1
|
Aggarwal S, Ikram S. A comprehensive review on bio-mimicked multimolecular frameworks and supramolecules as scaffolds for enzyme immobilization. Biotechnol Bioeng 2023; 120:352-398. [PMID: 36349456 DOI: 10.1002/bit.28282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Immobilization depicts a propitious route to optimize the catalytic performances, efficient recovery, minimizing autocatalysis, and also augment the stabilities of enzymes, particularly in unnatural environments. In this opinion, supramolecules and multimolecular frameworks have captivated immense attention to achieve profound controllable interactions between enzyme molecules and well-defined natural or synthetic architectures to yield protein bioconjugates with high accessibility for substrate binding and enhanced enantioselectivities. This scholastic review emphasizes the possibilities of associating multimolecular complexes with biological entities via several types of interactions, namely covalent interactions, host-guest complexation, π - π ${\rm{\pi }}-{\rm{\pi }}$ interactions, intra/inter hydrogen bondings, electrostatic interactions, and so forth offers remarkable applications for the modulations of enzymes. The potential synergies between artificial supramolecular structures and biological systems are the primary concern of this pedagogical review. The majority of the research primarily focused on the dynamic biomolecule-responsive supramolecular assemblages and multimolecular architectures as ideal platforms for the recognition and modulation of proteins and cells. Embracing sustainable green demeanors of enzyme immobilizations in a quest to reinforce site-selectivity, catalytic efficiency, and structural integrality of enzymes are the contemporary requirements of the biotechnological sectors that instigate the development of novel biocatalytic systems.
Collapse
Affiliation(s)
- Shalu Aggarwal
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
2
|
Recent Advances in Supramolecular-Macrocycle-Based Nanomaterials in Cancer Treatment. Molecules 2023; 28:molecules28031241. [PMID: 36770907 PMCID: PMC9920387 DOI: 10.3390/molecules28031241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Cancer is a severe threat to human life. Recently, various therapeutic strategies, such as chemotherapy, photodynamic therapy, and combination therapy have been extensively applied in cancer treatment. However, the clinical benefits of these therapeutics still need improvement. In recent years, supramolecular chemistry based on host-guest interactions has attracted increasing attention in biomedical applications to address these issues. In this review, we present the properties of the major macrocyclic molecules and the stimulus-response strategies used for the controlled release of therapeutic agents. Finally, the applications of supramolecular-macrocycle-based nanomaterials in cancer therapy are reviewed, and the existing challenges and prospects are discussed.
Collapse
|
3
|
Jiahong L, Jialu S, Chenhui P, Guoze Y. The Materials and Application of Artificial Light Harvesting System Based on Supramolecular Self‐assembly. ChemistrySelect 2023. [DOI: 10.1002/slct.202202979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Liu Jiahong
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| | - Sun Jialu
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| | - Pan Chenhui
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| | - Yang Guoze
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| |
Collapse
|
4
|
Sabin C, Sam S, Hrishikes A, Salin B, Vigneshkumar PN, George J, John F. Supramolecular Drug Delivery Systems Based on Host‐Guest Interactions for Nucleic Acid Delivery. ChemistrySelect 2022. [DOI: 10.1002/slct.202203644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christeena Sabin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Samanta Sam
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - A. Hrishikes
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Biyatris Salin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - P. N. Vigneshkumar
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
- Department of Chemistry The University of British Columbia Okanagan Vancouver BC V6T 1Z4 Canada
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| |
Collapse
|
5
|
Barooah N, Mohanty J, Bhasikuttan AC. Cucurbituril-Based Supramolecular Assemblies: Prospective on Drug Delivery, Sensing, Separation, and Catalytic Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6249-6264. [PMID: 35535760 DOI: 10.1021/acs.langmuir.2c00556] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Precise control over the stimuli-responsive noncovalent interactions operative in a complex molecular system has emerged as a convenient way to realize applications in the detection and sensing of trace analytes, metal ion separation, uptake-release, in situ nanoparticle synthesis, and catalytic activity. This feature article focuses on the attributes and advantages of noncovalent host-guest interactions involving cucurbituril homologues (CBs) with a wide range of organic and