1
|
Yabu H, Yokokura S, Shimizu S. Gold Nanoparticle-Decorated Polymer Particles for High-Optical-Density Immunoassay Probes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3268-3273. [PMID: 38291580 DOI: 10.1021/acs.langmuir.3c03890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
To realize a highly sensitive immunoassay, high-optical-density probes conjugated with antibodies for target antigens are needed to increase the detectability of antigen-antibody complex formation. In this work, gold nanoparticle (NP)-decorated polymer (GNDP) particles were successfully prepared by mixing positively charged polymer particles and negatively charged Au NPs. GNDP particles decorated with NPs of 20 nm in size had higher optical density than the original Au NPs and GNDPs decorated with smaller Au NPs. Using GNDP particles as a probe, a highly sensitive immunoassay for influenza H1N1 hemagglutinin was realized with a minimum detectable concentration of 32.5 pg/mL. These results indicate that GNDP particles have high potential as an immunoassay probe that can be used in practical immunoassay systems for detecting a wide variety of antigens.
Collapse
Affiliation(s)
- Hiroshi Yabu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Seiji Yokokura
- Soken Chemical & Engineering Company, Limited, 3-29-5 Takada, Toshima-ku, Tokyo 171-8531, Japan
| | - Seiichi Shimizu
- Soken Chemical & Engineering Company, Limited, 3-29-5 Takada, Toshima-ku, Tokyo 171-8531, Japan
| |
Collapse
|
2
|
Lee G, Park G, Park JG, Bak Y, Lee C, Yoon DK. Universal Strategy for Inorganic Nanoparticle Incorporation into Mesoporous Liquid Crystal Polymer Particles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307388. [PMID: 37991422 DOI: 10.1002/adma.202307388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Indexed: 11/23/2023]
Abstract
Developing inorganic-organic composite polymers necessitates a new strategy for effectively controlling shape and optical properties while accommodating guest materials, as conventional polymers primarily act as carriers that transport inorganic substances. Here, a universal approach is introduced utilizing mesoporous liquid crystal polymer particles (MLPs) to fabricate inorganic-organic composites. By leveraging the liquid crystal phase, morphology and optical properties are precisely controlled through the molecular-level arrangement of the host, here monomers. The controlled host material allows the synthesis of inorganic particles within the matrix or accommodation of presynthesized nano-inorganic particles, all while preserving the intrinsic properties of the host material. This composite material surpasses the functional capabilities of the polymer alone by sequentially integrating one or more inorganic materials, allowing for the incorporation of multiple functionalities within a single polymer particle. Furthermore, this approach effectively mitigates the drawbacks associated with guest materials resulting in a substantial enhancement of composite performance. The presented approach is anticipated to hold immense potential for various applications in optoelectronics, catalysis, and biosensing, addressing the evolving demands of the society.
Collapse
Affiliation(s)
- Geunjung Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Geonhyeong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jesse G Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeongseo Bak
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Fukui Y, Fujino K, Fujimoto K. One-pot generation of gold-polymer hybrid nanoparticles using a miniemulsion reactor system. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Li S, Opdam J, G J van der Ven L, Tuinier R, Catarina C Esteves A. What is the role of PEO chains in the assembly of core-corona supraparticles in aqueous dispersions? J Colloid Interface Sci 2023; 646:461-471. [PMID: 37207427 DOI: 10.1016/j.jcis.2023.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023]
Abstract
Hypothesis The assembly of core-corona supraparticles in aqueous dispersions has been regularly assisted by auxiliary monomers/oligomers which modify the individual particles with, e.g., surface grafting of polyethylene oxide (PEO) chains or other hydrophilic monomers. However, this modification complicates the preparation and purification procedures and increases potential upscaling efforts. Hybrid polymer-silica core-corona supracolloids could be more simply assembled if the PEO chains from surfactants, typically used by default as polymer stabilizers, concomitantly act as assembly promotors. The supracolloids assembly could therefore be more easily achieved without requiring particles functionalization or post-purification steps. Methods The self-assembly of supracolloidal particles prepared with PEO-surfactant stabilized (Triton X-405) and/or PEO-grafted polymer particles is compared to differentiate the roles of the PEO chains in the assembly of core-corona supraparticles. Using time-resolved dynamic light scattering (DLS) and cryogenic transmission electron microscopy(cryo-TEM), the effect of concentration of PEO chains (from surfactant) on the kinetics and dynamics of supracolloids assembly is investigated. Self-consistent field (SCF) lattice theory was used to numerically study the distribution of PEO chains at the interfaces present in the supracolloidal dispersions. Findings The PEO based surfactant can be used as assembly promoter of core-corona hybrid supracolloids due to its amphiphilic nature and via establishing hydrophobic interactions. The concentration of the PEO surfactant, and especially the PEO chains distribution over the different interfaces, crucially affect the supracolloids assembly. A simplified pathway for preparing hybrid supracolloidal particles with a well-controlled corona coverage over polymer cores is presented.
