1
|
Mensah GAK, Schaefer KG, Roberts AG, King GM, Bartlett MG. Probing the Mechanisms Underlying the Transport of the Vinca Alkaloids by P-glycoprotein. J Pharm Sci 2024; 113:1960-1974. [PMID: 38527618 DOI: 10.1016/j.xphs.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
The efficacy of many cancer drugs is hindered by P-glycoprotein (Pgp), a cellular pump that removes drugs from cells. To improve chemotherapy, drugs capable of evading Pgp must be developed. Despite similarities in structure, vinca alkaloids (VAs) show disparate Pgp-mediated efflux ratios. ATPase activity and binding affinity studies show at least two binding sites for the VAs: high- and low-affinity sites that stimulate and inhibit the ATPase activity rate, respectively. The affinity for ATP from the ATPase kinetics curve for vinblastine (VBL) at the high-affinity site was 2- and 9-fold higher than vinorelbine (VRL) and vincristine (VCR), respectively. Conversely, VBL had the highest Km (ATP) for the low-affinity site. The dissociation constants (KDs) determined by protein fluorescence quenching were in the order VBL < VRL< VCR. The order of the KDs was reversed at higher substrate concentrations. Acrylamide quenching of protein fluorescence indicate that the VAs, either at 10 µM or 150 µM, predominantly maintain Pgp in an open-outward conformation. When 3.2 mM AMPPNP was present, 10 µM of either VBL, VRL, or VCR cause Pgp to shift to an open-outward conformation, while 150 µM of the VAs shifted the conformation of Pgp to an intermediate orientation, between opened inward and open-outward. However, the conformational shift induced by saturating AMPPNP and VCR condition was less than either VBL or VRL in the presence of AMPPNP. At 150 µM, atomic force microscopy (AFM) revealed that the VAs shift Pgp population to a predominantly open-inward conformation. Additionally, STDD NMR studies revealed comparable groups in VBL, VRL, and VCR are in contact with the protein during binding. Our results, when coupled with VAs-microtubule structure-activity relationship studies, could lay the foundation for developing next-generation VAs that are effective as anti-tumor agents. A model that illustrates the intricate process of Pgp-mediated transport of the VAs is presented.
Collapse
Affiliation(s)
- Gershon A K Mensah
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Arthur G Roberts
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA.
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA; Joint with Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Behmard E, Barzegari E, Najafipour S, Kouhpayeh A, Ghasemi Y, Asadi-Pooya AA. Efflux dynamics of the antiseizure drug, levetiracetam, through the P-glycoprotein channel revealed by advanced comparative molecular simulations. Sci Rep 2022; 12:13674. [PMID: 35953704 PMCID: PMC9372152 DOI: 10.1038/s41598-022-17994-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Understanding the precise mechanistic details of the possible binding and transport of antiseizure medications (ASMs) through the P-glycoprotein (P-gp) efflux pump is essential to find strategies for the treatment of patients with epilepsy resistant to ASMs. In the present work, conventional molecular dynamics, binding free energy calculations, steered molecular dynamics and umbrella sampling were applied to study the interactions of levetiracetam and brivaracetam with P-gp and their possible egress path from the binding site. Comparative results for the control drugs, zosuquidar and verapamil, confirmed their established P-gp inhibitory activity. Brivaracetam, a non-substrate of P-gp, demonstrated stronger static and dynamic interactions with the exporter protein, than levetiracetam. The potential of mean force calculations indicated that the energy barriers through the ligand export were the lowest for levetiracetam, suggesting the drug as a P-gp substrate with facile passage through the transporter channel. Our findings also stressed the contribution of nonpolar interactions with P-gp channel lining as well as with membrane lipid molecules to hamper the ASM efflux by the transmembrane exporter. Appropriate structural engineering of the ASMs is thus recommended to address drug-resistant epilepsy.
Collapse
Affiliation(s)
- Esmaeil Behmard
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Kapoor K, Thangapandian S, Tajkhorshid E. Extended-ensemble docking to probe dynamic variation of ligand binding sites during large-scale structural changes of proteins. Chem Sci 2022; 13:4150-4169. [PMID: 35440993 PMCID: PMC8985516 DOI: 10.1039/d2sc00841f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Proteins can sample a broad landscape as they undergo conformational transition between different functional states. At the same time, as key players in almost all cellular processes, proteins are important drug targets. Considering the different conformational states of a protein is therefore central for a successful drug-design strategy. Here we introduce a novel docking protocol, termed extended-ensemble docking, pertaining to proteins that undergo large-scale (global) conformational changes during their function. In its application to multidrug ABC-transporter P-glycoprotein (Pgp), extensive non-equilibrium molecular dynamics simulations employing system-specific collective variables are first used to describe the transition cycle of the transporter. An extended set of conformations (extended ensemble) representing the full transition cycle between the inward- and the outward-facing states is then used to seed high-throughput docking calculations of known substrates, non-substrates, and modulators of the transporter. Large differences are predicted in the binding affinities to different conformations, with compounds showing stronger binding affinities to intermediate conformations compared to the starting crystal structure. Hierarchical clustering of the binding modes shows all ligands preferably bind to the large central cavity of the protein, formed at the apex of the transmembrane domain (TMD), whereas only small binding populations are observed in the previously described R and H sites present within the individual TMD leaflets. Based on the results, the central cavity is further divided into two major subsites, first preferably binding smaller substrates and high-affinity inhibitors, whereas the second one shows preference for larger substrates and low-affinity modulators. These central subsites along with the low-affinity interaction sites present within the individual TMD leaflets may respectively correspond to the proposed high- and low-affinity binding sites in Pgp. We propose further an optimization strategy for developing more potent inhibitors of Pgp, based on increasing its specificity to the extended ensemble of the protein, instead of using a single protein structure, as well as its selectivity for the high-affinity binding site. In contrast to earlier in silico studies using single static structures of Pgp, our results show better agreement with experimental studies, pointing to the importance of incorporating the global conformational flexibility of proteins in future drug-discovery endeavors.