inorganic guests, starting from organic dyes to drugs, proteins, surfactants, metal ions, and polyoxometalates. The unique structural features of CBs provide interaction sites for cations at the portals, polyanions at the periphery, and hydrophobic groups in its cavity. The facile complexation and consequent compositional and geometrical arrangements of guests such as naphthalenediimides, coumarins, porphyrins, and triphenylpyrylium ions with the host CBs led to remarkable changes in many molecular properties, especially aggregation, the proton binding and release affinity, and novel emissive dimers, and each of such spectroscopic signatures have been appropriately channeled to drug delivery and activation to improve the antibacterial efficacy and shelf life of drugs by increasing their photostability. Several technological advantages have also been extracted from the interaction of CBs with inorganic guests as well. The interaction of CB7 with the heptamolybdate anion resulted in the precipitation of a hybrid complex material which enabled a convenient separation methodology for the use of clinically pure radioactive 99mTc in diagnostic applications. Certain cucurbituril-based hybrid materials have been developed for enhanced SO2 adsorption at low pressures, high-efficiency hydrogen production, and reversible catalytic systems. Thus, this feature article provides a glimpse of the vast potential of cucurbituril homologues with organic and inorganic guests and calls for a dedicated effort to explore supramolecular strategies for better sensors, therapeutics, smart drug delivery modules, and facile devices.
Collapse
Affiliation(s)
- Nilotpal Barooah
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Achikanath C Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
6
|
Molecular Recognition by Pillar[5]arenes: Evidence for Simultaneous Electrostatic and Hydrophobic Interactions. Pharmaceutics 2021; 14:pharmaceutics14010060. [PMID: 35056956 PMCID: PMC8777861 DOI: 10.3390/pharmaceutics14010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
Abstract
The formation of inclusion complexes between alkylsulfonate guests and a cationic pillar[5]arene receptor in water was investigated by NMR and ITC techniques. The results show the formation of host-guest complexes stabilized by electrostatic interactions and hydrophobic effects with binding constants of up to 107 M−1 for the guest with higher hydrophobic character. Structurally, the alkyl chain of the guest is included in the hydrophobic aromatic cavity of the macrocycle while the sulfonate groups are held in the multicationic portal by ionic interactions.
Collapse
|
7
|
Dutta Choudhury S, Pal H. Supramolecular and suprabiomolecular photochemistry: a perspective overview. Phys Chem Chem Phys 2021; 22:23433-23463. [PMID: 33112299 DOI: 10.1039/d0cp03981k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this perspective review article, we have attempted to bring out the important current trends of research in the areas of supramolecular and suprabiomolecular photochemistry. Since the spans of the subject areas are very vast, it is impossible to cover all the aspects within the limited space of this review article. Nevertheless, efforts have been made to assimilate the basic understanding of how supramolecular interactions can significantly change the photophysical and other related physiochemical properties of chromophoric dyes and drugs, which have enormous academic and practical implications. We have discussed with reference to relevant chemical systems where supramolecularly assisted modulations in the properties of chromophoric dyes and drugs can be used or have already been used in different areas like sensing, dye/drug stabilization, drug delivery, functional materials, and aqueous dye laser systems. In supramolecular assemblies, along with their conventional photophysical properties, the acid-base properties of prototropic dyes, as well as the excited state prototautomerization and related proton transfer behavior of proton donor/acceptor dye molecules, are also largely modulated due to supramolecular interactions, which are often reflected very explicitly through changes in their absorption and fluorescence characteristics, providing us many useful insights into these chemical systems and bringing out intriguing applications of such changes in different applied areas. Another interesting research area in supramolecular photochemistry is the excitation energy transfer from the donor to acceptor moieties in self-assembled systems which have immense importance in light harvesting applications, mimicking natural photosynthetic systems. In this review article, we have discussed varieties of these aspects, highlighting their academic and applied implications. We have tried to emphasize the progress made so far and thus to bring out future research perspectives in the subject areas concerned, which are anticipated to find many useful applications in areas like sensors, catalysis, electronic devices, pharmaceuticals, drug formulations, nanomedicine, light harvesting, and smart materials.