Collapse
Affiliation(s)
- Siyu Li
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Joeri Opdam
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Leendert G J van der Ven
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Remco Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - A Catarina C Esteves
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
5
|
Pal K, Chakroborty S, Panda P, Nath N, Soren S. Environmental assessment of wastewater management via hybrid nanocomposite matrix implications-an organized review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76626-76643. [PMID: 36168009 DOI: 10.1007/s11356-022-23122-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Pollution of water is currently a significant worry for scientific communities all over the world, and it is imperative that this problem be solved as quickly as possible. It is today recognized to be one of the most important foci of research worldwide. The present dilemma of clean, fresh waste is being addressed by the subsequent ejection of impurities from polluted water following recycling. There are several effective solutions that have been promoted as a solution to this problem. Even if the present procedures for wastewater treatment degrade a wide variety of effluents efficiently, these protocols still have some kind of restrictions. The most cutting-edge research in this area is being done on the subject of nanotechnology, which has an astounding number of potential uses, one of which is the treatment of wastewater. One of the value-added alternatives utilized for water purification by eliminating the many types of pollutants found in wastewater is the green synthesis of nanocomposites in adsorbents, magnetic separation, photocatalysts, and other similar processes. Within the scope of this study, the most significant discoveries of nanocomposites to date that have been made towards the remediation of wastewater are highlighted.
Collapse
Affiliation(s)
- Kaushik Pal
- Department of Physics, University Centre for Research and Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | | | - Pravati Panda
- Department of Chemistry, RIE, Bhubaneswar, Odisha, 751022, India
| | - Nibedita Nath
- Department of Chemistry, D.S. degree College, Laida, Sambalpur, Odisha, India
| | - Siba Soren
- Department of Chemistry, Ravenshaw University, Cuttack, Odisha, 753003, India
| |
Collapse
|
6
|
Eren ED, Moradi MA, van Rijt MMJ, Oosterlaken BM, Friedrich H, de With G. From binary AB to ternary ABC supraparticles. MATERIALS HORIZONS 2022; 9:2572-2580. [PMID: 35894556 DOI: 10.1039/d2mh00574c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Control over the assembly and morphology of nanoscale functional building blocks is of great importance to hybrid and porous nanomaterials. In this paper, by combining different types of spherical nanoparticles with different size ratios in a hierarchical assembly process which allows us to control the final structure of multi-component assemblies, we discuss self-assembly of an extensive range of supraparticles, labelled as AB particles, and an extension to novel ternary particles, labelled as ABC particles. For supraparticles, the organization of small nanoparticles is known to be inherently related to the size ratio of building blocks. Therefore, we studied the formation of supraparticles prepared by colloidal self-assembly using small silica nanoparticles (SiO2 NPs) attached on the surface of large polystyrene latex nanoparticles (PSL NPs) with a wide size ratio range for complete and partial coverage, by controlling the electrostatic interactions between the organic and inorganic nanoparticles and their concentrations. In this way hierarchically ordered, stable supraparticles, either fully covered or partially covered, were realized. The partially covered, stable AB supraparticles offer the option to create ABC supraparticles of which the fully covered shell contains two different types of nanoparticles. This has been experimentally confirmed using iron oxide (Fe3O4) nanoparticles together with silica nanoparticles as shell particles on polystyrene core particles. Cryo-electron tomography was used to visualize the AB binary and ABC ternary supraparticles and to determine the three-dimensional structural characteristics of supraparticles formed under different conditions.
