1
|
Lee WS, Enomoto T, Akimoto AM, Yoshida R. Temperature-Adaptative Self-Oscillating Gels: Toward Autonomous Biomimetic Soft Actuators with Broad Operating Temperature Region. Macromol Rapid Commun 2024; 45:e2400038. [PMID: 38684191 DOI: 10.1002/marc.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Self-oscillating gel systems exhibiting an expanded operating temperature and accompanying functional adaptability are showcased. The developed system contains nonthermoresponsive main-monomers, such as N,N-dimethylacrylamide (DMAAm) or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or acrylamide (AAm) or 3-(methacryloylamino)propyl trimethylammonium chloride (MAPTAC). The gels volumetrically self-oscillate within the range of the conventional (20.0 °C) and extended (27.0 and 36.5 °C) temperatures. Moreover, the gels successfully adapt to the environmental changes; they beat faster and smaller as the temperature increases. The period and amplitude are also controlled by tuning the amount of main-monomers and N-(3-aminopropyl) acrylamide. Furthermore, the record amplitude in the bulk gel system consisting of polymer strand and cross-linker at 36.5 °C is achieved (≈10.8%). The study shows new self-oscillation systems composed of unprecedented combinations of materials, giving the community a robust material-based insight for developing more life-like autonomous biomimetic soft robots with various operating temperatures and beyond.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
2
|
Lee WS, Enomoto T, Akimoto AM, Yoshida R. Emergent Synchronous Volumetric Oscillation in Hierarchically Structured Self-Oscillating Gel Clusters. J Phys Chem B 2024; 128:5268-5279. [PMID: 38759232 DOI: 10.1021/acs.jpcb.4c01821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Emergent properties accompanying synchronization among oscillators are vital characteristics in biological systems. Belousov-Zhabotinsky (BZ) oscillators are an artificial model to study the emergence and synchronization in life. This research represents a self-oscillating gel system with clusterable properties to experimentally examine synchronous and emergent properties at a fundamental hierarchical level. Incorporating acrylic acid (AAc) moieties within the gel network facilitates cluster formation through hydrogen bonding in an acidic BZ substrate solution. Upon clustering, both homogeneous and heterogeneous gel assemblies─ranging from double to quadruple clusters─exhibit increased and synchronized periods and amplitudes during the BZ reaction. Notably, in heterogeneous clusters, gel units with initially short periods and small volumetric amplitudes display a significant increase, aligning with the lonfger periods and larger amplitudes of other elements within the cluster, an emergent property. This research can pave the way for a better understanding of synchronous and emergent properties in biological oscillators such as cardiomyocytes.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
3
|
Blanc B, Zhang Z, Liu E, Zhou N, Dellatolas I, Aghvami A, Yi H, Fraden S. Active Pulsatile Gels: From a Chemical Microreactor to a Polymeric Actuator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6862-6868. [PMID: 38385757 DOI: 10.1021/acs.langmuir.3c03784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We report on a synthesis protocol, experimental characterization, and theoretical modeling of active pulsatile Belousov-Zhabotinsky (BZ) hydrogels. Our two-step synthesis technique allows independent optimization of the geometry, the chemical, and the mechanical properties of BZ gels. We identify the role of the surrounding medium chemistry and gel radius for the occurrence of BZ gel oscillations, quantified by the Damköhler number, which is the ratio of chemical reaction to diffusion rates. Tuning the BZ gel size to maximize its chemomechanical oscillation amplitude, we find that its oscillatory strain amplitude is limited by the time scale of gel swelling relative to the chemical oscillation period. Our experimental findings are in good agreement with a Vanag-Epstein model of BZ chemistry and a Tanaka Fillmore theory of gel swelling dynamics.