Collapse
Affiliation(s)
- Karan Kapoor
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Sundar Thangapandian
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
4
|
Direct proof of soft knock-on mechanism of ion permeation in a voltage gated sodium channel. Int J Biol Macromol 2021; 188:369-374. [PMID: 34371044 DOI: 10.1016/j.ijbiomac.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
Sodium channels selectively conduct Na+ ions across cellular membrane with extraordinary efficiency, which is essential for initiating action potentials. However, how Na+ ions permeate the ionic channels remains obscure and ambiguous. With more than 40 conductance events from microsecond molecular dynamics simulation, the soft knock-on ion permeation mediated by water molecules was observed and confirmed by the free energy profile and electrostatic potential calculation in this study. During the soft knock-on process, the change of average distance between four oxygen atoms in Glu177-Glu177 plays a very important role for the permeation of Na+ ion. Exploration of the ionic conductance mechanism could provide a guideline for designing ion channel targeted drug.
Collapse
|
5
|
Silva V, Gil-Martins E, Silva B, Rocha-Pereira C, Sousa ME, Remião F, Silva R. Xanthones as P-glycoprotein modulators and their impact on drug bioavailability. Expert Opin Drug Metab Toxicol 2021; 17:441-482. [PMID: 33283552 DOI: 10.1080/17425255.2021.1861247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: P-glycoprotein (P-gp) is an important efflux pump responsible for the extruding of many endogenous and exogenous substances out of the cells. P-gp can be modulated by different molecules - including xanthone derivatives - to surpass the multidrug resistance (MDR) phenomenon through P-gp inhibition, or to serve as an antidotal strategy in intoxication scenarios through P-gp induction/activation.Areas covered: This review provides a perspective on P-gp modulators, with particular focus on xanthonic derivatives, highlighting their ability to modulate P-gp expression and/or activity, and the potential impact of these effects on the pharmacokinetics, pharmacodynamics and toxicity of P-gp substrates.Expert opinion: Xanthones, of natural or synthetic origin, are able to modulate P-gp, interfering with its protein synthesis or with its mechanism of action, by decreasing or increasing its efflux capacity. These modulatory effects make the xanthonic scaffold a promising source of new derivatives with therapeutic potential. However, the mechanisms beyond the xanthones-mediated P-gp modulation and the chemical characteristics that make them more potent P-gp inhibitors or inducers/activators are still understudied. Furthermore, a new window of opportunity exists in the neuropathologies field, where xanthonic derivatives with potential to modulate P-gp should be further explored to optimize the prevention/treatment of brain pathologies.
Collapse
Affiliation(s)
- Vera Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Eva Gil-Martins
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bárbara Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carolina Rocha-Pereira
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria Emília Sousa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Zhang B, Kang Z, Zhang J, Kang Y, Liang L, Liu Y, Wang Q. Simultaneous binding mechanism of multiple substrates for multidrug resistance transporter P-glycoprotein. Phys Chem Chem Phys 2021; 23:4530-4543. [PMID: 33595579 DOI: 10.1039/d0cp05910b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a multidrug resistance pump. Its promiscuous nature is the main cause of multidrug resistance in cancer cells. P-gp can bind multiple drug molecules simultaneously; however, the binding mechanism is still not clear. Furthermore, the upper limit of the number of substrates that can be accommodated by the binding pocket is not fully understood. In this work, we explore the dynamic process of P-gp binding to multiple substrates by using molecular dynamics (MD) simulations. Our results show that P-gp possesses the ability for simultaneous binding, and that the number of substrates has an upper limit. The accommodating ability of P-gp relates to the size of the binding drugs, and conforms to induced fit theory. In the binding process, the residues 339PHE, 982MET and 986GLN are essential. The pocket of P-gp presents strong flexibility and adaptability features according to the mutation results in this work. Drug molecules tend to gather in the pocket during binding, and interactions between these molecules are beneficial to simultaneous binding. These findings provide new insights into the mechanism of the promiscuous nature of P-gp, and may give us a guideline for inhibiting the process of multidrug resistance.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Zhengzhong Kang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Junqiao Zhang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lijun Liang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Yingchun Liu
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Qi Wang
- Department of Chemistry and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China.
| |
Collapse
|
7
|
Wang L, Sun Y. Efflux mechanism and pathway of verapamil pumping by human P-glycoprotein. Arch Biochem Biophys 2020; 696:108675. [PMID: 33197430 DOI: 10.1016/j.abb.2020.108675] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/23/2020] [Accepted: 11/08/2020] [Indexed: 11/28/2022]
Abstract
Multidrug resistance (MDR) caused by overexpressed permeability-glycoprotein (P-gp) in cancer cells is the main barrier for the cure of cancers. P-gp can pump many chemotherapeutic drugs, which is a viable target to overcome P-gp-mediated MDR by efficient inhibitors of P-gp. However, limited understanding of the efflux mechanism by human P-gp hinders the development of efficient inhibitors. Herein, the transport of a P-gp inhibitor, verapamil, by human P-gp has been investigated using targeted molecular dynamics simulations and energetics analysis based on our previous research on the transport of a drug (doxorubicin). The energetics analysis identifies that the driving forces for the transport of verapamil are electrostatic repulsions contributed by the positively charged residues in the initial stage and then hydrophobic interactions contributed by the important residues in the later stage. This scenario is generally consistent with that in the transport of doxorubicin. However, the positively charged residues and the important residues for the transport of verapamil are incompletely consistent with the relative residues for the transport of doxorubicin. Moreover, the binding free energy contributions of the positively charged residues for the transport of verapamil are generally higher than them for the transport of doxorubicin, while the important residues constitute significantly different binding free energy compositions in the transports of the two substrates. Consequently, the pathway for the transport of verapamil is identified, which shares only two residues (F336 and M986) with the pathway of doxorubicin. This may imply the weak competitiveness of verapamil with doxorubicin in the substrate efflux. Taken together, this work provided new insights into the efflux mechanisms by human P-gp and would be beneficial in the design of potent P-gp inhibitors.