Collapse
Affiliation(s)
- E Deniz Eren
- Laboratory of Physical Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Mohammad-Amin Moradi
- Laboratory of Physical Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Mark M J van Rijt
- Laboratory of Physical Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Bernette M Oosterlaken
- Laboratory of Physical Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Heiner Friedrich
- Laboratory of Physical Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
7
|
Li Y, Ma X, Ma J, Zhang Z, Niu Z, Chen F. Facile fabrication and SERS performance of polymer/Ag core-shell microspheres via the reverse breath figure accompanied by in situ reduction. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Höller RPM, Jahn IJ, Cialla-May D, Chanana M, Popp J, Fery A, Kuttner C. Biomacromolecular-Assembled Nanoclusters: Key Aspects for Robust Colloidal SERS Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57302-57313. [PMID: 33306362 DOI: 10.1021/acsami.0c16398] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Superstructures of gold nanospheres offer augmented surface-enhanced Raman scattering (SERS) activities beyond the limits of their individual building blocks. However, for application as reliable and quantitative colloidal SERS probes, some key aspects need to be considered to combine efficiency and robustness with respect to hotspot excitation, analyte adsorption, signal stability, and colloidal stability. For this purpose, we studied core/satellite superstructures with spherical cores as a simple optically isotropic model system. Superstructures of different core sizes were assembled using bovine serum albumin (BSA), which serves as a non-specific biomacromolecular linker and provides electrosteric stabilization. We show that the "noisy" spectral footprint of the protein coating may serve as an internal standard, which allows accurate monitoring of the adsorption kinetics of analytes. The SERS activity was quantified using 4-mercaptobenzoic acid (MBA) as an aromatic low-molecular-weight model analyte. The molar SERS efficiency was studied by variation of the particle (Au0) and analyte concentrations with a limit of detection of 10-7 M MBA. The practical importance of colloidal stability for robust measurement conditions was demonstrated by comparing the superstructures with their citrate-stabilized or protein-coated building blocks. We explain the theoretical background of hotspot formation by a leader/follower relationship of asymmetric control between the core and the satellites and give practical guidelines for robust colloidal SERS sensing probes.
Collapse
Affiliation(s)
- Roland P M Höller
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| | - Izabella J Jahn
- Leibniz Institute of Photonics Technology (IPHT), Member of the Research Alliance "Leibniz Health Technologies", Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonics Technology (IPHT), Member of the Research Alliance "Leibniz Health Technologies", Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Munish Chanana
- Swiss Wood Solutions AG, Überlandstr. 129, 8600 Dübendorf, Switzerland
| | - Jürgen Popp
- Leibniz Institute of Photonics Technology (IPHT), Member of the Research Alliance "Leibniz Health Technologies", Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Kuttner
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
9
|
Hu M, Hsu CP, Isa L. Particle Surface Roughness as a Design Tool for Colloidal Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11171-11182. [PMID: 32897078 DOI: 10.1021/acs.langmuir.0c02050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Control over the surface roughness of colloidal particles offers exciting opportunities to tailor the properties and the processing of a broad range of soft matter systems. Moreover, identifying surface roughness as a design parameter reveals the possibility to connect seemingly distinct phenomena and materials via the role played by roughness effects. In this feature article, we concisely review some approaches to synthesize and characterize rough colloidal particles, with a focus on model spherical colloids. We then discuss the impact that surface roughness has on both the high-shear rheology of dense suspensions and the stabilization of Pickering emulsions. Commenting on developments of our own research, we aim to offer an original perspective for a property-oriented development of colloidal particles that transcends classical divisions between materials and processes toward innovative solutions.
Collapse
Affiliation(s)
- Minghan Hu
- Department of Materials ETH Zurich, Laboratory for Soft Materials and Interfaces, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Chiao-Peng Hsu
- Department of Materials ETH Zurich, Laboratory for Soft Materials and Interfaces, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Lucio Isa
- Department of Materials ETH Zurich, Laboratory for Soft Materials and Interfaces, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Kim DI, Park JH, Seo H, Hong SG, Kim HJ, Ahn H, Kim J, Moon GD, Hyun DC. Polymer particles with controllable and complex structures for high immobilization of noble-metal nanoparticles. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Abstract
The strategies used for the preparation of raspberry-like polymer composite particles are summarized comprehensively.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Shuxia Zhai
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
12
|
Celentano M, Jakhmola A, Netti PA, Vecchione R. Irreversible photo-Fenton-like triggered agglomeration of ultra-small gold nanoparticles capped with crosslinkable materials. NANOSCALE ADVANCES 2019; 1:2146-2150. [PMID: 36131978 PMCID: PMC9418340 DOI: 10.1039/c8na00353j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 06/15/2023]
Abstract
A photo-Fenton-like process can promote the agglomeration and LSPR red-shifting of ultra-small gold nanoparticles by triggering a crosslink-degradation pathway that involves the surface coating, Fe(iii)-citrate and hydrogen peroxide. Applications may range from controlled photo-deposition of active materials to asynchronous sensing technologies to light-focused microfabrication.
