazzanti M. Synthesis and reactivity of a terminal uranium(iv) sulfide supported by siloxide ligands. Chem Sci 2016; 7:5846-5856. [PMID: 30034725 PMCID: PMC6024242 DOI: 10.1039/c6sc00675b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/08/2016] [Indexed: 11/26/2022] Open
Abstract
The S-transfer reaction from Ph3PS to the tetrasiloxide U(iii) complex [U(OSi(OtBu)3)4K] affords a stable U(iv) triply bonded terminal sulfide that can be protonated to yield a U(iv) doubly bonded terminal hydrosulfide.
The reactions of the tetrasiloxide U(iii) complexes [U(OSi(OtBu)3)4K] and [U(OSi(OtBu)3)4][K18c6] with 0.5 equiv. of triphenylphosphine sulfide led to reductive S-transfer reactions, affording the U(iv) sulfide complexes [SU(OSi(OtBu)3)4K2]2, 1, and [{SU(OSi(OtBu)3)4K2}2(μ-18c6)], 2, with concomitant formation of the U(iv) complex [U(OSi(OtBu)3)4]. Addition of 1 equiv. of 2.2.2-cryptand to complex 1 resulted in the isolation of a terminal sulfide complex, [SU(OSi(OtBu)3)4K][Kcryptand], 3. The crucial role of the K+ Lewis acid in these reductive sulfur transfer reactions was confirmed, since the formation of complex 3 from the reaction of the U(iii) complex [U(OSi(OtBu)3)4][Kcryptand] and 0.5 equiv. of PPh3S was not possible. Reactivity studies of the U(iv) sulfide complexes showed that the sulfide is easily transferred to CO2 and CS2 to afford S-functionalized products. Moreover, we have found that the sulfide provides a convenient precursor for the synthesis of the corresponding U(iv) hydrosulfide, {[(SH)U(OSi(OtBu)3)4][K18c6]}, 5, after protonation with PyHCl. Finally, DFT calculations were performed to investigate the nature of the U–S bond in complexes 1, 3 and 5. Based on various analyses, triple-bond character was suggested for the U–S bond in complexes 1 and 3, while double-bond character was determined for the U–SH bond in complex 5.
Collapse
Affiliation(s)
- Julie Andrez
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Jacques Pécaut
- Univ. Grenoble Alpes , INAC-SyMMES , RICC , F-38000 Grenoble , France.,CEA , INAC-SyMMES , F-38000 Grenoble , France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Christos E Kefalidis
- Université de Toulouse et CNRS INSA , UPS , CNRS , UMR 5215 , LPCNO , 135 avenue de Rangueil , 31077 Toulouse , France
| | - Laurent Maron
- Université de Toulouse et CNRS INSA , UPS , CNRS , UMR 5215 , LPCNO , 135 avenue de Rangueil , 31077 Toulouse , France
| | - Michael W Rosenzweig
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University Erlangen-Nürnberg , Egerlandstraße 1 , 91058 Erlangen , Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University Erlangen-Nürnberg , Egerlandstraße 1 , 91058 Erlangen , Germany
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| |
Collapse
|
26
|
Rosenzweig MW, Scheurer A, Lamsfus CA, Heinemann FW, Maron L, Andrez J, Mazzanti M, Meyer K. Uranium(iv) terminal hydrosulfido and sulfido complexes: insights into the nature of the uranium-sulfur bond. Chem Sci 2016; 7:5857-5866. [PMID: 30034726 PMCID: PMC6024247 DOI: 10.1039/c6sc00677a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/09/2016] [Indexed: 11/21/2022] Open
Abstract
Herein, we report the synthesis and characterization of a series of terminal uranium(iv) hydrosulfido and sulfido complexes, supported by the hexadentate, tacn-based ligand framework (Ad,MeArO)3tacn3- (= trianion of 1,4,7-tris(3-(1-adamantyl)-5-methyl-2-hydroxybenzyl)-1,4,7-triazacyclononane). The hydrosulfido complex [((Ad,MeArO)3tacn)U-SH] (2) is obtained from the reaction of H2S with the uranium(iii) starting material [((Ad,MeArO)3tacn)U] (1) in THF. Subsequent deprotonation with potassium bis(trimethylsilyl)amide yields the mononuclear uranium(iv) sulfido species in good yields. With the aid of dibenzo-18-crown-6 and 2.2.2-cryptand, it was possible to isolate a terminal sulfido species, capped by the potassium counter ion, and a "free" terminal sulfido species with a well separated cation/anion pair. Spectroscopic and computational analyses provided insights into the nature of the uranium-sulfur bond in these complexes.