Collapse
Affiliation(s)
- Lijie Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
8
|
Babos G, Rydz J, Kawalec M, Klim M, Fodor-Kardos A, Trif L, Feczkó T. Poly(3-Hydroxybutyrate)-Based Nanoparticles for Sorafenib and Doxorubicin Anticancer Drug Delivery. Int J Mol Sci 2020; 21:E7312. [PMID: 33022990 PMCID: PMC7582498 DOI: 10.3390/ijms21197312] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Dual drug-loaded nanotherapeutics can play an important role against the drug resistance and side effects of the single drugs. Doxorubicin and sorafenib were efficiently co-encapsulated by tailor-made poly([R,S]-3-hydroxybutyrate) (PHB) using an emulsion-solvent evaporation method. Subsequent poly(ethylene glycol) (PEG) conjugation onto nanoparticles was applied to make the nanocarriers stealth and to improve their drug release characteristics. Monodisperse PHB-sorafenib-doxorubicin nanoparticles had an average size of 199.3 nm, which was increased to 250.5 nm after PEGylation. The nanoparticle yield and encapsulation efficiencies of drugs decreased slightly in consequence of PEG conjugation. The drug release of the doxorubicin was beneficial, since it was liberated faster in a tumor-specific acidic environment than in blood plasma. The PEG attachment decelerated the release of both the doxorubicin and the sorafenib, however, the release of the latter drug remained still significantly faster with increased initial burst compared to doxorubicin. Nevertheless, the PEG-PHB copolymer showed more beneficial drug release kinetics in vitro in comparison with our recently developed PEGylated poly(lactic-co-glycolic acid) nanoparticles loaded with the same drugs.
Collapse
Affiliation(s)
- György Babos
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (G.B.); (A.F.-K.); (L.T.)
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Joanna Rydz
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, 34, M. Curie-Skłodowskiej Str., 41-819 Zabrze, Poland; (J.R.); (M.K.); (M.K.)
| | - Michal Kawalec
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, 34, M. Curie-Skłodowskiej Str., 41-819 Zabrze, Poland; (J.R.); (M.K.); (M.K.)
| | - Magdalena Klim
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, 34, M. Curie-Skłodowskiej Str., 41-819 Zabrze, Poland; (J.R.); (M.K.); (M.K.)
- Department of Microbiology and Virology School of Pharmacy with the Division of Laboratory Medicine Medical University of Silesia, 4 Jagiellońska St., 41-200 Sosnowiec, Poland
| | - Andrea Fodor-Kardos
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (G.B.); (A.F.-K.); (L.T.)
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - László Trif
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (G.B.); (A.F.-K.); (L.T.)
| | - Tivadar Feczkó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; (G.B.); (A.F.-K.); (L.T.)
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| |
Collapse
|
9
|
Morsy MA, El-Sheikh AAK, Ibrahim ARN, Venugopala KN, Kandeel M. In silico and in vitro identification of secoisolariciresinol as a re-sensitizer of P-glycoprotein-dependent doxorubicin-resistance NCI/ADR-RES cancer cells. PeerJ 2020; 8:e9163. [PMID: 32566390 PMCID: PMC7293189 DOI: 10.7717/peerj.9163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/18/2020] [Indexed: 12/27/2022] Open
Abstract
P-glycoprotein (P-gp) is one of the highly expressed cancer cell efflux transporters that cause the failure of chemotherapy. To reverse P-gp induced multidrug resistance, we employed a flaxseed-derived lignan; secoisolariciresinol (SECO) that acts as an inhibitor of breast cancer resistance protein; another efflux transporter that shares some substrate/inhibitor specificity with P-gp. Molecular dynamics (MD) simulation identified SECO as a possible P-gp inhibitor. Comparing root mean square deviation (RMSD) of P-gp bound with SECO with that bound to its standard inhibitor verapamil showed that fluctuations in RMSD were lower in P-gp bound to SECO demonstrating higher stability of the complex of P-gp with SECO. In addition, the superimposition of P-gp structures after MD simulation showed that the nucleotide-binding domains of P-gp bound to SECO undertook a more central closer position compared with that bound to verapamil. Using rhodamine efflux assay on NCI/ADR-RES cancer cells, SECO was confirmed as a P-gp inhibitor, where cells treated with 25 or 50 µM of SECO showed significantly higher fluorescence intensity compared to control. Using MTT assay, SECO alone showed dose-dependent cytotoxicity, where 25 or 50 µM of SECO caused significantly less NCI/ADR-RES cellular viability compared to control. Furthermore, when 50 µM of SECO was added to doxorubicin (DOX), an anticancer drug, SECO significantly enhanced DOX-induced cytotoxicity compared to DOX alone. The combination index calculated by CompuSyn software indicated synergism between DOX and SECO. Our results suggest SECO as a novel P-gp inhibitor that can re-sensitize cancer cells during DOX chemotherapy.