Collapse
Affiliation(s)
- Baptiste Blanc
- Department of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Zhenkun Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Eric Liu
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ning Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Ippolyti Dellatolas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ali Aghvami
- Department of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Hyunmin Yi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Seth Fraden
- Department of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
4
|
Lee S, Lee WS, Enomoto T, Akimoto AM, Yoshida R. Anisotropically self-oscillating gels by spatially patterned interpenetrating polymer network. SOFT MATTER 2024; 20:796-803. [PMID: 38168689 DOI: 10.1039/d3sm01237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Here we introduce sub-millimeter self-oscillating gels that undergo the Belousov-Zhabotinsky (BZ) reaction and can anisotropically oscillate like cardiomyocytes. The anisotropically self-oscillating gels in this study were realized by spatially patterning an acrylic acid-based interpenetrating network (AA-IPN). We found that the patterned AA-IPN regions, locally introduced at both ends of the gels through UV photolithography, can constrain the horizontal gel shape deformation during the BZ reaction. In other words, the two AA-IPN regions could act as a physical barrier to prevent isotropic deformation. Furthermore, we controlled the anisotropic deformation behavior during the BZ reaction by varying the concentration of acrylic acid used in the patterning process of the AA-IPN. As a result, a specific directional deformation behavior (66% horizontal/vertical amplitude ratio) was fulfilled, similar to that of cardiomyocytes. Our study can provide a promising insight to fabricating robust gel systems for cardiomyocyte modeling or designing novel autonomous microscale soft actuators.
Collapse
Affiliation(s)
- Suwen Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Won Seok Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
5
|
Sun W, Schaffer S, Dai K, Yao L, Feinberg A, Webster-Wood V. 3D Printing Hydrogel-Based Soft and Biohybrid Actuators: A Mini-Review on Fabrication Techniques, Applications, and Challenges. Front Robot AI 2021; 8:673533. [PMID: 33996931 PMCID: PMC8117231 DOI: 10.3389/frobt.2021.673533] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Stimuli-responsive hydrogels are candidate building blocks for soft robotic applications due to many of their unique properties, including tunable mechanical properties and biocompatibility. Over the past decade, there has been significant progress in developing soft and biohybrid actuators using naturally occurring and synthetic hydrogels to address the increasing demands for machines capable of interacting with fragile biological systems. Recent advancements in three-dimensional (3D) printing technology, either as a standalone manufacturing process or integrated with traditional fabrication techniques, have enabled the development of hydrogel-based actuators with on-demand geometry and actuation modalities. This mini-review surveys existing research efforts to inspire the development of novel fabrication techniques using hydrogel building blocks and identify potential future directions. In this article, existing 3D fabrication techniques for hydrogel actuators are first examined. Next, existing actuation mechanisms, including pneumatic, hydraulic, ionic, dehydration-rehydration, and cell-powered actuation, are reviewed with their benefits and limitations discussed. Subsequently, the applications of hydrogel-based actuators, including compliant handling of fragile items, micro-swimmers, wearable devices, and origami structures, are described. Finally, challenges in fabricating functional actuators using existing techniques are discussed.