Collapse
Affiliation(s)
- Michael W Rosenzweig
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University Erlangen-Nürnberg , Egerlandstraße 1 , 91058 Erlangen , Germany .
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University Erlangen-Nürnberg , Egerlandstraße 1 , 91058 Erlangen , Germany .
| | - Carlos A Lamsfus
- LPCNO , Université de Toulouse , INSA Toulouse , 135 Avenue de Rangueil , 31077 Toulouse , France
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University Erlangen-Nürnberg , Egerlandstraße 1 , 91058 Erlangen , Germany .
| | - Laurent Maron
- LPCNO , Université de Toulouse , INSA Toulouse , 135 Avenue de Rangueil , 31077 Toulouse , France
| | - Julie Andrez
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Karsten Meyer
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University Erlangen-Nürnberg , Egerlandstraße 1 , 91058 Erlangen , Germany .
| |
Collapse
|
27
|
Tsoureas N, Kilpatrick AFR, Inman CJ, Cloke FGN. Steric control of redox events in organo-uranium chemistry: synthesis and characterisation of U(v) oxo and nitrido complexes. Chem Sci 2016; 7:4624-4632. [PMID: 30155110 PMCID: PMC6013772 DOI: 10.1039/c6sc00632a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/08/2016] [Indexed: 12/16/2022] Open
Abstract
Controlling the steric environment in U(η8-C8H6(1,4-SiR3)2)(η5-Cp*)] enables selective formation of either mononuclear U(v) or dinuclear U(iv) oxo and nitrido complexes.
The synthesis and molecular structures of a U(v) neutral terminal oxo complex and a U(v) sodium uranium nitride contact ion pair are described. The synthesis of the former is achieved by the use of tBuNCO as a mild oxygen transfer reagent, whilst that of the latter is via the reduction of NaN3. Both mono-uranium complexes are stabilised by the presence of bulky silyl substituents on the ligand framework that facilitate a 2e– oxidation of a single U(iii) centre. In contrast, when steric hindrance around the metal centre is reduced by the use of less bulky silyl groups, the products are di-uranium, U(iv) bridging oxo and (anionic) nitride complexes, resulting from 1e– oxidations of two U(iii) centres. SQUID magnetometry supports the formal oxidation states of the reported complexes. Electrochemical studies show that the U(v) terminal oxo complex can be reduced and the [U(iv)O]– anion was accessed via reduction with K/Hg, and structurally characterised. Both the nitride complexes display complex electrochemical behaviour but each exhibits a quasi-reversible oxidation at ca. –1.6 V vs. Fc+/0.
Collapse
Affiliation(s)
- Nikolaos Tsoureas
- School of Life Sciences , Division of Chemistry , University of Sussex , Falmer , Brighton , BN1 9QJ , UK .
| | - Alexander F R Kilpatrick
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , 12 Mansfield Road , OX1 3TA , Oxford , UK
| | - Christopher J Inman
- School of Life Sciences , Division of Chemistry , University of Sussex , Falmer , Brighton , BN1 9QJ , UK .
| | - F Geoffrey N Cloke
- School of Life Sciences , Division of Chemistry , University of Sussex , Falmer , Brighton , BN1 9QJ , UK .
