1
|
Wu J, Liu W, Ngai T. Total internal reflection microscopy: a powerful tool for exploring interactions and dynamics near interfaces. SOFT MATTER 2023. [PMID: 37314857 DOI: 10.1039/d3sm00085k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The occurrence of many micro/macrophenomena is closely related to interactions and dynamics near interfaces. Hence, developing powerful tools for characterizing near-interface interactions and dynamics has attached great importance among researchers. In this review, we introduce a noninvasive and ultrasensitive technique called total internal reflection microscopy (TIRM). The principles of TIRM are introduced first, demonstrating the characteristics of this technique. Then, typical measurements with TIRM and the recent development of the technique are reviewed in detail. At the end of the review, we highlight the great progress of TIRM during the past several decades and show its potential to be more influential in measuring interactions and dynamics near interfaces in various research fields.
Collapse
Affiliation(s)
- Jiahao Wu
- Department of Chemistry, The Chinese University of Hong Kong, N.T., Shatin, Hong Kong, China.
| | - Wei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, N.T., Shatin, Hong Kong, China.
| |
Collapse
|
2
|
Jumai’an E, Garcia E, Herrera-Alonso M, Bevan MA. Specific Ion Effects on Adsorbed Zwitterionic Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eugenie Jumai’an
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elena Garcia
- Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Margarita Herrera-Alonso
- Chemical & Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Michael A. Bevan
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Hernández-Meza JM, Vélez-Cordero J, Yáñez-Soto B, Ramírez-Saito A, Aranda-Espinoza S, Arauz-Lara J. Interaction of colloidal particles with biologically relevant complex surfaces. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Wang Z, Luan Y, Gan T, Gong X, Chen H, Ngai T. Long-range interactions between protein-coated particles and POEGMA brush layers in a serum environment. Colloids Surf B Biointerfaces 2017; 150:279-287. [DOI: 10.1016/j.colsurfb.2016.10.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/23/2016] [Indexed: 12/26/2022]
|
5
|
Lundgren A, Agnarsson B, Zirbs R, Zhdanov VP, Reimhult E, Höök F. Nonspecific Colloidal-Type Interaction Explains Size-Dependent Specific Binding of Membrane-Targeted Nanoparticles. ACS NANO 2016; 10:9974-9982. [PMID: 27783496 DOI: 10.1021/acsnano.6b04160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Emerging biomedical applications such as molecular imaging and drug delivery often require directed binding of nanoparticles to cell-membrane receptors. The specific apparent affinity of such ligand-functionalized particles is size-dependent, an observation so far solely attributed to multivalent receptor-ligand interaction. We question the universality of this explanation by demonstrating that the binding kinetics also depends on weak, attractive colloidal-type interaction between nanoparticles and a lipid membrane. Applying label-free single-particle imaging, we correlate binding of nanoparticles targeted to a cell-mimetic lipid membrane with the distribution of nontargeted particles freely diffusing close to the membrane interface. This analysis shows that already a weak, kBT-scale attraction present between 50 nm gold nanoparticles and the membrane renders these particles an order of magnitude higher avidity compared to 20 nm particles. A stronger emphasis on nonspecific particle-membrane interaction might thus be required to accurately predict nanoparticle targeting and other similar processes such as cellular uptake of exosomes and viruses.
Collapse
Affiliation(s)
- Anders Lundgren
- Department of Physics, Chalmers University of Technology , Gothenburg 412 96, Sweden
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences , Vienna 1190, Austria
| | - Björn Agnarsson
- Department of Physics, Chalmers University of Technology , Gothenburg 412 96, Sweden
| | - Ronald Zirbs
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences , Vienna 1190, Austria
| | - Vladimir P Zhdanov
- Department of Physics, Chalmers University of Technology , Gothenburg 412 96, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk 630090, Russia
| | - Erik Reimhult
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences , Vienna 1190, Austria
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology , Gothenburg 412 96, Sweden
| |
Collapse
|
6
|
Duncan GA, Gerecht S, Fairbrother DH, Bevan MA. Diffusing Colloidal Probes of kT-Scale Biomaterial-Cell Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12212-12220. [PMID: 27788001 DOI: 10.1021/acs.langmuir.6b03302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the optimization of applied biomaterials, measurements of their interactions with cell surfaces are important to understand their influence on specific and nonspecific cell surface adhesion, internalization pathways, and toxicity. In this study, a novel approach using dark field video microscopy with combined real-time particle and cell tracking allows the trajectories of biomaterial-coated colloids to be monitored in relation to their distance from cell perimeters. Dynamic and statistical mechanical analyses enable direct measurement of colloid-cell surface association lifetimes and interaction potentials mediated by biomaterials. Our analyses of colloidal transport showed polyethylene glycol (PEG) and bovine serum albumin (BSA) lead to net repulsive interactions with cell surfaces, while dextran and hyaluronic acid (HA) lead to reversible and irreversible association to the cell surface, respectively. Our results demonstrate how diffusing colloidal probes can be used for nonobtrusive, sensitive measurements of biomaterial-cell surface interactions important to therapeutics, diagnostics, and tissue engineering.