Collapse
Affiliation(s)
- Maurizio Celentano
- Istituto Italiano di Tecnologia, IIT@CRIB Largo Barsanti e Matteucci 53 80125 Napoli Italy
| | - Anshuman Jakhmola
- Istituto Italiano di Tecnologia, IIT@CRIB Largo Barsanti e Matteucci 53 80125 Napoli Italy
| | - Paolo Antonio Netti
- Istituto Italiano di Tecnologia, IIT@CRIB Largo Barsanti e Matteucci 53 80125 Napoli Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Universitã di Napoli Federico II Piazzale Tecchio 80 80125 Napoli Italy
| | - Raffaele Vecchione
- Istituto Italiano di Tecnologia, IIT@CRIB Largo Barsanti e Matteucci 53 80125 Napoli Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Universitã di Napoli Federico II Piazzale Tecchio 80 80125 Napoli Italy
| |
Collapse
|
13
|
Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1646-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Kim DY, Jin SH, Jeong SG, Lee B, Kang KK, Lee CS. Microfluidic preparation of monodisperse polymeric microspheres coated with silica nanoparticles. Sci Rep 2018; 8:8525. [PMID: 29867182 PMCID: PMC5986865 DOI: 10.1038/s41598-018-26829-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/09/2018] [Indexed: 01/17/2023] Open
Abstract
The synthesis of organic-inorganic hybrid particles with highly controlled particle sizes in the micrometer range is a major challenge in many areas of research. Conventional methods are limited for nanometer-scale fabrication because of the difficulty in controlling the size. In this study, we present a microfluidic method for the preparation of organic-inorganic hybrid microparticles with poly (1,10-decanediol dimethacrylate-co-trimethoxysillyl propyl methacrylate) (P (DDMA-co-TPM)) as the core and silica nanoparticles as the shell. In this approach, the droplet-based microfluidic method combined with in situ photopolymerization produces highly monodisperse organic microparticles of P (DDMA-co-TPM) in a simple manner, and the silica nanoparticles gradually grow on the surface of the microparticles prepared via hydrolysis and condensation of tetraethoxysilane (TEOS) in a basic ammonium hydroxide medium without additional surface treatment. This approach leads to a reduction in the number of processes and allows drastically improved size uniformity compared to conventional methods. The morphology, composition, and structure of the hybrid microparticles are analyzed by SEM, TEM, FT-IR, EDS, and XPS, respectively. The results indicate the inorganic shell of the hybrid particles consists of SiO2 nanoparticles of approximately 60 nm. Finally, we experimentally describe the formation mechanism of a silica-coating layer on the organic surface of polymeric core particles.
Collapse
Affiliation(s)
- Dong-Yeong Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Si Hyung Jin
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Seong-Geun Jeong
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Byungjin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Kyoung-Ku Kang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
15
|
Borzenkov M, Chirico G, Collini M, Pallavicini P. Gold Nanoparticles for Tissue Engineering. ENVIRONMENTAL NANOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-76090-2_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Ladanov M, Cheemalapati S, Wang H, Yuan Y, Koria P, Pyayt A. Plasmono-magnetic material for precise photothermal heating. RSC Adv 2018; 8:2660-2666. [PMID: 35541467 PMCID: PMC9077408 DOI: 10.1039/c7ra08276b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/27/2017] [Indexed: 11/21/2022] Open
Abstract
Noble metal nanoparticles have been extensively studied as photo-sensitive agents for photothermal cancer therapy. Precise control over the size and shape of the nanoparticles allowed strong optical absorption and efficient heat generation necessary for destroying a tumor to be achieved. However, one of the fundamental challenges of application of the nanoparticles towards photothermal cancer therapy is low specificity in the targeting tumor tissue in comparison with the healthy tissue and the resulting unfavorable biodistribution of the nanoparticles. Additional levels of control over particle distribution can be achieved by making the particles magnetic and using external magnets to control their accumulation in a tumor. Since the direct synthesis of particles with a magnetic core and a metallic shell limits the options for design and fine-tuning of plasmonic properties, the alternative approaches to the design of such materials have to be investigated. Here we propose and demonstrate a new design of a hybrid plasmono-magnetic material for photothermal heating created by grafting Au nanocages onto a surface of magnetic micro-beads. Next, we confirm its dual functionality in in vitro studies and show that individual hybrid particles can be magnetically controlled with a precision of a few micrometers and precisely destroy individual cells using plasmonic heating. We demonstrated a new hybrid plasmono-magnetic material for photothermal heating created by grafting Au nanocages onto a surface of magnetic micro-beads.![]()
Collapse
Affiliation(s)
- Mikhail Ladanov
- Department of Chemical and Biomedical Engineering
- University of South Florida
- Tampa
- USA
| | - Surya Cheemalapati
- Department of Chemical and Biomedical Engineering