Collapse
Affiliation(s)
- Mohamed A Morsy
- Department of Pharmaceutical Sciences/College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Eastern Region, Saudi Arabia.,Department of Pharmacology/Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Azza A K El-Sheikh
- Department of Pharmacology/Faculty of Medicine, Minia University, El-Minia, Egypt.,Basic Health Sciences Department/Faculty of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed R N Ibrahim
- Department of Clinical Pharmacy/College of Pharmacy, King Khalid University, Abha, Saudi Arabia.,Department of Biochemistry/Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences/College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Eastern Region, Saudi Arabia.,Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Mahmoud Kandeel
- Department of Biomedical Sciences/College of Veterinary Medicine, King Faisal University, Al-Ahsa, Eastern Region, Saudi Arabia.,Department of Pharmacology/Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
10
|
Nejad MA, Umstätter P, Urbassek HM. Boron nitride nanotubes as containers for targeted drug delivery of doxorubicin. J Mol Model 2020; 26:54. [PMID: 32036483 PMCID: PMC8260516 DOI: 10.1007/s00894-020-4305-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Using molecular dynamics simulations, the adsorption and diffusion of doxorubicin drug molecules in boron nitride nanotubes are investigated. The interaction between doxorubicin and the nanotube is governed by van der Waals attraction. We find strong adsorption of doxorubicin to the wall for narrow nanotubes (radius of 9 Å). For larger radii (12 and 15 Å), the adsorption energy decreases, while the diffusion coefficient of doxorubicin increases. It does, however, not reach the values of pure water, as adsorption events still hinder the doxorubicin mobility. It is concluded that nanotubes wider than around 4 nm diameter can serve as efficient drug containers for targeted drug delivery of doxorubicin in cancer chemotherapy.
Collapse
Affiliation(s)
- Marjan A Nejad
- Fachbereich Physik und Forschungszentrum OPTIMAS, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663, Kaiserslautern, Germany
| | - Philipp Umstätter
- Fachbereich Physik und Forschungszentrum OPTIMAS, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663, Kaiserslautern, Germany
| | - Herbert M Urbassek
- Fachbereich Physik und Forschungszentrum OPTIMAS, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
11
|
Tolios A, De Las Rivas J, Hovig E, Trouillas P, Scorilas A, Mohr T. Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions. Drug Resist Updat 2019; 48:100662. [PMID: 31927437 DOI: 10.1016/j.drup.2019.100662] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Like physics in the 19th century, biology and molecular biology in particular, has been fertilized and enhanced like few other scientific fields, by the incorporation of mathematical methods. In the last decades, a whole new scientific field, bioinformatics, has developed with an output of over 30,000 papers a year (Pubmed search using the keyword "bioinformatics"). Huge databases of mass throughput data have been established, with ArrayExpress alone containing more than 2.7 million assays (October 2019). Computational methods have become indispensable tools in molecular biology, particularly in one of the most challenging areas of cancer research, multidrug resistance (MDR). However, confronted with a plethora of different algorithms, approaches, and methods, the average researcher faces key questions: Which methods do exist? Which methods can be used to tackle the aims of a given study? Or, more generally, how do I use computational biology/bioinformatics to bolster my research? The current review is aimed at providing guidance to existing methods with relevance to MDR research. In particular, we provide an overview on: a) the identification of potential biomarkers using expression data; b) the prediction of treatment response by machine learning methods; c) the employment of network approaches to identify gene/protein regulatory networks and potential key players; d) the identification of drug-target interactions; e) the use of bipartite networks to identify multidrug targets; f) the identification of cellular subpopulations with the MDR phenotype; and, finally, g) the use of molecular modeling methods to guide and enhance drug discovery. This review shall serve as a guide through some of the basic concepts useful in MDR research. It shall give the reader some ideas about the possibilities in MDR research by using computational tools, and, finally, it shall provide a short overview of relevant literature.
Collapse
Affiliation(s)
- A Tolios
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Institute of Clinical Chemistry and Laboratory Medicine, Heinrich Heine University, Duesseldorf, Germany.
| | - J De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), Campus Miguel de Unamuno s/n, Salamanca, Spain.
| | - E Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital and Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway.
| | - P Trouillas
- UMR 1248 INSERM, Univ. Limoges, 2 rue du Dr Marland, 87052, Limoges, France; RCPTM, University Palacký of Olomouc, tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| | - A Scorilas
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | - T Mohr
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria; ScienceConsult - DI Thomas Mohr KG, Guntramsdorf, Austria.
| |
Collapse
|
12
|
Wang L, Zhang L, Liu F, Sun Y. Molecular Energetics of Doxorubicin Pumping by Human P-Glycoprotein. J Chem Inf Model 2019; 59:3889-3898. [DOI: 10.1021/acs.jcim.9b00429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lijie Wang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fufeng Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Cartagena-Albertus JC, Engel Manchado J, Moise A, Moya García S, Montoya Alonso JA. Assessment of the administration of maropitant and loperamide to dogs with cancer for the prevention and reduction of adverse effects associated with the administration of paclitaxel. Am J Vet Res 2019; 80:601-606. [PMID: 31140850 DOI: 10.2460/ajvr.80.6.601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the efficacy of maropitant and loperamide for the prevention and reduction of adverse gastrointestinal effects associated with administration of paclitaxel to dogs with cancer. ANIMALS 168 dogs with cancer. PROCEDURES The study comprised 2 phases. For phase 1, dogs in the intervention group were administered maropitant and loperamide followed by paclitaxel. Outcomes were compared with those for a control group that received only maropitant and paclitaxel. For phase 2, all dogs of phase 1 that did not receive maropitant and loperamide and that had adverse gastrointestinal effects were enrolled; they received maropitant and loperamide and another dose of paclitaxel. RESULTS In phase 1, significantly fewer dogs in the intervention group had adverse effects. For dogs that had adverse effects, the intervention group had a lower severity of lack of appetite and lethargy. Also, adverse effects for dogs in the intervention group were of significantly shorter duration than for the control group. In phase 2, significant reductions in adverse effects were observed after administration of maropitant and loperamide. In those dogs that still had adverse effects after administration of maropitant and loperamide, there was a significant reduction in severity of signs of nausea and lethargy. CONCLUSIONS AND CLINICAL RELEVANCE A combination of maropitant and loperamide was found to be safe for use and effective for reducing or preventing signs of paclitaxel-induced gastrointestinal effects in dogs.