Collapse
Affiliation(s)
- Wenhuan Sun
- Biohybrid and Organic Robotics Group, Department of Mechancial Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Saul Schaffer
- Biohybrid and Organic Robotics Group, Department of Mechancial Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Kevin Dai
- Biohybrid and Organic Robotics Group, Department of Mechancial Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Lining Yao
- Morphing Matter Lab, Human-Computer Interaction Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Adam Feinberg
- Regenerative Biomaterials and Therapeutics Group, Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Victoria Webster-Wood
- Biohybrid and Organic Robotics Group, Department of Mechancial Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Zhou H, Chen M, Liu Y, Wu S. Stimuli-Responsive Ruthenium-Containing Polymers. Macromol Rapid Commun 2018; 39:e1800372. [DOI: 10.1002/marc.201800372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/21/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Hongwei Zhou
- School of Materials and Chemical Engineering; Xi’an Technological University; Xi’an 710021 P. R. China
| | - Mingsen Chen
- Max Planck Institute for Polymer Research; Ackermannweg 10, 55128 Mainz Germany
- College of Materials Science and Engineering; Guilin University of Technology; Guilin 541004 China
| | - Yuanli Liu
- College of Materials Science and Engineering; Guilin University of Technology; Guilin 541004 China
| | - Si Wu
- Max Planck Institute for Polymer Research; Ackermannweg 10, 55128 Mainz Germany
- Hefei National Laboratory for Physical Sciences at the Microscale; CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
7
|
Jackson R, Patrick PS, Page K, Powell MJ, Lythgoe MF, Miodownik MA, Parkin IP, Carmalt CJ, Kalber TL, Bear JC. Chemically Treated 3D Printed Polymer Scaffolds for Biomineral Formation. ACS OMEGA 2018; 3:4342-4351. [PMID: 29732454 PMCID: PMC5928486 DOI: 10.1021/acsomega.8b00219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
We present the synthesis of nylon-12 scaffolds by 3D printing and demonstrate their versatility as matrices for cell growth, differentiation, and biomineral formation. We demonstrate that the porous nature of the printed parts makes them ideal for the direct incorporation of preformed nanomaterials or material precursors, leading to nanocomposites with very different properties and environments for cell growth. Additives such as those derived from sources such as tetraethyl orthosilicate applied at a low temperature promote successful cell growth, due partly to the high surface area of the porous matrix. The incorporation of presynthesized iron oxide nanoparticles led to a material that showed rapid heating in response to an applied ac magnetic field, an excellent property for use in gene expression and, with further improvement, chemical-free sterilization. These methods also avoid changing polymer feedstocks and contaminating or even damaging commonly used selective laser sintering printers. The chemically treated 3D printed matrices presented herein have great potential for use in addressing current issues surrounding bone grafting, implants, and skeletal repair, and a wide variety of possible incorporated material combinations could impact many other areas.
Collapse
Affiliation(s)
- Richard
J. Jackson
- UCL
Healthcare Biomagnetics Laboratory, The
Royal Institution of Great Britain, 21 Albemarle Street, London W1S 4BS, U.K.
| | - P. Stephen Patrick
- Centre
for Advanced Biomedical Imaging (CABI), Department of Medicine and
Institute of Child Health, University College
London, London WC1E 6DD, U.K.
| | - Kristopher Page
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Michael J. Powell
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Mark F. Lythgoe
- Centre
for Advanced Biomedical Imaging (CABI), Department of Medicine and
Institute of Child Health, University College
London, London WC1E 6DD, U.K.
| | - Mark A. Miodownik
- Department
of Mechanical Engineering, University College
London, London WC1E 7JE, U.K.
| | - Ivan P. Parkin
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Claire J. Carmalt
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Tammy L. Kalber
- Centre
for Advanced Biomedical Imaging (CABI), Department of Medicine and
Institute of Child Health, University College
London, London WC1E 6DD, U.K.
| | - Joseph C. Bear
- School
of Life Science, Pharmacy & Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, U.K.
| |
Collapse
|
8
|
Buskohl PR, Vaia RA. Belousov-Zhabotinsky autonomic hydrogel composites: Regulating waves via asymmetry. SCIENCE ADVANCES 2016; 2:e1600813. [PMID: 27679818 PMCID: PMC5035124 DOI: 10.1126/sciadv.1600813] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/16/2016] [Indexed: 05/24/2023]
Abstract
Belousov-Zhabotinsky (BZ) autonomic hydrogel composites contain active nodes of immobilized catalyst (Ru) encased within a nonactive matrix. Designing functional hierarchies of chemical and mechanical communication between these nodes enables applications ranging from encryption, sensors, and mechanochemical actuators to artificial skin. However, robust design rules and verification of computational models are challenged by insufficient understanding of the relative importance of local (molecular) heterogeneities, active node shape, and embedment geometry on transient and steady-state behavior. We demonstrate the predominance of asymmetric embedment and node shape in low-strain, BZ-gelatin composites and correlate behavior with gradients in BZ reactants. Asymmetric embedment of square and rectangular nodes results in directional steady-state waves that initiate at the embedded edge and propagate toward the free edge. In contrast, symmetric embedment does not produce preferential wave propagation because of a lack of diffusion gradient across the catalyzed region. The initiation at the embedded edge is correlated with bromide absorption by the inactive matrix, which locally elevates the bromate concentration required for catalyst oxidation. The competition between embedment asymmetry and node geometry was used to demonstrate a repeatable switch in wave direction that functions as a signal delay. Furthermore, signal propagation in or out of the composite was demonstrated via embedment asymmetry and relative dimensions of a T-shaped active network node. Overall, structural asymmetry provides a robust approach to controlling initiation and orientation of chemical-mechanical communication within composite BZ gels.