- University of South Florida
- Tampa
- USA
| | - Hao Wang
- Department of Chemical and Biomedical Engineering
- University of South Florida
- Tampa
- USA
| | - Yuan Yuan
- Department of Chemical and Biomedical Engineering
- University of South Florida
- Tampa
- USA
| | - Piyush Koria
- Department of Chemical and Biomedical Engineering
- University of South Florida
- Tampa
- USA
| | - Anna Pyayt
- Department of Chemical and Biomedical Engineering
- University of South Florida
- Tampa
- USA
| |
Collapse
|
17
|
Guo Y, van Ravensteijn BGP, Evers CHJ, Kegel WK. pH Reversible Encapsulation of Oppositely Charged Colloids Mediated by Polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4551-4558. [PMID: 28419800 PMCID: PMC5427486 DOI: 10.1021/acs.langmuir.7b00845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Indexed: 05/30/2023]
Abstract
We report the first example of reversible encapsulation of micron-sized particles by oppositely charged submicron smaller colloids. The reversibility of this encapsulation process is regulated by pH-responsive poly(acrylic acid) (PAA) present in solution. The competitive adsorption between the small colloids and the poly(acrylic acid) on the surface of the large colloids plays a key role in the encapsulation behavior of the system. pH offers an experimental knob to tune the electrostatic interactions between the two oppositely charged particle species via regulation of the charge density of the poly(acrylic acid). This results in an increased surface coverage of the large colloids by the smaller colloids when decreasing pH. Furthermore, the poly(acrylic acid) also acts as a steric barrier limiting the strength of the attractive forces between the oppositely charged particle species, thereby enabling detachment of the smaller colloids. Finally, based on the pH tunability of the encapsulation behavior and the ability of the small colloids to detach, reversible encapsulation is achieved by cycling pH in the presence of the PAA polyelectrolytes. The role of polyelectrolytes revealed in this work provides a new and facile strategy to control heteroaggregation behavior between oppositely charged colloids, paving the way to prepare sophisticated hierarchical assemblies.
Collapse
|
18
|
Sansanaphongpricha K, DeSantis MC, Chen H, Cheng W, Sun K, Wen B, Sun D. Multibuilding Block Janus Synthesized by Seed-Mediated Self-Assembly for Enhanced Photothermal Effects and Colored Brownian Motion in an Optical Trap. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602569. [PMID: 27873448 DOI: 10.1002/smll.201602569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/16/2016] [Indexed: 06/06/2023]
Abstract
The asymmetrical features and unique properties of multibuilding block Janus nanostructures (JNSs) provide superior functions for biomedical applications. However, their production process is very challenging. This problem has hampered the progress of JNS research and the exploration of their applications. In this study, an asymmetrical multibuilding block gold/iron oxide JNS has been generated to enhance photothermal effects and display colored Brownian motion in an optical trap. JNS is formed by seed-mediated self-assembly of nanoparticle-loaded thermocleavable micelles, where the hydrophobic backbones of the polymer are disrupted at high temperatures, resulting in secondary self-assembly and structural rearrangement. The JNS significantly enhances photothermal effects compared to their homogeneous counterpart after near-infrared (NIR) light irradiation. The asymmetrical distribution of gold and iron oxide within JNS also generates uneven thermophoretic force to display active colored Brownian rotational motion in a single-beam gradient optical trap. These properties indicate that the asymmetrical JNS could be employed as a strong photothermal therapy mediator and a fuel-free nanoscale Janus motor under NIR light.
Collapse
Affiliation(s)
| | - Michael C DeSantis
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hongwei Chen
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wei Cheng
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kai Sun
- Department of Material Sciences and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
19
|
Liu H, Ding M, Ding Z, Gao C, Zhang W. In situ synthesis of the Ag/poly(4-vinylpyridine)-block-polystyrene composite nanoparticles by dispersion RAFT polymerization. Polym Chem 2017. [DOI: 10.1039/c7py00473g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new method for the synthesis of metal/block-copolymer nanocomposites of poly(4-vinylpyridine)-b-polystyrene (P4VP-b-PS) and Ag nanoparticles by dispersion RAFT polymerization is proposed.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Mingdu Ding
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Zhonglin Ding
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chengqiang Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
20
|
Jang H, Kim YK, Min DH. Synthesis of partially dextran-coated gold nanoworms and anisotropic structure based dual-strategic cargo conjugation for efficient combinational cancer therapy. Chem Commun (Camb) 2017; 53:1385-1388. [DOI: 10.1039/c6cc08821j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Partially dextran-coated gold nanoworms enabled the dual-strategic conjugation of peptides and genes.