Collapse
|
14
|
Meyers J, Chessum NEA, Ali S, Mok NY, Wilding B, Pasqua AE, Rowlands M, Tucker MJ, Evans LE, Rye CS, O’Fee L, Le Bihan YV, Burke R, Carter M, Workman P, Blagg J, Brown N, van Montfort RLM, Jones K, Cheeseman MD. Privileged Structures and Polypharmacology within and between Protein Families. ACS Med Chem Lett 2018; 9:1199-1204. [PMID: 30613326 PMCID: PMC6295861 DOI: 10.1021/acsmedchemlett.8b00364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
Polypharmacology is often a key contributor to the efficacy of a drug, but is also a potential risk. We investigated two hits discovered via a cell-based phenotypic screen, the CDK9 inhibitor CCT250006 (1) and the pirin ligand CCT245232 (2), to establish methodology to elucidate their secondary protein targets. Using computational pocket-based analysis, we discovered intrafamily polypharmacology for our kinase inhibitor, despite little overall sequence identity. The interfamily polypharmacology of 2 with B-Raf was used to discover a novel pirin ligand from a very small but privileged compound library despite no apparent ligand or binding site similarity. Our data demonstrates that in areas of drug discovery where intrafamily polypharmacology is often an issue, ligand dissimilarity cannot necessarily be used to assume different off-target profiles and that understanding interfamily polypharmacology will be important in the future to reduce the risk of idiopathic toxicity and in the design of screening libraries.
Collapse
Affiliation(s)
- Joshua Meyers
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Nicola E. A. Chessum
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Salyha Ali
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - N. Yi Mok
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Birgit Wilding
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - A. Elisa Pasqua
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Martin Rowlands
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Michael J. Tucker
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lindsay E. Evans
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Carl S. Rye
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lisa O’Fee
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Yann-Vaï Le Bihan
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Michael Carter
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Julian Blagg
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Nathan Brown
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rob L. M. van Montfort
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Keith Jones
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Matthew D. Cheeseman
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| |
Collapse
|
15
|
Subramanian N, Schumann-Gillett A, Mark AE, O’Mara ML. Probing the Pharmacological Binding Sites of P-Glycoprotein Using Umbrella Sampling Simulations. J Chem Inf Model 2018; 59:2287-2298. [DOI: 10.1021/acs.jcim.8b00624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nandhitha Subramanian
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD 4072, Australia
- Research School of Chemistry (RSC), Australian National University, Canberra, ACT 2601, Australia
| | | | - Alan E. Mark
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD 4072, Australia
- The Institute for Molecular Biosciences (IMB), University of Queensland, Brisbane, QLD 4072, Australia
| | - Megan L. O’Mara
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
16
|
Jeong D, Pal T, Kim H, Kim TW, Biswas G, Lee D, Singh T, Murthy ASN, Kim W, Kim K, Im J. Preparation of a Camptothecin‐conjugated Molecular Carrier and its Cytotoxic Effect Toward Human Colorectal Carcinoma
In Vitro. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dongjun Jeong
- Department of Pathology, College of MedicineSoonchunhyang University Cheonan Republic of Korea
| | - Tarun Pal
- Department of ChemistryPohang University of Science and Technology Pohang Republic of Korea
| | - Hyungjoo Kim
- Soonchunhyang Medical Science Research Institute, College of MedicineSoonchunhyang University Cheonan Republic of Korea
| | - Tae Wan Kim
- Soonchunhyang Medical Science Research Institute, College of MedicineSoonchunhyang University Cheonan Republic of Korea
| | - Goutam Biswas
- Department of ChemistryCooch Behar Panchanan Barma University Cooch Behar India
| | - Daeun Lee
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| | - Tejinder Singh
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| | - Akula S. N. Murthy
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| | - Wanil Kim
- Department of Life Science, Division of Molecular and Life Science and Division of Integrative Biosciences and BiotechnologyPohang University of Science and Technology Pohang Republic of Korea
| | - Kyong‐Tai Kim
- Department of Life Science, Division of Molecular and Life Science and Division of Integrative Biosciences and BiotechnologyPohang University of Science and Technology Pohang Republic of Korea
| | - Jungkyun Im
- Department of Chemical EngineeringSoonchunhyang University Asan Republic of Korea
| |
Collapse
|
17
|
Barreto-Ojeda E, Corradi V, Gu RX, Tieleman DP. Coarse-grained molecular dynamics simulations reveal lipid access pathways in P-glycoprotein. J Gen Physiol 2018; 150:417-429. [PMID: 29437858 PMCID: PMC5839720 DOI: 10.1085/jgp.201711907] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
P-glycoprotein (P-gp) exports a broad range of dissimilar compounds, including drugs, lipids, and lipid-like molecules. Because of its substrate promiscuity, P-gp is a key player in the development of cancer multidrug resistance. Although P-gp is one of the most studied ABC transporters, the mechanism by which its substrates access the cavity remains unclear. In this study, we perform coarse-grained molecular dynamics simulations to explore possible lipid access pathways in the inward-facing conformation of P-gp embedded in bilayers of different lipid compositions. In the inward-facing orientation, only lipids from the lower leaflet access the cavity of the transporter. We identify positively charged residues at the portals of P-gp that favor lipid entrance to the cavity, as well as lipid-binding sites at the portals and within the cavity, which is in good agreement with previous experimental studies. This work includes several examples of lipid pathways for phosphatidylcholine and phosphatidylethanolamine lipids that help elucidate the molecular mechanism of lipid binding in P-gp.