Collapse
Affiliation(s)
- Philip R. Buskohl
- Functional Materials Division, Materials and Manufacturing Directorate, Air Force Research Laboratory, 2179 12th Street, Wright-Patterson Air Force Base, OH 45433, USA
| | - Richard A. Vaia
- Functional Materials Division, Materials and Manufacturing Directorate, Air Force Research Laboratory, 2179 12th Street, Wright-Patterson Air Force Base, OH 45433, USA
| |
Collapse
|
9
|
Buskohl PR, Kramb RC, Vaia RA. Synchronicity in Composite Hydrogels: Belousov–Zhabotinsky (BZ) Active Nodes in Gelatin. J Phys Chem B 2015; 119:3595-602. [DOI: 10.1021/jp512829h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Philip R. Buskohl
- AFRL/RX Materials & Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Ryan C. Kramb
- AFRL/RX Materials & Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Richard A. Vaia
- AFRL/RX Materials & Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
10
|
Zhou H, Zheng Z, Wang Q, Xu G, Li J, Ding X. A modular approach to self-oscillating polymer systems driven by the Belousov–Zhabotinsky reaction. RSC Adv 2015. [DOI: 10.1039/c4ra13852j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This review explores the principle, modular construction, integral control and engineering aspects of self-oscillating polymer systems driven by the Belousov–Zhabotinsky reaction.
Collapse
Affiliation(s)
- Hongwei Zhou
- School of Materials and Chemical Engineering
- Xi'an Technological University
- Xi'an 710032
- P. R. China
| | - Zhaohui Zheng
- Chengdu Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Qiguan Wang
- School of Materials and Chemical Engineering
- Xi'an Technological University
- Xi'an 710032
- P. R. China
| | - Guohe Xu
- Chengdu Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Jie Li
- Chengdu Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Xiaobin Ding
- Chengdu Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| |
Collapse
|
11
|
Abstract
Stimuli-responsive gels are vital components in the next generation of smart devices, which can sense and dynamically respond to changes in the local environment and thereby exhibit more autonomous functionality. We describe recently developed computational methods for simulating the properties of such stimuli-responsive gels in the presence of optical, chemical, and thermal gradients. Using these models, we determine how to harness light to drive shape changes and directed motion in spirobenzopyran-containing gels. Focusing on oscillating gels undergoing the Belousov-Zhabotinksy reaction, we demonstrate that these materials can spontaneously form self-rotating assemblies, or pinwheels. Finally, we model temperature-sensitive gels that encompass chemically reactive filaments to optimize the performance of this system as a homeostatic device for regulating temperature. These studies could facilitate the development of soft robots that autonomously interconvert chemical and mechanical energy and thus perform vital functions without the continuous need of external power sources.
Collapse
Affiliation(s)
- Olga Kuksenok
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Debabrata Deb
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Pratyush Dayal
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Present address: Department of Chemical Engineering, Indian Institute of Technology, Gandhinagar 382424, India
| | - Anna C. Balazs
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
12
|
Dayal P, Kuksenok O, Balazs AC. Directing the Behavior of Active, Self-Oscillating Gels with Light. Macromolecules 2014. [DOI: 10.1021/ma402430b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pratyush Dayal
- Chemical
Engineering Department, Indian Institute of Technology, Gandhinagar, India
| | - Olga Kuksenok
- Chemical
Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anna C. Balazs
- Chemical
Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|