Collapse
Affiliation(s)
- Hongje Jang
- Department of Chemistry
- Kwangwoon University
- Nowon-gu
- Republic of Korea
| | - Young-Kwan Kim
- Carbon Convergence Materials Research Center
- Korea Institute of Science and Technology
- Jeollabuk-do
- Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry
- Seoul National University
- Republic of Korea
- Center for RNA Research
- Institute for Basic Science (IBS)
| |
Collapse
|
21
|
Manojkumar K, Mecerreyes D, Taton D, Gnanou Y, Vijayakrishna K. Self-assembly of poly(ionic liquid) (PIL)-based amphiphilic homopolymers into vesicles and supramolecular structures with dyes and silver nanoparticles. Polym Chem 2017. [DOI: 10.1039/c7py00453b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self assembly of amphiphilic homo-PILs.
Collapse
Affiliation(s)
- Kasina Manojkumar
- Department of Chemistry
- School of Advanced Sciences
- VIT University
- Vellore – 632 014
- India
| | - David Mecerreyes
- POLYMAT
- University of the Basque Country UPV/EH U
- San Sebastian
- Spain
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques
- Université Bordeaux – CNRS – IPB-ENSCPB
- 33607 Pessac Cedex
- France
| | - Yves Gnanou
- Physical Sciences and Engineering
- King Abdullah University of Science and Technology
- Saudi Arabia
| | - Kari Vijayakrishna
- Department of Chemistry
- School of Advanced Sciences
- VIT University
- Vellore – 632 014
- India
| |
Collapse
|
22
|
Tian J, Vana P. Polystyrene-Core-Silica-Shell Hybrid Particles Containing Gold and Magnetic Nanoparticles. Chem Asian J 2016; 11:596-603. [PMID: 26639677 DOI: 10.1002/asia.201501314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Indexed: 11/08/2022]
Abstract
Polystyrene-core-silica-shell hybrid particles were synthesized by combining the self-assembly of nanoparticles and the polymer with a silica coating strategy. The core-shell hybrid particles are composed of gold-nanoparticle-decorated polystyrene (PS-AuNP) colloids as the core and silica particles as the shell. PS-AuNP colloids were generated by the self-assembly of the PS-grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the "free" PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core-shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high-temperature catalysis and as nanoreactors.
Collapse
Affiliation(s)
- Jia Tian
- Institute of Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse 6, 37077, Göttingen, Germany.
| | - Philipp Vana
- Institute of Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse 6, 37077, Göttingen, Germany
| |
Collapse
|
23
|
Belhout SA, Kim JY, Hinds DT, Owen NJ, Coulter JA, Quinn SJ. Multifunctional and robust composite materials comprising gold nanoparticles at a spherical polystyrene particle surface. Chem Commun (Camb) 2016; 52:14388-14391. [DOI: 10.1039/c6cc07947d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of composite particles comprising gold nanoparticles (4.5–26 nm) assembled at a polystyrene (PS) surface with tunable loading is reported with wide ranging potentials from cellular studies to catalysis.
Collapse
Affiliation(s)
| | - Ji Yoon Kim
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| | - David T. Hinds
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| | | | | | - Susan J. Quinn
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
24
|
Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications. MATERIALS 2015. [PMCID: PMC5455710 DOI: 10.3390/ma8063377] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thermoplastic polymers like polyolefins, polyesters, polyamide, and styrene polymers are the most representative commodity plastics thanks to their cost-efficient manufacturing processes, excellent thermomechanical properties and their good environmental compatibility, including easy recycling. In the last few decades much effort has been devoted worldwide to extend the applications of such materials by conferring on them new properties through mixing and blending with different additives. In this latter context, nanocomposites have recently offered new exciting possibilities. This review discusses the successful use of nanostructured dispersed substrates in designing new stimuli-responsive nanocomposites; in particular, it provides an updated description of the synthetic routes to prepare nanostructured systems having the typical properties of thermoplastic polymers (continuous matrix), but showing enhanced optical, conductive, and thermal features dependent on the dispersion topology. The controlled nanodispersion of functional labeled clays, noble metal nanoparticles and carbon nanotubes is here evidenced to play a key role in producing hybrid thermoplastic materials that have been used in the design of devices, such as NLO devices, chemiresistors, temperature and deformation sensors.
