1
|
Wang M, Bergès R, Malfanti A, Préat V, Bastiancich C. Local delivery of doxorubicin prodrug via lipid nanocapsule-based hydrogel for the treatment of glioblastoma. Drug Deliv Transl Res 2024; 14:3322-3338. [PMID: 37889402 PMCID: PMC11499358 DOI: 10.1007/s13346-023-01456-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Glioblastoma (GBM) recurrences appear in most cases around the resection cavity borders and arise from residual GBM cells that cannot be removed by surgery. Here, we propose a novel treatment that combines the advantages of nanomedicine and local drug delivery to target these infiltrating GBM cells. We developed an injectable lipid nanocapsule (LNC)-based formulation loaded with lauroyl-doxorubicin prodrug (DOXC12). Firstly, we demonstrated the efficacy of intratumoral administration of DOXC12 in GL261 GBM-bearing mice, which extended mouse survival. Then, we formulated an injectable hydrogel by mixing the appropriate amount of prodrug with the lipophilic components of LNC. We optimized the hydrogel by incorporating cytidine-C16 (CytC16) to achieve a mechanical stiffness adapted for an application in the brain post-surgery (DOXC12-LNCCL). DOXC12-LNCCL exhibited high DOXC12 encapsulation efficiency (95%) and a size of approximately 60 nm with sustained drug release for over 1 month in vitro. DOXC12-LNCCL exhibited enhanced cytotoxicity compared to free DOXC12 (IC50 of 349 and 86 nM, respectively) on GL261 GBM cells and prevented the growth of GL261 spheroids cultured on organotypic brain slices. In vivo, post-surgical treatment with DOXC12-LNCCL significantly improved the survival of GL261-bearing mice. The combination of this local treatment with the systemic administration of anti-inflammatory drug ibuprofen further delayed the onset of recurrences. In conclusion, our study presents a promising therapeutic approach for the treatment of GBM. By targeting residual GBM cells and reducing the inflammation post-surgery, we present a new strategy to delay the onset of recurrences in the gap period between surgery and standard of care therapy.
Collapse
Affiliation(s)
- Mingchao Wang
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200, Brussels, Belgium
| | - Raphaël Bergès
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 27 Boulevard Jean Moulin, Marseille, 13005, France
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200, Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200, Brussels, Belgium.
| | - Chiara Bastiancich
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200, Brussels, Belgium.
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 27 Boulevard Jean Moulin, Marseille, 13005, France.
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, Turin, 10125, Italy.
| |
Collapse
|
2
|
Bialik-Wąs K, Kulawik-Pióro A, Sienkiewicz A, Łętocha A, Osińska J, Malarz K, Mrozek-Wilczkiewicz A, Barczewski M, Lanoue A, Giglioli-Guivarc'h N, Miastkowska M. Design and development of multibiocomponent hybrid alginate hydrogels and lipid nanodispersion as new materials for medical and cosmetic applications. Int J Biol Macromol 2024; 278:134405. [PMID: 39116986 DOI: 10.1016/j.ijbiomac.2024.134405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
The multibiocomponent hybrid alginate hydrogels based on brown and sea algae, containing 100 % ingredients of natural origin were prepared by ionic crosslinking reaction of a polymeric matrix with lipid nanodispersion. To the best of the Authors' knowledge such multicomponent biobased hydrogel of promising medical and cosmetical applications for the first time was obtained in the environment of flower water, received earlier as a waste by-product from various chemical processes. An innovative hybrid alginate hydrogel that is completely biodegradable and eco-friendly was obtained following waterless and upcycling trends that are in line with the principles of sustainable development. The optimal composition of the lipid nanodispersion and the polymeric matrix was selected using the statistical method of design of the experiment. Based on obtained results, multibiocomponent hybrid alginate hydrogels with various ratios of lipid nanodispersion were obtained. Subsequently, the porous structure and elasticity of the hybrid hydrogels were analyzed. Moreover, to confirm the safety of the multibiocomponent alginate hybrid hydrogels the cytotoxic tests were carried out using human fibroblasts and keratinocytes cell lines. As the final product hybrid of hydrolate-swollen alginate hydrogel and lipid nanodispersion containing several active ingredients (silymarin, bakuchiol, spirulina) was obtained.