| |
Collapse
|
28
|
Smiles DE, Wu G, Hrobárik P, Hayton TW. Use of (77)Se and (125)Te NMR Spectroscopy to Probe Covalency of the Actinide-Chalcogen Bonding in [Th(En){N(SiMe3)2}3](-) (E = Se, Te; n = 1, 2) and Their Oxo-Uranium(VI) Congeners. J Am Chem Soc 2016; 138:814-25. [PMID: 26667146 DOI: 10.1021/jacs.5b07767] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reaction of [Th(I)(NR2)3] (R = SiMe3) (1) with 1 equiv of either [K(18-crown-6)]2[Se4] or [K(18-crown-6)]2[Te2] affords the thorium dichalcogenides, [K(18-crown-6)][Th(η(2)-E2)(NR2)3] (E = Se, 2; E = Te, 3), respectively. Removal of one chalcogen atom via reaction with Et3P, or Et3P and Hg, affords the monoselenide and monotelluride complexes of thorium, [K(18-crown-6)][Th(E)(NR2)3] (E = Se, 4; E = Te, 5), respectively. Both 4 and 5 were characterized by X-ray crystallography and were found to feature the shortest known Th-Se and Th-Te bond distances. The electronic structure and nature of the actinide-chalcogen bonds were investigated with (77)Se and (125)Te NMR spectroscopy accompanied by detailed quantum-chemical analysis. We also recorded the (77)Se NMR shift for a U(VI) oxo-selenido complex, [U(O)(Se)(NR2)3](-) (δ((77)Se) = 4905 ppm), which features the highest frequency (77)Se NMR shift yet reported, and expands the known (77)Se chemical shift range for diamagnetic substances from ∼3300 ppm to almost 6000 ppm. Both (77)Se and (125)Te NMR chemical shifts of given chalcogenide ligands were identified as quantitative measures of the An-E bond covalency within an isoelectronic series and supported significant 5f-orbital participation in actinide-ligand bonding for uranium(VI) complexes in contrast to those involving thorium(IV). Moreover, X-ray diffraction studies together with NMR spectroscopic data and density functional theory (DFT) calculations provide convincing evidence for the actinide-chalcogen multiple bonding in the title complexes. Larger An-E covalency is observed in the [U(O)(E)(NR2)3](-) series, which decreases as the chalcogen atom becomes heavier.
Collapse
Affiliation(s)
- Danil E Smiles
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| | - Peter Hrobárik
- Institut für Chemie, Technische Universität Berlin , Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
29
|
Behrle AC, Levin JR, Kim JE, Drewett JM, Barnes CL, Schelter EJ, Walensky JR. Stabilization of MIV = Ti, Zr, Hf, Ce, and Th using a selenium bis(phenolate) ligand. Dalton Trans 2015; 44:2693-702. [PMID: 25209827 DOI: 10.1039/c4dt01798f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report M(iv) M = Ti, Zr, Hf, Ce, and Th, complexes of a selenium bis(phenolate) ligand, 2,2'-selenobis(4,6-di-tert-butylphenol), (H(2)(Ar)OSeO), 1. Reaction of Ti(NEt(2))(4) with two equivalents of affords Ti((Ar)OSeO)(2), 2. Salt metathesis of ZrCl(4) and HfCl(4) with two equivalents of Na(2)(Ar)OSeO produces Zr((Ar)OSeO)(2)(THF), 3, and Hf((Ar)OSeO)(2)(THF), 4, respectively. Protonolysis of ThCl[N(SiMe(3))(2)](3) with two equivalents of yields Th((Ar)OSeO)(2)(THF)(2), 5. Salt metathesis of Ce(OTf)(3) and two equivalents of Na(2)(Ar)OSeO produces [Na(THF)(3)][Ce((Ar)OSeO)(2)], which was oxidized in situ using 0.5 equivalents of I(2) to yield the diamagnetic Ce(iv) product, Ce((Ar)OSeO)(2)(THF)(2), 6. Addition of 2,2'-bipyridyl to forms Ce((Ar)OSeO)(2)(bipy), 6a. Each diamagnetic complex was characterized using (1)H, (13)C, and (77)Se NMR and IR spectroscopy and the structures of 2-6a were established with X-ray crystallography. Electrochemical measurements using cyclic voltammetry on complexes 2, 5, and 6a re also reported.