Collapse
|
25
|
Rodarte AL, Cao BH, Panesar H, Pandolfi RJ, Quint M, Edwards L, Ghosh S, Hein JE, Hirst LS. Self-assembled nanoparticle micro-shells templated by liquid crystal sorting. SOFT MATTER 2015; 11:1701-1707. [PMID: 25601081 DOI: 10.1039/c4sm02326a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A current goal in nanotechnology focuses on the assembly of different nanoparticle types into 3D organized structures. In this paper we report the use of a liquid crystal host phase in a new process for the generation of micron-scale vesicle-like nanoparticle shells stabilized by ligand-ligand interactions. The constructs formed consist of a robust, thin spherical layer, composed of closely packed quantum dots (QDs) and stabilized by local crystallization of the mesogenic ligands. Ligand structure can be tuned to vary QD packing within the shell and made UV cross-linkable to allow for intact shell extraction into toluene. The assembly method we describe could be extended to other nanoparticle types (metallic, magnetic etc.), where hollow shell formation is controlled by thermally sorting mesogen-functionalized nanoparticles in a liquid crystalline host material at the isotropic to nematic transition. This process represents a versatile method for making non-planar 3D nano-assemblies.
Collapse
Affiliation(s)
- Andrea L Rodarte
- Department of Physics, University of California, Merced, 5200 Lake Rd, Merced, CA95343, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Synthesis of monodisperse magnetic sandwiched gold nanoparticle as an easily recyclable catalyst with a protective polymer shell. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.11.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
He YG, Shi SY, Liu N, Zhu YY, Ding YS, Yin J, Wu ZQ. Fabrication of SERS-active conjugated copolymers/gold nanoparticles composite films by interface-directed assembly. RSC Adv 2015. [DOI: 10.1039/c5ra05430c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A new composite film was synthesised by taking advantage of interface-directed assembly between thiol group-functionalized copolymers and Au NPs. The film not only exhibited strongly Au NP concentration-dependent SERS activity, but also allowed detection of a model molecule.
Collapse
Affiliation(s)
- Ya-Guang He
- Key Laboratory of Advanced Functional Materials and Devices
- Department of Polymer Material and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Province
| | - Sheng-Yu Shi
- Key Laboratory of Advanced Functional Materials and Devices
- Department of Polymer Material and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Province
| | - Na Liu
- Key Laboratory of Advanced Functional Materials and Devices
- Department of Polymer Material and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Province
| | - Yuan-Yuan Zhu
- Key Laboratory of Advanced Functional Materials and Devices
- Department of Polymer Material and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Province
| | - Yun-Sheng Ding
- Key Laboratory of Advanced Functional Materials and Devices
- Department of Polymer Material and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Province
| | - Jun Yin
- Key Laboratory of Advanced Functional Materials and Devices
- Department of Polymer Material and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Province
| | - Zong-Quan Wu
- Key Laboratory of Advanced Functional Materials and Devices
- Department of Polymer Material and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Anhui Province
| |
Collapse
|
28
|
Liu L, Zhao Y, Chen Q, Shi X, Shen M. The assembly of polyethyleneimine-entrapped gold nanoparticles onto filter paper for catalytic applications. RSC Adv 2015. [DOI: 10.1039/c5ra20192f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyethyleneimine-entrapped gold nanoparticles can be assembled onto filter paper via electrostatic interaction for high-performance catalytic applications.
Collapse
Affiliation(s)
- Lei Liu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Yili Zhao
- Key Laboratory of Textile Science & Technology
- Ministry of Education
- College of Textiles
- Donghua University
- Shanghai 201620
| | - Qian Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Xiangyang Shi
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Mingwu Shen
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| |
Collapse
|
29
|
Correction: Hood, M.A., et al. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles. Materials 2014, 7, 4057-4087. MATERIALS (BASEL, SWITZERLAND) 2014; 7:7583-7614. [PMID: 28795684 PMCID: PMC5512675 DOI: 10.3390/ma7117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/21/2014] [Indexed: 11/16/2022]
Abstract
In [1], several sentences were repeated three times on pages 4062, 4063 and 4065. In addition, many references were incorrect. The errors were introduced by the editorial office during the editing process. We apologize for this mistake and any inconvenience this may have caused to authors and readers. The corrected manuscript is given below.[...].