Collapse
Affiliation(s)
- Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland.
| | - Agnieszka Kulawik-Pióro
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Anna Sienkiewicz
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Anna Łętocha
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Julia Osińska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Malarz
- Department of Systems Biology and Engineering, Silesian University of Technology, 16 Akademicka St., 44-100 Gliwice, Poland; Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty St., 41-500 Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- Department of Systems Biology and Engineering, Silesian University of Technology, 16 Akademicka St., 44-100 Gliwice, Poland; Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty St., 41-500 Chorzow, Poland
| | - Mateusz Barczewski
- Institute of Materials Technology, Faculty of Mechanical Engineering and Management, Poznan University of Technology, 24 Jana Pawła II St., 60-965 Poznan, Poland
| | - Arnaud Lanoue
- Université de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, 31 av. Monge, F-37200 Tours, France
| | - Nathalie Giglioli-Guivarc'h
- Université de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, 31 av. Monge, F-37200 Tours, France
| | - Małgorzata Miastkowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| |
Collapse
|
3
|
Yugatama A, Huang YL, Hsu MJ, Lin JP, Chao FC, Lam JKW, Hsieh CM. Oral Delivery of Photopolymerizable Nanogels Loaded with Gemcitabine for Pancreatic Cancer Therapy: Formulation Design, and in vitro and in vivo Evaluations. Int J Nanomedicine 2024; 19:3753-3772. [PMID: 38686338 PMCID: PMC11057685 DOI: 10.2147/ijn.s443610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Background Gemcitabine (GEM) faces challenges of poor oral bioavailability and extensive first-pass metabolism. Currently, only injectable formulations are available for clinical use. Hence, there is an urgent demand for the development of advanced, efficacious, and user-friendly dosage forms to maintain its status as the primary treatment for pancreatic ductal adenocarcinoma (PDAC). Nanogels (NGs) offer a novel oral drug delivery system, ideal for hydrophilic compounds like GEM. This study aims to develop NGs tailored for GEM delivery, with the goal of enhancing cellular uptake and gastrointestinal permeability for improved administration in PDAC patients. Methods We developed cross-linked NGs via photopolymerization of methacryloyl for drug delivery of GEM. We reveal characterization, cytotoxicity, and cellular uptake studies in Caco-2 and MIA PaCa-2 cells. In addition, studies of in vitro permeability and pharmacokinetics were carried out to evaluate the bioavailability of the drug. Results Our results show NGs, formed via photopolymerization of methacryloyl, had a spherical shape with a size of 233.91±7.75 nm. Gemcitabine-loaded NGs (NGs-GEM) with 5% GelMA exhibited efficient drug loading (particle size: 244.07±19.52 nm). In vitro drug release from NGs-GEM was slower at pH 1.2 than pH 6.8. Cellular uptake studies indicated significantly enhanced uptake in both MIA PaCa-2 and Caco-2 cells. While there was no significant difference in GEM's AUC and Cmax between NGs-GEM and free-GEM groups, NGs-GEM showed markedly lower dFdU content (10.07 hr∙μg/mL) compared to oral free-GEM (19.04 hr∙μg/mL) after oral administration (p<0.01), highlighting NGs' efficacy in impeding rapid drug metabolism and enhancing retention. Conclusion In summary, NGs enhance cellular uptake, inhibit rapid metabolic degradation of GEM, and prolong retention after oral administration. These findings suggest NGs-GEM as a promising candidate for clinical use in oral pancreatic cancer therapy.