Collapse
Affiliation(s)
- Sharmistha Dutta Choudhury
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India. and Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai-400094, India
| | - Haridas Pal
- Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai-400094, India and Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| |
Collapse
|
8
|
Supramolecular nano drug delivery systems mediated via host-guest chemistry of cucurbit[n]uril (n = 6 and 7). CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.04.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Cheng G, Luo J, Liu Y, Chen X, Wu Z, Chen T. Cucurbituril-Oriented Nanoplatforms in Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:8211-8240. [PMID: 35019600 DOI: 10.1021/acsabm.0c01061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cucucrbituril (CB) belongs to a family of macrocycles that are easily accessible. Their structural specificity provides excellent molecular recognition capabilities, with the ability to be readily chemically modified. Because of these properties, researchers have found CB to be a useful molecular carrier for delivering drug molecules and therapeutic biomolecules. Their significance lies in the fact that CB not only increases the solubility and stability of an encapsulated guest but also provides the possibility to achieve targeted delivery of the guest molecule. Therefore, the emergence of CB undoubtedly provides opportunities for the development of targeted drug delivery in an era where intelligent drugs have attracted considerable attention. It has also been found that CB can enhance fluorescent dyes, allowing the preparation of biosensors with enhanced sensitivity for use in clinical settings. In the present review, the acquisition, properties, and structural modifications of CB are first comprehensively described, and then the value of this macrocycle in applications within the medical field is discussed. In addition, we have also summarized patent applications of CB in this field over recent years, aiming to illustrate the current status of developments of this molecule. Finally, we discuss the challenges faced by CB in the medical field and future trends in its development.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
10
|
Zhang T, Liu Y, Hu B, Zhang C, Chen Y, Liu Y. A multi-color and white-light emissive cucurbituril/terpyridine/lanthanide supramolecular nanofiber. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Movchan TG, Rusanov AI, Plotnikova EV. Calculation Aspects of Diffusion Coefficients in Micellar Solutions of Ionic Surfactants. COLLOID JOURNAL 2019. [DOI: 10.1134/s1061933x1806008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
A Supramolecular Approach for Enhanced Antibacterial Activity and Extended Shelf-life of Fluoroquinolone Drugs with Cucurbit[7]uril. Sci Rep 2018; 8:13925. [PMID: 30224752 PMCID: PMC6141578 DOI: 10.1038/s41598-018-32312-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022] Open
Abstract
The host-guest interactions of a third-generation fluoroquinone, danofloxacin (DOFL), with the macrocyclic host cucurbit[7]uril (CB7) have been investigated at different pH values (~3.5, 7.5, and 10). The photophysical properties have been positively affected, that is, the fluorescence yield and lifetime increased, as well as the photostability of DOFL improved in the presence of CB7. The antibacterial activity of DOFL is enhanced in the presence of CB7, as tested against four pathogenic bacteria; highest activity has been found towards B. cereus and E. coli, and lower activity towards S. aureus and S. typhi. The antibacterial activity of two additional second-generation fluoroquinones, i.e., norfloxacin and ofloxacin, has also been investigated in the absence as well as the presence of CB7 and compared with that of DOFL. In case of all drugs, the minimum inhibitory concentration (MIC) was reduced 3–5 fold in the presence of CB7. The extended shelf-life (antibacterial activity over time) of the fluoroquinone drugs in the presence of CB7, irrespective of four types of bacteria, can be attributed to the enhanced photostability of their CB7 complexes, which can act as better antibiotics with a longer expiry date than uncomplexed DOFL.