Collapse
Affiliation(s)
- Estefania Barreto-Ojeda
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Valentina Corradi
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Ruo-Xu Gu
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Nikolaienko TY. Interaction of anticancer drug doxorubicin with sodium oleate bilayer: Insights from molecular dynamics simulations. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG. Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 2017; 48:506-532. [PMID: 28481715 DOI: 10.1080/00498254.2017.1328148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Efflux proteins at the blood-brain barrier provide a mechanism for export of waste products of normal metabolism from the brain and help to maintain brain homeostasis. They also prevent entry into the brain of a wide range of potentially harmful compounds such as drugs and xenobiotics. 2. Conversely, efflux proteins also hinder delivery of therapeutic drugs to the brain and central nervous system used to treat brain tumours and neurological disorders. For bypassing efflux proteins, a comprehensive understanding of their structures, functions and molecular mechanisms is necessary, along with new strategies and technologies for delivery of drugs across the blood-brain barrier. 3. We review efflux proteins at the blood-brain barrier, classified as either ATP-binding cassette (ABC) transporters (P-gp, BCRP, MRPs) or solute carrier (SLC) transporters (OATP1A2, OATP1A4, OATP1C1, OATP2B1, OAT3, EAATs, PMAT/hENT4 and MATE1). 4. This includes information about substrate and inhibitor specificity, structural organisation and mechanism, membrane localisation, regulation of expression and activity, effects of diseases and conditions and the principal technique used for in vivo analysis of efflux protein activity: positron emission tomography (PET). 5. We also performed analyses of evolutionary relationships, membrane topologies and amino acid compositions of the proteins, and linked these to structure and function.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Fatemeh Karimi Dermani
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Sareh Sohrabi
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds , UK
| |
Collapse
|
20
|
Liang L, Shen JW, Wang Q. Molecular dynamics study on DNA nanotubes as drug delivery vehicle for anticancer drugs. Colloids Surf B Biointerfaces 2017; 153:168-173. [DOI: 10.1016/j.colsurfb.2017.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/09/2016] [Accepted: 02/15/2017] [Indexed: 12/25/2022]
|
21
|
Investigation of the morphological transition of a phospholipid bilayer membrane in an external electric field via molecular dynamics simulation. J Mol Model 2017; 23:113. [PMID: 28289956 DOI: 10.1007/s00894-017-3292-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022]
Abstract
Elucidating the mechanisms for morphological transitions of the phospholipid bilayer membrane during cellular activity should lead to greater understanding of these membrane transitions and allow us to optimize biotechnologies such as drug delivery systems in organisms. To investigate the mechanism for and the dynamics of morphological changes in the phospholipid membrane, we performed molecular dynamics simulation of a phospholipid membrane with and without membrane protein under the influence of electric fields with different strengths. In the absence of membrane protein, it was possible to control the transition from one lamellar membrane morphology to another by applying a strong electric field. The strong electric field initially disordered the lipid molecules in the membrane, leading to the formation of a hydrophilic pore. The lipid molecules then spontaneously fused into a new lamellar membrane morphology. In the presence of membrane protein, a morphological transition from lamellar membrane to vesicle under the influence of a strong electric field was observed. Studying the complex transition dynamics associated with these changes in membrane morphology allowed us to gain deep insight into the electrofusion and electroporation that occur in the presence or absence of membrane protein, and the results obtained here should prove useful in work aimed at controlling membrane morphology. Graphical Abstract Memebrane morphological transition under the electric field of 0.6 V/nm with the membrane protein (down) and without membrane protein (up).
Collapse
|
22
|
Wilkinson EL, Sidaway JE, Cross MJ. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability. Biol Open 2016; 5:1362-1370. [PMID: 27543060 PMCID: PMC5087671 DOI: 10.1242/bio.020362] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiotoxicity induced by anti-cancer therapeutics is a severe, and potentially fatal, adverse reaction of the heart in response to certain drugs. Current in vitro approaches to assess cardiotoxicity have focused on analysing cardiomyocytes. More recently it has become apparent that non-cardiomyocyte cells of the heart can potentially contribute to cardiotoxicity. Herceptin and doxorubicin are known to induce cardiotoxicity in the clinic. The effect of these drugs on the endothelial tight junction barrier was tested by analysing tight junction formation and zona occludens-1 (ZO-1) levels, revealing that Herceptin and doxorubicin are able to induce barrier perturbment and decrease barrier function in human cardiac microvascular endothelial cells (HCMECs) leading to increased permeability. Herceptin treatment had no effect on the tight junction barrier function in human dermal and human brain microvascular endothelial cells. HCMECs showed detectable levels of HER2 compared with the other endothelial cells suggesting that Herceptin binding to HER2 in these cells may interfere with tight junction formation. Our data suggests that doxorubicin and Herceptin can affect tight junction formation in the cardiac microvasculature leading to increased drug permeability and adverse effects on the cardiac myocytes. Summary: The anti-cancer drugs doxorubicin and Herceptin can disrupt tight junction formation in cardiac microvascular endothelial cells resulting in increased permeability which could potentially contribute to drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Emma L Wilkinson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool, L69 3GE, UK
| | - James E Sidaway
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool, L69 3GE, UK Molecular Toxicology, AstraZeneca, Alderley Park, Cheshire, SK10 4TG, UK
| | - Michael J Cross
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool, L69 3GE, UK
| |
Collapse
|
23
|
Abstract
P-glycoprotein (P-gp) is an ATP-binding cassette transporter that exports a huge range of compounds out of cells and is thus one of the key proteins in conferring multi-drug resistance in cancer. Understanding how it achieves such a broad specificity and the series of conformational changes that allow export to occur form major, on-going, research objectives around the world. Much of our knowledge to date has been derived from mutagenesis and assay data. However, in recent years, there has also been great progress in structural biology and although the structure of human P-gp has not yet been solved, there are now a handful of related structures on which homology models can be built to aid in the interpretation of the vast amount of experimental data that currently exists. Many models for P-gp have been built with this aim, but the situation is complicated by the apparent flexibility of the system and by the fact that although many potential templates exist, there is large variation in the conformational state in which they have been crystallized. In this review, we summarize how homology modelling has been used in the past, how models are typically selected and finally illustrate how MD simulations can be used as a means to give more confidence about models that have been generated via this approach.