Collapse
Affiliation(s)
- Adi Yugatama
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pharmacy, Sebelas Maret University, Surakarta, 57126, Indonesia
| | - Ya-Lin Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ming-Jen Hsu
- Department of Pharmacology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Pei Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Fang-Ching Chao
- CNRS UMR 8612, Institut Galien Paris-Saclay, Université Paris-Saclay, Orsay, 91400, France
| | - Jenny K W Lam
- Department of Pharmaceutics, School of Pharmacy, University College, London, WC1N 1AX, UK
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pharmaceutics, School of Pharmacy, University College, London, WC1N 1AX, UK
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
4
|
Shukla R, Singh A, Singh KK. Vincristine-based nanoformulations: a preclinical and clinical studies overview. Drug Deliv Transl Res 2024; 14:1-16. [PMID: 37552393 PMCID: PMC10746576 DOI: 10.1007/s13346-023-01389-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Vincristine (VCR) is a chemotherapeutic agent obtained from natural alkaloid plant source Catharanthus roseus. VCR has been significantly useful in treatments of lung cancer, lymphocyte-based leukaemia, glioblastomas and acute myeloid leukaemia. VCR attaches to tubulin fibrils and prevents filament polymerization that permanently led to mitosis inhibition in cancer cells. Clinically, VCR is administered to patients in multidrug combination to reduce adverse drug effects and potential blockage of bone marrow inhibition due to prescribed monotherapy. However, VCR possesses low cancer tissue affinity and at higher dose often led to irreversible neurotoxicity. Conventional VCR injectables are successfully used in clinics, but lack of controlled release, non-specific biodistribution and consequent off-target side effects are still major challenges. Currently, nanotechnological drug delivery systems are being explored for improvement of VCR pharmacokinetic profile and tumour-specific targeting. Various nanomedicine formulations such as liposomes, lipid nanoparticles, and polymeric nanocarriers of VCR have been studied under various in vitro and in vivo models. In this review, we have summarised the chemotherapeutic role of VCR, evaluated the mechanism of action, pharmacokinetics and challenges associated with VCR delivery. Moreover, application of VCR in nanomedicine and effect on anticancer efficacy in preclinical and clinical setting are also being discussed.
Collapse
Affiliation(s)
- Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, U.P, 226002, Lucknow, India.
| | - Ajit Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, U.P, 226002, Lucknow, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
5
|
Gazaille C, Bozzato E, Madadian-Bozorg N, Mellinger A, Sicot M, Farooq U, Saulnier P, Eyer J, Préat V, Bertrand N, Bastiat G. Glioblastoma-targeted, local and sustained drug delivery system based on an unconventional lipid nanocapsule hydrogel. BIOMATERIALS ADVANCES 2023; 153:213549. [PMID: 37453243 DOI: 10.1016/j.bioadv.2023.213549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
The objective of this work was to develop an implantable therapeutic hydrogel that will ensure continuity in treatment between surgery and radiochemotherapy for patients with glioblastoma (GBM). A hydrogel of self-associated gemcitabine-loaded lipid nanocapsules (LNC) has shown therapeutic efficacy in vivo in murine GBM resection models. To improve the targeting of GBM cells, the NFL-TBS.40-63 peptide (NFL), was associated with LNC. The LNC-based hydrogels were formulated with the NFL. The peptide was totally and instantaneously adsorbed at the LNC surface, without modifying the hydrogel mechanical properties, and remained adsorbed to the LNC surface after the hydrogel dissolution. In vitro studies on GBM cell lines showed a faster internalization of the LNC and enhanced cytotoxicity, in the presence of NFL. Finally, in vivo studies in the murine GBM resection model proved that the gemcitabine-loaded LNC with adsorbed NFL could target the non-resected GBM cells and significantly delay or even inhibit the apparition of recurrences.
Collapse
Affiliation(s)
- Claire Gazaille
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | | | | - Adélie Mellinger
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Marion Sicot
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Umer Farooq
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Patrick Saulnier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Joël Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | | - Nicolas Bertrand
- Univ Laval, Faculty of Pharmacy, CHU Quebec Research Center, Québec, QC, Canada
| | | |
Collapse
|
6
|
Padmakumar S, Amiji MM. Long-Acting Therapeutic Delivery Systems for the Treatment of Gliomas. Adv Drug Deliv Rev 2023; 197:114853. [PMID: 37149040 DOI: 10.1016/j.addr.2023.114853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Despite the emergence of cutting-edge therapeutic strategies and tremendous progress in research, a complete cure of glioma remains elusive. The heterogenous nature of tumor, immunosuppressive state and presence of blood brain barrier are few of the major obstacles in this regard. Long-acting depot formulations such as injectables and implantables are gaining attention for drug delivery to brain owing to their ease in administration and ability to elute drug locally for extended durations in a controlled manner with minimal toxicity. Hybrid matrices fabricated by incorporating nanoparticulates within such systems help to enhance pharmaceutical advantages. Utilization of long-acting depots as monotherapy or in conjunction with existing strategies rendered significant survival benefits in many preclinical studies and some clinical trials. The discovery of novel targets, immunotherapeutic strategies and alternative drug administration routes are now coupled with several long-acting systems with an ultimate aim to enhance patient survival and prevent glioma recurrences.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115.