Collapse
|
13
|
Morozova JE, Syakaev VV, Shalaeva YV, Ermakova AM, Nizameev IR, Kadirov MK, Konovalov AI. Nanoassociates of amphiphilic carboxy-calixresorcinarene and cetylpyridinuim chloride: The search of optimal macrocycle/surfactant molar ratio. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Hu C, Ma N, Li F, Fang Y, Liu Y, Zhao L, Qiao S, Li X, Jiang X, Li T, Shen F, Huang Y, Luo Q, Liu J. Cucurbit[8]uril-Based Giant Supramolecular Vesicles: Highly Stable, Versatile Carriers for Photoresponsive and Targeted Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4603-4613. [PMID: 29333854 DOI: 10.1021/acsami.8b00297] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Highly stable giant supramolecular vesicles were constructed by hierarchical self-assembly of cucurbit[8]uril (CB[8])-based supra-amphiphiles for photoresponsive and targeted intracellular drug delivery. These smart vesicles can encapsulate the model drugs with high loading efficiencies and then release them by manipulating photoswitchable CB[8] heteroternary complexation to regulate the formation and dissociation of supra-amphiphiles that cause dramatic morphological changes of the assemblies to achieve remote optically controlled drug delivery. More importantly, the confocal microscopy analysis, cellular uptake experiment, and cell viability assay have shown that the giant vesicles are able to maintain the structural integrity and stability within actual cellular environments and exhibit obvious advantages for intracellular drug delivery such as low toxicity, easy surface modification for tumor-targeting selectivity, and rapid internalization into different human cancer cell lines. A synergistic mechanism that integrates multiple pathways including energy-dependent endocytosis, macropinocytosis, cholesterol-dependent endocytosis, and microtubule-related endocytosis was determined to facilitate the internalization process. Moreover, cytotoxicity experiments and flow cytometric analysis have demonstrated that the doxorubicin hydrochloride-loaded vesicles exhibited a significant therapeutic effect for tumor cells upon UV light irradiation, which makes the photoresponsive system more promising for potential applications in pharmaceutically relevant fields.
Collapse
Affiliation(s)
- Cuihua Hu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| | - Ningning Ma
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| | - Yu Fang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| | - Yao Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| | - Linlu Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| | - Shanpeng Qiao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| | - Xiumei Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| | - Xiaojia Jiang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| | - Tiezhu Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| | - Fangzhong Shen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| | - Yibing Huang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University , 2699 Qianjin Road, Changchun 130012, China
| |
Collapse
|
15
|
Abstract
Abstract
Assembly of pyridine-2-aldoxime drug with cucurbit [6]uril (CB[6]) has been investigated by 1H-NMR and 2D-ROESY NMR, UV-Vis spectroscopy, FT-IR spectroscopy, surface tension and conductivity measurements in aqueous saline environment. The distinct cationic receptor feature and the cavity dimension of the CB[6] emphasize that the macro-cyclic host molecule remain as complex with the nerve stimulus drug molecule. The results obtained from surface tension and specific conductivity measurements suggest 1:1 inclusion complex formation between drug and CB[6]. The stability constant evaluated by UV-Vis spectroscopic approach is 2.21×105 M−1 at 298.15 K, which indicates that the complex is sufficiently stable at physiological temperature.
Collapse
|
16
|
Morozova JE, Syakaev VV, Shalaeva YV, Ermakova AM, Nizameev IR, Kadirov MK, Voloshina AD, Zobov VV, Antipin IS, Konovalov AI. Unusual nanosized associates of carboxy-calix[4]resorcinarene and cetylpyridinium chloride: the macrocycle as a glue for surfactant micelles. SOFT MATTER 2017; 13:2004-2013. [PMID: 28197613 DOI: 10.1039/c7sm00004a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The association of cetylpyridinium chloride (CPC) micelles in the presence of octaacetated tetraphenyleneoxymethylcalix[4]resorcinarene (CR) leads to the formation of unusual spherical supramolecular nanoparticles (SNPs). Within the range of CR/CPC molar ratios from 10/1 to 1/10 (except for 1/8), CR, acting as a counterion, decreases the critical micelle concentration of CPC by one order of magnitude and leads to the formation of SNPs with an average hydrodynamic radius of 164 nm and an average zeta potential of -60 mV. The formation of SNPs was studied by NMR FT-PGSE and 2D NOESY, DLS, TEM, fluorimetry, and UV-Vis methods. The stability of SNPs at different temperatures and pH values and in the presence of electrolytes was investigated. The specificity of the interactions of the SNPs with substrates that were preferentially bound by a macrocycle or CPC micelle was studied. The enhancement of cation dye binding in the presence of SNPs is shown. The presented supramolecular system may serve as a nanocapsule for water-soluble and water-insoluble compounds.