Collapse
Affiliation(s)
- Andrew C Behrle
- Department of Chemistry, University of Missouri-Columbia, 601 S. College Avenue, Columbia, MO 65211-7600, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Liddle ST. The Renaissance of Non-Aqueous Uranium Chemistry. Angew Chem Int Ed Engl 2015; 54:8604-41. [PMID: 26079536 DOI: 10.1002/anie.201412168] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Indexed: 12/11/2022]
Abstract
Prior to the year 2000, non-aqueous uranium chemistry mainly involved metallocene and classical alkyl, amide, or alkoxide compounds as well as established carbene, imido, and oxo derivatives. Since then, there has been a resurgence of the area, and dramatic developments of supporting ligands and multiply bonded ligand types, small-molecule activation, and magnetism have been reported. This Review 1) introduces the reader to some of the specialist theories of the area, 2) covers all-important starting materials, 3) surveys contemporary ligand classes installed at uranium, including alkyl, aryl, arene, carbene, amide, imide, nitride, alkoxide, aryloxide, and oxo compounds, 4) describes advances in the area of single-molecule magnetism, and 5) summarizes the coordination and activation of small molecules, including carbon monoxide, carbon dioxide, nitric oxide, dinitrogen, white phosphorus, and alkanes.
Collapse
Affiliation(s)
- Stephen T Liddle
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK).
| |
Collapse
|
31
|
|
32
|
Yao SA, Martin-Diaconescu V, Infante I, Lancaster KM, Götz AW, DeBeer S, Berry JF. Electronic Structure of Ni2E2 Complexes (E = S, Se, Te) and a Global Analysis of M2E2 Compounds: A Case for Quantized E2n– Oxidation Levels with n = 2, 3, or 4. J Am Chem Soc 2015; 137:4993-5011. [DOI: 10.1021/ja511607j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shu A. Yao
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Vlad Martin-Diaconescu
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470, Mülheim/Ruhr, Germany
| | - Ivan Infante
- Kimika Fakultatea,
Euskal Herriko Unibertsitatea, and Donostia International Physics
Center (DIPC), P. K. 1072, 20080 Donostia, Euskadi, Spain
| | - Kyle M. Lancaster
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Andreas W. Götz
- San
Diego Supercomputer Center, University of California—San Diego, La
Jolla, California 92093, United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470, Mülheim/Ruhr, Germany
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - John F. Berry
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
33
|
Gardner BM, Lewis W, Blake AJ, Liddle ST. Thorium Triamidoamine Complexes: Synthesis of an Unusual Dinuclear Tuck-in–Tuck-over Thorium Metallacycle Featuring the Longest Known Thorium−σ-Alkyl Bond. Organometallics 2015. [DOI: 10.1021/om501177s] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Benedict M. Gardner
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Alexander J. Blake
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Stephen T. Liddle
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
34
|
Franke SM, Rosenzweig MW, Heinemann FW, Meyer K. Reactivity of uranium(iii) with H 2E (E = S, Se, Te): synthesis of a series of mononuclear and dinuclear uranium(iv) hydrochalcogenido complexes. Chem Sci 2015; 6:275-282. [PMID: 29560170 PMCID: PMC5811169 DOI: 10.1039/c4sc02602k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/29/2014] [Indexed: 12/26/2022] Open
Abstract
We report the syntheses, electronic properties, and molecular structures of a series of mono- and dinuclear uranium(iv) hydrochalcogenido complexes supported by the sterically demanding but very flexible, single N-anchored tris(aryloxide) ligand (AdArO)3N)3-. The mononuclear complexes [((AdArO)3N)U(DME)(EH)] (E = S, Se, Te) can be obtained from the reaction of the uranium(iii) starting material [((AdArO)3N)UIII(DME)] in DME via reduction of H2E and the elimination of 0.5 equivalents of H2. The dinuclear complexes [{((AdArO)3N)U}2(μ-EH)2] can be obtained by dissolving their mononuclear counterparts in non-coordinating solvents such as benzene. In order to facilitate the work with the highly toxic gases, we created concentrated THF solutions that can be handled using simple glovebox techniques and can be stored at -35 °C for several weeks.