| |
Collapse
|
7
|
Idlas P, Lepeltier E, Bastiat G, Pigeon P, McGlinchey MJ, Lautram N, Vessières A, Jaouen G, Passirani C. Physicochemical Characterization of Ferrocifen Lipid Nanocapsules: Customized Drug Delivery Systems Guided by the Molecular Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1885-1896. [PMID: 36693216 DOI: 10.1021/acs.langmuir.2c02910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ferrocifens, lipophilic organometallic complexes, comprise a biologically active redox motif [ferrocenyl-ene-p-phenol] which confers very interesting cytotoxic properties to this family. However, because of their highly lipophilic nature, a formulation stage is required before being administered in vivo. In recent decades, ferrocifen lipid nanocapsules (LNCs) have been successfully formulated and have demonstrated anticancer activity on multidrug-resistant cancers in several mice and rat models (glioblastoma, breast cancer, and metastatic melanoma). A recent family of ferrocifens (succinimidoalkyl-ferrociphenols, including P722) appears to be most efficacious on several resistant cancer cell lines, with IC50 values in the nanomolar range together with promising in vivo results on murine ovarian cancer models. As LNCs are composed of an oily core (caprylic/capric triglycerides), modulation of the succinimido-ferrociphenol lipophilicity could be a valuable approach toward improving the drug loading in LNCs. As the drug loading of the diphenol P722 in LNCs was low, it was structurally modified to increase its lipophilicity and thereby the payload in LNCs. Chemical modification led to a series of five succinimido-ferrocifens. Results confirmed that these slight structural modifications led to increased drug loading in LNCs for all ferrocifens, with no reduction of their cytotoxicity on the SKOV3 ovarian cancer cell line. Interestingly, encapsulation of two of the ferrocifens, diester P769 and monophenolic ester (E)-P998, led to the formation of a gel. This was unprecedented behavior, a phenomenon that could be rationalized in terms of the positioning of ferrocifens in LNCs as shown by the decrease of interfacial tension measurements at the water/oil interface. Moreover, these results highlighted the importance of obtaining a gel of this particular motif, in which the acetylated phenolic ring and the succinimidoalkyl moieties are mutually cis relative to the central double bond. Promising perspectives to use these ferrocifen-loaded LNCs to treat glioblastoma could be readily envisaged by local application of the gel in the cavity after tumor resection.
Collapse
Affiliation(s)
- Pierre Idlas
- Micro et Nanomédecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, Angers49100, France
| | - Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, Angers49100, France
| | - Guillaume Bastiat
- Micro et Nanomédecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, Angers49100, France
| | - Pascal Pigeon
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Paris75005, France
- Chimie Paris Tech, PSL University, Paris75005, France
| | | | - Nolwenn Lautram
- Micro et Nanomédecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, Angers49100, France
| | - Anne Vessières
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Paris75005, France
| | - Gerard Jaouen
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Paris75005, France
- Chimie Paris Tech, PSL University, Paris75005, France
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, Angers49100, France
| |
Collapse
|
8
|
Dual-drug loaded nanomedicine hydrogel as a therapeutic platform to target both residual glioblastoma and glioma stem cells. Int J Pharm 2022; 628:122341. [DOI: 10.1016/j.ijpharm.2022.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
9
|
Mohamed MBM, Dahabiyeh LA, Sahib MN. Design and evaluation of molecular organogel based on folic acid as a potential green drug carrier for oral route. Drug Dev Ind Pharm 2022; 48:367-373. [PMID: 36094171 DOI: 10.1080/03639045.2022.2118316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The low molecular weight organogels are interesting carriers for pharmaceutical compounds. However, their uses are limited due to the toxicity burden of the organic solvent used. Hence, this study aimed to prepare organogel using folic acid (FA) in different concentrations as a gelator for propylene glycol (PG) biocompatible solvent. METHODS The simple mixing method followed by incubation in a water bath at 90 °C was used to prepare organogels. Then, formulations were assessed using different methods including differential scanning calorimetry (DSC), dropping method, attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR), oscillatory rheology studies, scanning electron microscopy (SEM), and in vitro dissolution study. RESULTS Gel formation and its consistency were highly depending on FA concentration. The results showed that increasing the concentration of FA in the organogel led to accelerating the gelation process, and the least amount of FA that could gel the PG was 0.25% w/w. However, higher concentrations were needed to create an organogel with excellent properties. The DSC and dropping studies revealed stable organogels formulations at body temperature. The ATR-FTIR showed interactions between the pteridine ring of FA and PG. The strain amplitude and frequency sweep tests demonstrated an increase in storage modulus values as the concentration of FA increased at 37 °C, which were frequency independent at high frequencies. In addition, the SEM exposed the fabrics like the structure of these organogels. Furthermore, the in vitro dissolution of organogel was pH-dependent, with a high possibility of taking place in the large intestine. CONCLUSION FA/PG organogel formulation is a promising carrier for drug and nutraceuticals compound for the oral delivery system.