Collapse
Affiliation(s)
- Ju E Morozova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - V V Syakaev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - Ya V Shalaeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - A M Ermakova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - I R Nizameev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan National Research Technical University, K. Marx str. 10, 420111 Kazan, Russian Federation
| | - M K Kadirov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - A D Voloshina
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - V V Zobov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - I S Antipin
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - A I Konovalov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| |
Collapse
|
17
|
Shinde MN, Khurana R, Barooah N, Bhasikuttan AC, Mohanty J. Metal ion-induced supramolecular pKa tuning and fluorescence regeneration of a p-sulfonatocalixarene encapsulated neutral red dye. Org Biomol Chem 2017; 15:3975-3984. [DOI: 10.1039/c7ob00506g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supramolecular pKa shift and fluorescence quenching in a neutral red dye in the presence of p-sulfonatocalix[4/6]arenes have been demonstrated, which are relevant for the off–on switch, ion sensitive electrodes and drug delivery vehicles.
Collapse
Affiliation(s)
- M. N. Shinde
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
- Student under BARC-SPPU PhD Program
| | - R. Khurana
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
- Homi Bhabha National Institute
| | - N. Barooah
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - A. C. Bhasikuttan
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
- Homi Bhabha National Institute
| | - J. Mohanty
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
- Homi Bhabha National Institute
| |
Collapse
|
18
|
Selective heteroaromatic nitrogen base promoted chromium(VI) oxidation of isomeric pentanols in aqueous micellar media at room temperature. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.07.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Ahmed SA, Chatterjee A, Maity B, Seth D. Surfactants induced release of a red emitting dye from the nanocavity of a molecular container: A spectroscopic and calorimetric study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 161:59-70. [PMID: 27208747 DOI: 10.1016/j.jphotobiol.2016.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/19/2016] [Accepted: 05/09/2016] [Indexed: 11/25/2022]
Abstract
Supramolecular interaction of a red emitting dye Nile blue A (NBA) with Cucurbit[7]uril (CB7) in aqueous solution was studied and the release of the dye from the hydrophobic cavity of CB7 was reported. To investigate the supramolecular host-guest complex formation and release of dye, we have used the steady state absorption, fluorescence and time resolved fluorescence emission spectroscopy, (1)H NMR spectroscopy and isothermal titration calorimetry (ITC). The spectral properties of NBA were changed in the presence of CB7. The change in spectral features of NBA in presence of CB7 indicates the formation of supramolecular host-guest complexes. By using the SED equation the diameter of the complex was estimated. The complex formation further affirmed by the (1)H NMR study. Upfield and downfield shifts of the protons of NBA was observed in both the aliphatic and aromatic region. From the ITC measurement, we have drawn up the forces involved for the complexation of NBA with CB7. We have studied the release of NBA from the hydrophobic cavity of CB7 by using ionic, neutral surfactants and ionic liquid with the help of spectroscopic and calorimetric techniques. It is observed that on addition of SDS and ionic liquid (<cmc) ion-pair formation takes place between NBA and surfactant monomer whereas, it was not observed for neutral and cationic surfactant. Above cmc of the surfactants, complex is formed between NBA and micelle.
Collapse
Affiliation(s)
- Sayeed Ashique Ahmed
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Aninda Chatterjee
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Banibrata Maity
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| |
Collapse
|
20
|
Karim AA, Dou Q, Li Z, Loh XJ. Emerging Supramolecular Therapeutic Carriers Based on Host-Guest Interactions. Chem Asian J 2016; 11:1300-21. [PMID: 26833861 DOI: 10.1002/asia.201501434] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/23/2016] [Indexed: 02/02/2023]
Abstract
Recent advances in host-guest chemistry have significantly influenced the construction of supramolecular soft biomaterials. The highly selective and non-covalent interactions provide vast possibilities of manipulating supramolecular self-assemblies at the molecular level, allowing a rational design to control the sizes and morphologies of the resultant objects as carrier vehicles in a delivery system. In this Focus Review, the most recent developments of supramolecular self-assemblies through host-guest inclusion, including nanoparticles, micelles, vesicles, hydrogels, and various stimuli-responsive morphology transition materials are presented. These sophisticated materials with diverse functions, oriented towards therapeutic agent delivery, are further summarized into several active domains in the areas of drug delivery, gene delivery, co-delivery and site-specific targeting deliveries. Finally, the possible strategies for future design of multifunctional delivery carriers by combining host-guest chemistry with biological interface science are proposed.