Collapse
|
30
|
Bleach R, Karagoz B, Prakash SM, Davis TP, Boyer C. In Situ Formation of Polymer-Gold Composite Nanoparticles with Tunable Morphologies. ACS Macro Lett 2014; 3:591-596. [PMID: 35590753 DOI: 10.1021/mz500195u] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A simple and efficient route to gold-polymer nanoparticle composites is described. Our versatile synthetic route exerts facile control over polymer nanoparticle morphology, including micelles, rod-like structures, and vesicles, all easily attainable from a single polymerization taken to different monomer conversions. Specifically, poly[oligo(ethylene glycol) methacrylate]-b-poly(dimethylaminoethyl methacrylate)-b-poly(styrene) (POEGMA-b-PDMAEMA-b-PST) triblock copolymers were synthesized using a polymerization induced self-assembly (PISA) approach. Subsequently, spherical gold nanoparticles (10 nm AuNPs) were formed at the hydrophilic-hydrophobic nexus of the assembled triblock copolymer nanoaggregates by the addition of chloroauric acid (HAuCl4) followed by in situ reduction using NaBH4. After reduction, the cloudy white nanoparticle dispersions turned to a red-purple color. The gold nanoparticles that formed were stabilized by the enveloping polymeric nanostructures, neither precipitation nor agglomeration occurred. We demonstrated that we were able to tune the gold nanoparticle composition in these polymer-gold composites by varying the concentration of chloroauric acid. Morphology, particle size, molecular weight, AuNP content, and chemical structure of the polymer structures were characterized by transmittance electron microscopy (TEM), dynamic light scattering (DLS), size exclusion chromatography (SEC), thermal gravimetric analysis (TGA), and 1H NMR. Finally, the formation of the AuNPs occurred without affecting the polymer nanoparticle morphology.
Collapse
Affiliation(s)
- Richard Bleach
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney NSW 2052, Australia
| | - Bunyamin Karagoz
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney NSW 2052, Australia
- Australian
Centre for Nanomedicine, The University of New South Wales, Sydney NSW 2052, Australia
- Istanbul Technical University Department of Chemistry, Maslak 34469 Istanbul, Turkey
| | - Shyam M. Prakash
- Australian
Centre for Nanomedicine, The University of New South Wales, Sydney NSW 2052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Cyrille Boyer
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney NSW 2052, Australia
- Australian
Centre for Nanomedicine, The University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
31
|
Hood MA, Mari M, Muñoz-Espí R. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2014; 7:4057-4087. [PMID: 28788665 PMCID: PMC5453225 DOI: 10.3390/ma7054057] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/12/2014] [Accepted: 05/09/2014] [Indexed: 01/05/2023]
Abstract
This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ.
Collapse
Affiliation(s)
- Matthew A Hood
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55118 Mainz, Germany.
| | - Margherita Mari
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55118 Mainz, Germany.
| | - Rafael Muñoz-Espí
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55118 Mainz, Germany.
| |
Collapse
|
32
|
Chen G, Lu J, Lam C, Yu Y. A novel green synthesis approach for polymer nanocomposites decorated with silver nanoparticles and their antibacterial activity. Analyst 2014; 139:5793-9. [DOI: 10.1039/c4an01301h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel green synthesis strategy was developed for polymer composite spheres decorated with silver nanoparticles, mediated by a polymer colloid support itself, which are very stable and of high purity with excellent antibacterial activity.
Collapse
Affiliation(s)
- Guofang Chen
- Chemistry Department
- St John's University
- Queens, USA
| | - Jingran Lu
- Chemistry Department
- St John's University
- Queens, USA
| | - Clarissa Lam
- Biology Department
- St John's University
- Queens, USA
| | - Yong Yu
- Biology Department
- St John's University
- Queens, USA
| |
Collapse
|
33
|
Satoh H, Saito Y, Yabu H. Robust platforms for creating organic–inorganic nanocomposite microspheres: decorating polymer microspheres containing mussel-inspired adhesion layers with inorganic nanoparticles. Chem Commun (Camb) 2014; 50:14786-9. [DOI: 10.1039/c4cc05433d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel method for creating stable polymer microspheres decorated with inorganic nanoparticles using a mussel-inspired adhesive layer is reported.
Collapse
Affiliation(s)
- H. Satoh
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Aoba-Ku, Japan
| | - Y. Saito
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Aoba-Ku, Japan
| | - H. Yabu
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Aoba-Ku, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO)
- Japan Science and Technology Agency (JST)
| |
Collapse
|