Collapse
Affiliation(s)
| | - Lina A Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | | |
Collapse
|
10
|
Bidan N, Lores S, Vanhecke A, Nicolas V, Domenichini S, López R, de la Fuente M, Mura S. Before in vivo studies: In vitro screening of sphingomyelin nanosystems using a relevant 3D multicellular pancreatic tumor spheroid model. Int J Pharm 2022; 617:121577. [PMID: 35167901 DOI: 10.1016/j.ijpharm.2022.121577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Sphingomyelin nanosystems have already shown to be promising carriers for efficient delivery of anticancer drugs. For further application in the treatment of pancreatic tumor, the investigation on relevant in vitro models able to reproduce its physio-pathological complexity, is mandatory. Accordingly, a 3D heterotype spheroid model of pancreatic tumor has been herein constructed to investigate the potential of bare and polyethylene glycol-modified lipids nanosystems in terms of their ability to penetrate the tumor mass and deliver drugs. Regardless of their surface properties, the lipid nanosystems successfully diffused through the spheroid without inducing toxicity, showing a clear safety profile. Loading of the bare nanosystems with a lipid prodrug of gemcitabine was used to evaluate their therapeutic potential. While the nanosystems were more effective than the free drug on 2D cell monocultures, this advantage, despite their efficient penetration capacity, was lost in the 3D tumor model. The latter, being able to mimic the tumor and its microenvironment, was capable to provide a more realistic information on the cell sensitivity to treatments. These results highlight the importance of using appropriate 3D tumour models as tools for proper in vitro evaluation of nanomedicine efficacy and their timely optimisation, so as to identify the best candidates for later in vivo evaluation.
Collapse
Affiliation(s)
- Nadege Bidan
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F92296 Châtenay-Malabry cedex, France
| | - Saínza Lores
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain
| | - Aure Vanhecke
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F92296 Châtenay-Malabry cedex, France
| | - Valérie Nicolas
- UMS-IPSIT MIPSIT Microscopy facility, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, 92296, Châtenay-Malabry, France
| | - Severine Domenichini
- UMS-IPSIT MIPSIT Microscopy facility, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, 92296, Châtenay-Malabry, France
| | - Rafael López
- Translational Medical Oncology group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; Biomedical Research Networking Center on Oncology (CIBERONC), Madrid, 28029, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; Biomedical Research Networking Center on Oncology (CIBERONC), Madrid, 28029, Spain.
| | - Simona Mura
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F92296 Châtenay-Malabry cedex, France.