Collapse
|
24
|
Ooko E, Alsalim T, Saeed B, Saeed MEM, Kadioglu O, Abbo HS, Titinchi SJJ, Efferth T. Modulation of P-glycoprotein activity by novel synthetic curcumin derivatives in sensitive and multidrug-resistant T-cell acute lymphoblastic leukemia cell lines. Toxicol Appl Pharmacol 2016; 305:216-233. [PMID: 27318188 DOI: 10.1016/j.taap.2016.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) and drug transporter P-glycoprotein (P-gp) represent major obstacles in cancer chemotherapy. We investigated 19 synthetic curcumin derivatives in drug-sensitive acute lymphoblastic CCRF-CEM leukemia cells and their multidrug-resistant P-gp-overexpressing subline, CEM/ADR5000. MATERIAL AND METHODS Cytotoxicity was tested by resazurin assays. Doxorubicin uptake was assessed by flow cytometry. Binding modes of compounds to P-gp were analyzed by molecular docking. Chemical features responsible for bioactivity were studied by quantitative structure activity relationship (QSAR) analyses. A 7-descriptor QSAR model was correlated with doxorubicin uptake values, IC50 values and binding energies. RESULTS The compounds displayed IC50 values between 0.7±0.03 and 20.2±0.25μM. CEM/ADR5000 cells exhibited cross-resistance to 10 compounds, collateral sensitivity to three compounds and regular sensitivity to the remaining six curcumins. Molecular docking studies at the intra-channel transmembrane domain of human P-gp resulted in lowest binding energies ranging from -9.00±0.10 to -6.20±0.02kcal/mol and pKi values from 0.24±0.04 to 29.17±0.88μM. At the ATP-binding site of P-gp, lowest binding energies ranged from -9.78±0.17 to -6.79±0.01kcal/mol and pKi values from 0.07±0.02 to 0.03±0.03μM. CEM/ADR5000 cells accumulated approximately 4-fold less doxorubicin than CCRF-CEM cells. The control P-gp inhibitor, verapamil, partially increased doxorubicin uptake in CEM/ADR5000 cells. Six curcumins increased doxorubicin uptake in resistant cells or even exceeded uptake levels compared to sensitive one. QSAR yielded good activity prediction (R=0.797 and R=0.794 for training and test sets). CONCLUSION Selected derivatives may serve to guide future design of novel P-gp inhibitors and collateral sensitive drugs to combat MDR.
Collapse
Affiliation(s)
- Edna Ooko
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Tahseen Alsalim
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, P.O. Box 49 Basrah, Al Basrah, Iraq
| | - Bahjat Saeed
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, P.O. Box 49 Basrah, Al Basrah, Iraq
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Hanna S Abbo
- Department of Chemistry, University of the Western Cape, P/B X17, Bellville, 7535 Cape Town, South Africa
| | - Salam J J Titinchi
- Department of Chemistry, University of the Western Cape, P/B X17, Bellville, 7535 Cape Town, South Africa.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
25
|
Subramanian N, Condic-Jurkic K, O'Mara ML. Structural and dynamic perspectives on the promiscuous transport activity of P-glycoprotein. Neurochem Int 2016; 98:146-52. [PMID: 27180050 DOI: 10.1016/j.neuint.2016.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022]
Abstract
The multidrug transporter P-glycoprotein (P-gp) is expressed in the blood-brain barrier endothelium where it effluxes a range of drug substrates, preventing their accumulation within the brain. P-gp has been studied extensively for 40 years because of its crucial role in the absorption, distribution, metabolism and elimination of a range of pharmaceutical compounds. Despite this, many aspects of the structure-function mechanism of P-gp are unresolved. Here we review the emerging role of molecular dynamics simulation techniques in our understanding of the membrane-embedded conformation of P-gp. We discuss its conformational plasticity in the presence and absence of ATP, and recent efforts to characterize the drug binding sites and uptake pathways.
Collapse
Affiliation(s)
- Nandhitha Subramanian
- Research School of Chemistry (RSC), The Australian National University, Canberra, ACT, 2601, Australia
| | - Karmen Condic-Jurkic
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD, 4072, Australia
| | - Megan L O'Mara
- Research School of Chemistry (RSC), The Australian National University, Canberra, ACT, 2601, Australia. megan.o'
| |
Collapse
|
26
|
Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96:220-56. [PMID: 26100653 DOI: 10.1016/j.critrevonc.2015.05.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.
Collapse
Affiliation(s)
- M P Ween
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide
| | - M A Armstrong
- Data Management and Analysis Centre, University of Adelaide, Australia
| | - M K Oehler
- Gynaecological Oncology Department, Royal Adelaide Hospital, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia
| | - C Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia.
| |
Collapse
|
27
|
Subramanian N, Condic-Jurkic K, Mark AE, O'Mara ML. Identification of Possible Binding Sites for Morphine and Nicardipine on the Multidrug Transporter P-Glycoprotein Using Umbrella Sampling Techniques. J Chem Inf Model 2015; 55:1202-17. [PMID: 25938863 DOI: 10.1021/ci5007382] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The multidrug transporter P-glycoprotein (P-gp) is central to the development of multidrug resistance in cancer. While residues essential for transport and binding have been identified, the location, composition, and specificity of potential drug binding sites are uncertain. Here molecular dynamics simulations are used to calculate the free energy profile for the binding of morphine and nicardipine to P-gp. We show that morphine and nicardipine primarily interact with key residues implicated in binding and transport from mutational studies, binding at different but overlapping sites within the transmembrane pore. Their permeation pathways were distinct but involved overlapping sets of residues. The results indicate that the binding location and permeation pathways of morphine and nicardipine are not well separated and cannot be considered as unique. This has important implications for our understanding of substrate uptake and transport by P-gp. Our results are independent of the choice of starting structure and consistent with a range of experimental studies.