Collapse
Affiliation(s)
- Sebastian M Franke
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University of Erlangen-Nürnberg (FAU) , Egerlandstraße 1 , D-91058 Erlangen , Germany . ; ; Tel: +49 9131 8527360
| | - Michael W Rosenzweig
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University of Erlangen-Nürnberg (FAU) , Egerlandstraße 1 , D-91058 Erlangen , Germany . ; ; Tel: +49 9131 8527360
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University of Erlangen-Nürnberg (FAU) , Egerlandstraße 1 , D-91058 Erlangen , Germany . ; ; Tel: +49 9131 8527360
| | - Karsten Meyer
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University of Erlangen-Nürnberg (FAU) , Egerlandstraße 1 , D-91058 Erlangen , Germany . ; ; Tel: +49 9131 8527360
| |
Collapse
|
35
|
Smiles DE, Wu G, Hayton TW. Reactivity of [U(CH2SiMe2NSiMe3)(NR2)2] (R = SiMe3) with elemental chalcogens: towards a better understanding of chalcogen atom transfer in the actinides. NEW J CHEM 2015. [DOI: 10.1039/c5nj00739a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Addition of elemental chalcogens to [U(CH2SiMe2NSiMe3)(NR2)2] results in formation of [U(ECH2SiMe2NSiMe3)(NR2)2] (R = SiMe3; E = S, Se, Te) via chalcogen insertion into the U–C bond.
Collapse
Affiliation(s)
- Danil E. Smiles
- Department of Chemistry and Biochemistry
- University of California Santa Barbara
- Santa Barbara
- USA
| | - Guang Wu
- Department of Chemistry and Biochemistry
- University of California Santa Barbara
- Santa Barbara
- USA
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry
- University of California Santa Barbara
- Santa Barbara
- USA
| |
Collapse
|
36
|
Smiles DE, Wu G, Hayton TW. Reversible Chalcogen-Atom Transfer to a Terminal Uranium Sulfide. Inorg Chem 2014; 53:12683-5. [DOI: 10.1021/ic502500z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Danil E. Smiles
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara California 93106, United States
| | - Guang Wu
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara California 93106, United States
| | - Trevor W. Hayton
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara California 93106, United States
| |
Collapse
|
37
|
Smiles DE, Wu G, Hayton TW. Synthesis of Terminal Monochalcogenide and Dichalcogenide Complexes of Uranium Using Polychalcogenides, [En]2– (E = Te, n = 2; E = Se, n = 4), as Chalcogen Atom Transfer Reagents. Inorg Chem 2014; 53:10240-7. [DOI: 10.1021/ic501267f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Danil E. Smiles
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara California 93106, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara California 93106, United States
| |
Collapse
|
38
|
Corbey JF, Fang M, Ziller JW, Evans WJ. Cocrystallization of (μ-S2)2– and (μ-S)2– and Formation of an [η2-S3N(SiMe3)2] Ligand from Chalcogen Reduction by (N2)2– in a Bimetallic Yttrium Amide Complex. Inorg Chem 2014; 54:801-7. [DOI: 10.1021/ic501753x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jordan F. Corbey
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Ming Fang
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
39
|
Affiliation(s)
- Douglas R Kindra
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | | |
Collapse
|
40
|
Karmel ISR, Elkin T, Fridman N, Eisen MS. Dimethylsilyl bis(amidinate)actinide complexes: synthesis and reactivity towards oxygen containing substrates. Dalton Trans 2014; 43:11376-87. [DOI: 10.1039/c4dt01361a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligand1reacts with ThCl4and UCl4yielding complexes2and4, respectively. Complex3is obtained from complex2displaying extremely short Th–OH bond distances.
Collapse
Affiliation(s)
- Isabell S. R. Karmel
- Schulich Faculty of Chemistry
- Institute of Catalysis Science and Technology
- Technion – Israel Institute of Technology
- Technion City, 32000 Israel
| | - Tatyana Elkin
- Schulich Faculty of Chemistry
- Institute of Catalysis Science and Technology
- Technion – Israel Institute of Technology
- Technion City, 32000 Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry
- Institute of Catalysis Science and Technology
- Technion – Israel Institute of Technology
- Technion City, 32000 Israel
| | - Moris S. Eisen
- Schulich Faculty of Chemistry
- Institute of Catalysis Science and Technology
- Technion – Israel Institute of Technology
- Technion City, 32000 Israel
| |
Collapse
|