| |
Collapse
|
11
|
Gazaille C, Sicot M, Saulnier P, Eyer J, Bastiat G. Local Delivery and Glioblastoma: Why Not Combining Sustained Release and Targeting? FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:791596. [PMID: 35047971 PMCID: PMC8757870 DOI: 10.3389/fmedt.2021.791596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is one of the most aggressive brain tumors and is associated with a very low overall median survival despite the current treatment. The standard of care used in clinic is the Stupp's protocol which consists of a maximal resection of the tumor when possible, followed by radio and chemotherapy using temozolomide. However, in most cases, glioblastoma cells infiltrate healthy tissues and lead to fatal recurrences. There are a lot of hurdles to overcome in the development of new therapeutic strategies such as tumor heterogeneity, cell infiltration, alkylating agent resistance, physiological barriers, etc., and few treatments are on the market today. One of them is particularly appealing because it is a local therapy, which does not bring additional invasiveness since tumor resection is included in the gold standard treatment. They are implants: the Gliadel® wafers, which are deposited post-surgery. Nevertheless, in addition to presenting important undesirable effects, it does not bring any major benefit in the therapy despite the strategy being particularly attractive. The purpose of this review is to provide an overview of recent advances in the development of innovative therapeutic strategies for glioblastoma using an implant-type approach. The combination of this local strategy with effective targeting of the tumor microenvironment as a whole, also developed in this review, may be of interest to alleviate some of the obstacles encountered in the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Marion Sicot
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers, France
| | | | - Joël Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, Angers, France
| | | |
Collapse
|
12
|
Xu L, Tang S, Yang H, Liang M, Ren P, Wei D, He J, Kong W, Liu P, Zhang T. Sustained delivery of gemcitabine via in situ injectable mussel-inspired hydrogel for local therapy of pancreatic cancer. J Mater Chem B 2022; 10:6338-6350. [DOI: 10.1039/d1tb02858h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The issue on pervasively enhanced drug resistance of pancreatic cancer is fundamental to better understanding of gemcitabine-based chemotherapy. Currently available treatment plans containing injectable therapeutics are mainly engineered to improve...
Collapse
|
13
|
Talebian S, Shim IK, Foroughi J, Orive G, Vine KL, Kim SC, Wallace GG. 3D-Printed Coaxial Hydrogel Patches with Mussel-Inspired Elements for Prolonged Release of Gemcitabine. Polymers (Basel) 2021; 13:4367. [PMID: 34960917 PMCID: PMC8708853 DOI: 10.3390/polym13244367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
With the aim of fabricating drug-loaded implantable patches, a 3D printing technique was employed to produce novel coaxial hydrogel patches. The core-section of these patches contained a dopamine-modified methacrylated alginate hydrogel loaded with a chemotherapeutic drug (Gemcitabine), while their shell section was solely comprised of a methacrylated alginate hydrogel. Subsequently, these patches were further modified with CaCO3 cross linker and a polylactic acid (PLA) coating to facilitate prolonged release of the drug. Consequently, the results showed that addition of CaCO3 to the formula enhanced the mechanical properties of the patches and significantly reduced their swelling ratio as compared to that for patches without CaCO3. Furthermore, addition of PLA coating to CaCO3-containing patches has further reduced their swelling ratio, which then significantly slowed down the release of Gemcitabine, to a point where 4-layered patches could release the drug over a period of 7 days in vitro. Remarkably, it was shown that 3-layered and 4-layered Gemcitabine loaded patches were successful in inhibiting pancreatic cancer cell growth for a period of 14 days when tested in vitro. Lastly, in vivo experiments showed that gemcitabine-loaded 4-layered patches were capable of reducing the tumor growth rate and caused no severe toxicity when tested in mice. Altogether, 3D printed hydrogel patches might be used as biocompatible implants for local delivery of drugs to diseased site, to either shrink the tumor or to prevent the tumor recurrence after resection.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia;
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| | - In Kyong Shim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Javad Foroughi
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia;
- West-German Heart and Vascular Center, University of Duisburg-Essen, 45122 Essen, Germany
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Kara L. Vine
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Song Cheol Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul 05505, Korea
| | - Gordon G. Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
14
|
Han X, Lai JHC, Huang J, Park SW, Liu Y, Chan KWY. Imaging Self-Healing Hydrogels and Chemotherapeutics Using CEST MRI at 3 T. ACS APPLIED BIO MATERIALS 2021; 4:5605-5616. [PMID: 35006724 DOI: 10.1021/acsabm.1c00411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Imaging hydrogel-based local drug delivery to the brain after tumor resection has implications for refining treatments, especially for brain tumors with poor prognosis and high recurrence rate. Here, we developed a series of self-healing chitosan-dextran (CD)-based hydrogels for drug delivery to the brain. These hydrogels are injectable, self-healing, mechanically compatible, and detectable by chemical exchange saturation transfer magnetic resonance imaging (CEST MRI). CD hydrogels have an inherent CEST contrast at 1.1 ppm, which decreases as the stiffness increases. We further examined the rheological properties and CEST contrast of various chemotherapeutic-loaded CD hydrogels, including gemcitabine (Gem), doxorubicin, and procarbazine. Among these formulations, Gem presented the best compatibility with the rheological (G': 215.3 ± 4.5 Pa) and CEST properties of CD hydrogels. More importantly, the Gem-loaded CD hydrogel generated another CEST readout at 2.2 ppm (11.6 ± 0.1%) for monitoring Gem. This enabled independent and simultaneous imaging of the drug and hydrogel integrity using a clinically relevant 3 T MRI scanner. In addition, the Gem-loaded CD hydrogel exhibited a longitudinal antitumor efficacy of Gem over a week in vitro. Furthermore, the CD hydrogel could be visualized by CEST after brain injection with a contrast of 7.38 ± 2.31%. These natural labels on both the chemotherapeutics and hydrogels demonstrate unique image-guided local drug delivery for brain applications.