Collapse
Affiliation(s)
- Anis Abdul Karim
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, 08-03, Singapore, 138634, Singapore
| | - Qingqing Dou
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, 08-03, Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, 08-03, Singapore, 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, 08-03, Singapore, 138634, Singapore. .,Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore. .,Singapore Eye Research Institute, 20 College Road, Singapore, 169856, Singapore.
| |
Collapse
|
21
|
Hetero-aromatic Nitrogen Base Promoted Cr(VI) Oxidation of Butanal in Aqueous Micellar Medium at Room Temperature and Atmospheric Pressure. J SOLUTION CHEM 2016. [DOI: 10.1007/s10953-016-0434-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Zhang Y, Qi M, Fu R. High-efficiency cucurbit[7]uril capillary column for gas chromatographic separations of structural and positional isomers. RSC Adv 2016. [DOI: 10.1039/c6ra05290h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The CB7–OV capillary column by incorporation of CB7 into OV-210 achieved extremely high column efficiency and outstanding resolving performance for various types of structural and positional isomers.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry
- Beijing Institute of Technology
| | - Meiling Qi
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry
- Beijing Institute of Technology
| | - Ruonong Fu
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry
- Beijing Institute of Technology
| |
Collapse
|
23
|
Malik S, Saha B. Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Arabinose in Aqueous Media at Room Temperature. TENSIDE SURFACT DET 2015. [DOI: 10.3139/113.110403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractThe present paper describes the kinetics and mechanism for oxidation of D-arabinose by Cr(VI) in the presence of a micellar media. The anionic surfactant sodium dodecyl sulphate (SDS) and nonionic surfactant Triton-X-100 (TX-100) accelerate the process while the cationic surfactant N-cetylpyridinium chloride (CPC) retards the reaction. A suitable mechanism has been proposed. The reaction constants involved in different steps of the mechanism have been calculated. Formic acid and erythronic acid were reported as the products of oxidation of the sugar.
Collapse
|
24
|
de León AS, Muñoz-Bonilla A, Gallardo A, Fernandez-Mayoralas A, Bernard J, Rodríguez-Hernández J. Straightforward functionalization of breath figures: Simultaneous orthogonal host–guest and pH-responsive interfaces. J Colloid Interface Sci 2015. [DOI: 10.1016/j.jcis.2015.06.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Saleh N, Al-Handawi MB, Bufaroosha MS, Assaf KI, Nau WM. Tuning protonation states of tripelennamine antihistamines by cucurbit[7]uril. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Na'il Saleh
- Chemistry Department, College of Science; United Arab Emirates University; Al-Ain United Arab Emirates
| | - Marieh B. Al-Handawi
- Chemistry Department, College of Science; United Arab Emirates University; Al-Ain United Arab Emirates
| | - Muna S. Bufaroosha
- Chemistry Department, College of Science; United Arab Emirates University; Al-Ain United Arab Emirates
| | - Khaleel I. Assaf
- Department of Life Sciences and Chemistry; Jacobs University Bremen; Campus Ring 1 D-28759 Bremen Germany
| | - Werner M. Nau
- Department of Life Sciences and Chemistry; Jacobs University Bremen; Campus Ring 1 D-28759 Bremen Germany
| |
Collapse
|
26
|
Bhadani A, Rane J, Veresmortean C, Banerjee S, John G. Bio-inspired surfactants capable of generating plant volatiles. SOFT MATTER 2015; 11:3076-82. [PMID: 25739905 DOI: 10.1039/c5sm00157a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plants are able to synthesize, store and release lipophilic organic molecules known as plant volatiles (PVs) utilizing specific biological pathways and different enzymes which play vital roles in the plant's defence and in dealing with biotic and abiotic stress situations. The process of generation, storage and release of PVs by plants acquired during the course of evolution is a very complex phenomenon. Bio-inspired molecular design of farnesol-based surfactants facilitates similar production, storage and release of PVs. The designed molecules adsorb at air-water interface and self-aggregate into micelles in aqueous system. The structural design of the molecules allows them to self-activate in water via intramolecular cation-π interactions. The activated molecules undergo molecular rearrangements generating volatile organic molecules both at interface and inside the micelle core. The molecules adsorbed at the interface initially release the formed volatile molecules creating vacant space at interface, thus thermodynamically directing the micelle to release the manufactured volatile products.