Collapse
Affiliation(s)
- Nandhitha Subramanian
- †School of Chemistry and Molecular Biosciences, §The Institute for Molecular Biosciences, and ‡School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
| | - Karmen Condic-Jurkic
- †School of Chemistry and Molecular Biosciences, §The Institute for Molecular Biosciences, and ‡School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
| | - Alan E Mark
- †School of Chemistry and Molecular Biosciences, §The Institute for Molecular Biosciences, and ‡School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
| | - Megan L O'Mara
- †School of Chemistry and Molecular Biosciences, §The Institute for Molecular Biosciences, and ‡School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
28
|
Kannan S, Kolandaivel P. Computational studies of pandemic 1918 and 2009 H1N1 hemagglutinins bound to avian and human receptor analogs. J Biomol Struct Dyn 2015; 34:272-89. [PMID: 25893548 DOI: 10.1080/07391102.2015.1027737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The purpose of this work was to study the binding properties of two pandemic influenza A virus 1918 H1N1 (SC1918) and 2009 H1N1 (CA09) hemagglutinin (HA) with avian and human receptors. The quantum chemical calculations have been performed to analyze the interactions of 130 loop, 190 helix, 220 loop region, and conserved residues 95,145,153-155, of pandemic viruses' HA with sialo-trisaccharide receptor of avian and human using density functional theory. The HA's residues Tyr 95, Ala 138, Gln 191, Arg 220, and Asp 225 from the above regions have stronger interaction with avian receptor. The residues Thr 136, Trp 153, His 183, and Asp 190 of HA are important and play a significant role to bind with human receptor. The residues Tyr 95, Ala 138, Lys 145, Trp 153, Gln 192, and Gln 226 of HA of CA09 virus have found more interaction energies with human than avian receptors. Due to mutations in the active residues of HA of CA09 virus comparing with SC1918, the binding capabilities of HA with human have been increased. The molecular dynamics simulation was made to understand the different dynamical properties of HA and molecular interactions between HA of these two viruses with sialo-trisaccharide receptors of avian and human receptors. The interaction energy of HA of CA09 virus with human receptor decreases due to the human receptor far away from conserved residue region of HA protein. This reveals that the conserved residues particularly Lys 145 play major contribution to interaction with human receptor in HA of CA09 virus.
Collapse
Affiliation(s)
- S Kannan
- a Department of Physics , Bharathiar University , Coimbatore 641 046 , India
| | - P Kolandaivel
- a Department of Physics , Bharathiar University , Coimbatore 641 046 , India
| |
Collapse
|
29
|
Tsoneva Y, Jonker HRA, Wagner M, Tadjer A, Lelle M, Peneva K, Ivanova A. Molecular Structure and Pronounced Conformational Flexibility of Doxorubicin in Free and Conjugated State within a Drug–Peptide Compound. J Phys Chem B 2015; 119:3001-13. [DOI: 10.1021/jp509320q] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yana Tsoneva
- University of Sofia, Faculty of Chemistry and Pharmacy,
Department of Physical Chemistry, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Hendrik R. A. Jonker
- Goethe University Frankfurt, Institute for Organic
Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Max von Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Alia Tadjer
- University of Sofia, Faculty of Chemistry and Pharmacy,
Department of Physical Chemistry, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Marco Lelle
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kalina Peneva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Anela Ivanova
- University of Sofia, Faculty of Chemistry and Pharmacy,
Department of Physical Chemistry, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| |
Collapse
|
30
|
Keerthana SP, Kolandaivel P. Structural investigation on the electrostatic loop of native and mutated SOD1 and their interaction with therapeutic compounds. RSC Adv 2015. [DOI: 10.1039/c5ra00286a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electrostatic loop of the native and mutated SOD1 protein with single point mutation in the loop is subjected to MD simulation. The structure and electrostatic properties of the native and mutated loops before/after interacting with small compounds are compared.
Collapse
Affiliation(s)
- S. P. Keerthana
- Department of Physics
- Bharathiar University
- Coimbatore
- India-641 046
| | - P. Kolandaivel
- Department of Physics
- Bharathiar University
- Coimbatore
- India-641 046
| |
Collapse
|
31
|
Ferreira RJ, Ferreira MJU, dos Santos DJVA. Reversing cancer multidrug resistance: insights into the efflux by ABC transports fromin silicostudies. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1196] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ricardo J. Ferreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia; Universidade de Lisboa; Lisboa Portugal
| | - Maria-José U. Ferreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia; Universidade de Lisboa; Lisboa Portugal
| | - Daniel J. V. A. dos Santos
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia; Universidade de Lisboa; Lisboa Portugal
- REQUIMTE, Department of Chemistry & Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| |
Collapse
|
32
|
Sun T, Han G, Lindgren M, Shen Z, Laaksonen A. Adhesion of lactoferrin and bone morphogenetic protein-2 to a rutile surface: dependence on the surface hydrophobicity. Biomater Sci 2014; 2:1090-1099. [DOI: 10.1039/c4bm00021h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding of the proteins human lactoferrin (LF) and human bone morphogenetic protein-2 (BMP2) to a hydroxylated TiO2 rutile (110) surface has been modeled using molecular dynamics (MD) simulations.
Collapse
Affiliation(s)
- Tianyang Sun
- Soft Matter Research Center and Department of Chemistry
- Zhejiang University
- 310027 Hangzhou, P. R. China
- Department of Materials and Environmental Chemistry
- Arrhenius Laboratory
| | - Guang Han
- Department of Materials and Environmental Chemistry
- Arrhenius Laboratory
- Stockholm University
- S-106 91 Stockholm, Sweden
| | | | - Zhijian Shen
- Department of Materials and Environmental Chemistry
- Arrhenius Laboratory
- Stockholm University
- S-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry
- Arrhenius Laboratory
- Stockholm University
- S-106 91 Stockholm, Sweden
- Stellenbosch Institute of Advanced Studies (STIAS)
| |
Collapse
|