Collapse
Affiliation(s)
- Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Joseph Ho Chi Lai
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Se Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Yang Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore MD21205, United States.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
15
|
Pitorre M, Gazaille C, Pham LTT, Frankova K, Béjaud J, Lautram N, Riou J, Perrot R, Geneviève F, Moal V, Benoit JP, Bastiat G. Polymer-free hydrogel made of lipid nanocapsules, as a local drug delivery platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112188. [PMID: 34082987 DOI: 10.1016/j.msec.2021.112188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022]
Abstract
Nanoparticle-loaded hydrogels are attractive pharmaceutical drug delivery systems that combine the advantages of both hydrogel (local administration and/or sustained drug release) and nanoparticle (stealthiness, targeting and decreased toxicity). The design of nanoparticle-loaded hydrogels is largely conventional, consisting of the dispersion of nanoparticles in a natural or synthetic polymer matrix to form a gel network. Novel nanoparticle-loaded hydrogels architecture could provide advantages in terms of innovation and application. We focused on the development of lipid nanocapsule (LNC)-based hydrogels without the use of a polymer matrix as a platform for drug delivery. Cytidine was modified by grafting palmitoyl chains (CytC16) and the new entity was added during the LNC phase-inversion formulation process allowing spontaneous gelation. Positioned at the oil/water interface, CytC16 acts as a crosslinking agent between LNCs. Association of the LNCs in a three-dimensional network led to the formation of polymer-free hydrogels. The viscoelastic properties of the LNC-based hydrogels depended on the LNC concentration and CytC16 loading but were not affected by the LNC size distribution. The LNC and drug-release profiles were controlled by the mechanical properties of the LNC-based hydrogels (slower release profiles correlated with higher viscoelasticity). Finally, the subcutaneous administration of LNC-based hydrogels led to classic inflammatory reactions of the foreign body-reaction type due to the endogenous character of CytC16, shown by cellular viability assays. New-generation nanoparticle-loaded hydrogels (LNC-based polymer-free hydrogels) show promise as implants for pharmaceutical applications. Once LNC release is completed, no gel matrix remains at the injection site, minimizing the additional toxicity due to the persistence of polymeric implants. Sustained drug-release profiles can be controlled by the mechanical properties of the hydrogels and could be tailor-made, depending on the therapeutic strategy chosen.