Collapse
Affiliation(s)
- Avinash Bhadani
- The City College Center for Discovery and Innovation & Department of Chemistry, The City University of New York, New York, NY 10031, USA.
| | | | | | | | | |
Collapse
|
27
|
Shinde MN, Dutta Choudhury S, Barooah N, Pal H, Bhasikuttan AC, Mohanty J. Metal-ion-mediated assemblies of thiazole orange with cucurbit[7]uril: a photophysical study. J Phys Chem B 2015; 119:3815-23. [PMID: 25658219 DOI: 10.1021/jp512802u] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The formation of molecular superstructures by metal-ion-mediated noncovalent self-assembly has been demonstrated using the macrocycle, cucurbit[7]uril (CB7), and the dye, thiazole orange (TO), as building blocks. Interestingly, the association of these molecular building blocks can be tuned by the chemical environment, leading to self-assembled structures of different stoichiometries, which is supported by absorption, fluorescence, (1)H NMR, and AFM measurements. Most importantly, the self-assembly process of the CB7/TO/metal ion system is observed to be remarkably different for alkali (Na(+)) and alkaline earth (Ca(2+)) metal ions. Fluorescence enhancement is observed in the presence of Ca(2+) ions, which is attributed to the formation of short dimeric structures composed of two 1:1 CB7-TO complexes. Solution turbidity is detected in the presence of Na(+) ions, which is proposed to be due to the formation of extended structures by the assembly of many 1:1 CB7-TO complexes.
Collapse
Affiliation(s)
- Meenakshi N Shinde
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mod. Lab., Mumbai 400085, Maharashtra, India
| | | | | | | | | | | |
Collapse
|
28
|
Gürbüz S, Idris M, Tuncel D. Cucurbituril-based supramolecular engineered nanostructured materials. Org Biomol Chem 2015; 13:330-47. [DOI: 10.1039/c4ob02065k] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanostructured materials, including nanoparticles, nanocomposites, vesicles, and rods, have been prepared by taking advantage of the interesting features of cucurbituril homologues.
Collapse
Affiliation(s)
- Sinem Gürbüz
- Department of Chemistry
- Bilkent University
- 06800 Ankara
- Turkey
| | - Muazzam Idris
- Department of Chemistry
- Bilkent University
- 06800 Ankara
- Turkey
| | - Dönüs Tuncel
- Department of Chemistry
- Bilkent University
- 06800 Ankara
- Turkey
- Institute of Material Science and Nanotechnology
| |
Collapse
|
29
|
Ma X, Zhao Y. Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chem Rev 2014; 115:7794-839. [PMID: 25415447 DOI: 10.1021/cr500392w] [Citation(s) in RCA: 815] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xing Ma
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yanli Zhao
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
30
|
Mondal JH, Ghosh T, Ahmed S, Das D. Dual self-sorting by cucurbit[8]uril to transform a mixed micelle to vesicle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11528-11534. [PMID: 25221863 DOI: 10.1021/la502644v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A systematic study on the cucurbit[8]uril (CB[8]) assisted transformation of a mixed micellar system of CTAB and a viologen surfactant to vesicles is depicted. The micelle to vesicle transformation is assisted by a charge transfer complex mediated ternary complexation between the viologen group of the surfactant, CB[8], and 2,6-dihydroxynaphthalene. In the presence of CB[8], both the surfactants formed U-shaped binary inclusion complexes inside the CB[8] cavity, and no selective binding is observed. Upon addition of DHN, CB[8] showed two different self-sorting mechanisms. The U-shaped binary complex with CTAB breaks down, and CB[8] moves toward the viologen headgroup of the other surfactant to form a stable ternary complex. In the case of the viologen surfactant, CB[8] moved toward the headgroup leaving the hydrophobic tail free in order to form the ternary complex. The mechanistic detail of this micelle to vesicle transformation is revealed through methodical studies using (1)H and DOSY NMR, ESI-MS, ITC, and other instrumental techniques.
Collapse
Affiliation(s)
- Julfikar Hassan Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Kamrup, Assam 781039, India
| | | | | | | |
Collapse
|