Collapse
Affiliation(s)
- Gregg A Duncan
- Department of Chemical & Biomolecular Engineering, and ‡Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Sharon Gerecht
- Department of Chemical & Biomolecular Engineering, and ‡Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - D Howard Fairbrother
- Department of Chemical & Biomolecular Engineering, and ‡Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Michael A Bevan
- Department of Chemical & Biomolecular Engineering, and ‡Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Duncan GA, Fairbrother DH, Bevan MA. Diffusing colloidal probes of cell surfaces. SOFT MATTER 2016; 12:4731-4738. [PMID: 27117575 DOI: 10.1039/c5sm02637g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Measurements and analyses are reported to quantify dynamic and equilibrium interactions between colloidal particles and live cell surfaces using dark field video microscopy. Two-dimensional trajectories of micron-sized polyethylene glycol (PEG)-coated silica colloids relative to adherent epithelial breast cancer cell perimeters are determined allowing measurement of position dependent diffusivities and interaction potentials. PEG was chosen as the material system of interest to assess non-specific interactions with cell surfaces and establishes a basis for investigation of specific interactions in future studies. Analysis of measured potential energies on cell surfaces reveals the spatial dependence in cell topography. With the measured cell topography and models for particle-cell surface hydrodynamic interactions, excellent agreement is obtained between theoretical and measured colloidal transport on cell surfaces. Quantitative analyses of association lifetimes showed that PEG coatings act to stabilize colloids above the cell surface through net repulsive, steric interactions. Our results demonstrate a self-consistent analysis of diffusing colloidal probe interactions due to conservative and non-conservative forces to characterize biophysical cell surface properties.
Collapse
|
8
|
Wang Z, Gong X, Ngai T. Measurements of long-range interactions between protein-functionalized surfaces by total internal reflection microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3101-3107. [PMID: 25719226 DOI: 10.1021/acs.langmuir.5b00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Understanding the interaction between protein-functionalized surfaces is an important subject in a variety of protein-related processes, ranging from coatings for biomedical implants to targeted drug carriers and biosensors. In this work, utilizing a total internal reflection microscope (TIRM), we have directly measured the interactions between micron-sized particles decorated with three types of common proteins concanavalin A (ConA), bovine serum albumin (BSA), lysozyme (LYZ), and glass surface coated with soy proteins (SP). Our results show that the protein adsorption greatly affects the charge property of the surfaces, and the interactions between those protein-functionalized surfaces depend on solution pH values. At pH 7.5-10.0, all these three protein-functionalized particles are highly negatively charged, and they move freely above the negatively charged SP-functionalized surface. The net interaction between protein-functionalized surfaces captured by TIRM was found as a long-range, nonspecific double-layer repulsion. When pH was decreased to 5.0, both protein-functionalized surfaces became neutral and double-layer repulsion was greatly reduced, resulting in adhesion of all three protein-functionalized particles to the SP-functionalized surface due to the hydrophobic attraction. The situation is very different at pH = 4.0: BSA-decorated particles, which are highly charged, can move freely above the SP-functionalized surfaces, while ConA- and LYZ-decorated particles can only move restrictively in a limited range. Our results quantify these nonspecific kT-scale interactions between protein-functionalized surfaces, which will enable the design of surfaces for use in biomedical applications and study of biomolecular interactions.
Collapse
Affiliation(s)
- Zhaohui Wang
- †Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Xiangjun Gong
- ‡School of Materials Science and Engineering, South China University of Technology, Guangzhou, China 510640
| | - To Ngai
- †Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|