Collapse
Affiliation(s)
- Marion Pitorre
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Claire Gazaille
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | | | | | - Jérôme Béjaud
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Nolwenn Lautram
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Jérémie Riou
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Rodolphe Perrot
- Univ Angers, Service Commun d'Imageries et d'Analyses Microscopiques (SCIAM), SFR ICAT, F-49000 Angers, France
| | | | - Valérie Moal
- Biochemistry and Molecular Biology Department, University Hospital, Angers, France
| | | | | |
Collapse
|
16
|
Water driven transformation of a nonionic microemulsion into liquid crystalline phase: Structural characterizations and drug release behavior. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Rajpoot K. Lipid-based Nanoplatforms in Cancer Therapy: Recent Advances and Applications. Curr Cancer Drug Targets 2020; 20:271-287. [PMID: 31951180 DOI: 10.2174/1568009620666200115160805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh- 495009, India
| |
Collapse
|
18
|
Štaka I, Cadete A, Surikutchi BT, Abuzaid H, Bradshaw TD, Alonso MJ, Marlow M. A novel low molecular weight nanocomposite hydrogel formulation for intra-tumoural delivery of anti-cancer drugs. Int J Pharm 2019; 565:151-161. [PMID: 31029659 DOI: 10.1016/j.ijpharm.2019.04.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022]
Abstract
Herein, an injectable formulation composed of a low molecular weight gelator (LMWG) based hydrogel and drug-loaded polymeric nanocapsules (NCs) is described. The NCs, made of hyaluronic acid and polyglutamic acid and loaded with C14-Gemcitabine (GEM C14), showed a size of 40 and 80 nm and a encapsulation efficiency >90%. These NCs exhibited a capacity to control the release of the encapsulated drug for >1 month. GEM C14-loaded NCs showed activity against various cancer cell lines in vitro; cell growth inhibition by 50% (GI50) values of 15 ± 6, 10 ± 9, 13 ± 3 and 410 ± 463 nM were obtained in HCT 116, MIA PaCa-2, Panc-1 and Panc-1 GEM resistant cell lines respectively. Nanocomposite hydrogels were prepared using the LMWG - N4-octanoyl-2'-deoxycytidine and loaded for the first time with polymeric NCs. 2% and 4% w/v nanocapsule concentrations as compared to 8% w/v NC concentrations with 2% and 3% w/v gelator concentrations gave mechanically stronger gels as determined by oscillatory rheology. Most importantly, the nanocomposite formulation reformed instantly into a gel after injection through a needle. Based on these properties, the nanocomposite gel formulation has potential for the intratumoural delivery of anticancer drugs.
Collapse
Affiliation(s)
- Ivana Štaka
- CIMUS Research University, University of Santiago de Compostela, 15706 Campus Vida, Spain; Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK; Boots Science Building, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Ana Cadete
- CIMUS Research University, University of Santiago de Compostela, 15706 Campus Vida, Spain
| | | | - Haneen Abuzaid
- Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK
| | - Tracey D Bradshaw
- Centre for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK
| | - Maria J Alonso
- CIMUS Research University, University of Santiago de Compostela, 15706 Campus Vida, Spain.
| | - Maria Marlow
- Boots Science Building, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
19
|
Bastiancich C, Bozzato E, Luyten U, Danhier F, Bastiat G, Préat V. Drug combination using an injectable nanomedicine hydrogel for glioblastoma treatment. Int J Pharm 2019; 559:220-227. [PMID: 30703501 DOI: 10.1016/j.ijpharm.2019.01.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/25/2023]
Abstract
Lauroyl-gemcitabine lipid nanocapsules (GemC12-LNC) hydrogel, administered intratumorally or perisurgically in the tumor resection cavity, increases animal survival in several orthotopic GBM models. We hypothesized that GemC12-LNC can be used as nanodelivery platform for other drugs, to obtain a combined local therapeutic approach for GBM. Paclitaxel (PTX) was selected as a model molecule and PTX-GemC12-LNC formulation was evaluated in terms of physicochemical and mechanical properties. The PTX-GemC12-LNC hydrogel stability and drug release were evaluated over time showing no significant differences compared to GemC12-LNC. The drug combination was evaluated on several GBM cell lines showing increased cytotoxic activity compared to the original formulation and synergy between PTX and GemC12. Our results suggest that GemC12-LNC hydrogel can be used as nanodelivery platform for dual drug delivery to encapsulate active agents with different mechanisms of action to achieve a better antitumor efficacy against GBM or other solid tumors.
Collapse
Affiliation(s)
- Chiara Bastiancich
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Elia Bozzato
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Urszula Luyten
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Fabienne Danhier
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Guillaume Bastiat
- Micro & Nanomedecines Translationnelles - MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Université Bretagne Loire, Angers, France
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium.
| |
Collapse
|
20
|
Briot T, Roger E, Thépot S, Lagarce F. Advances in treatment formulations for acute myeloid leukemia. Drug Discov Today 2018; 23:1936-1949. [DOI: 10.1016/j.drudis.2018.05.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 05/29/2018] [Indexed: 10/24/2022]
|
21
|
Lollo G, Matha K, Bocchiardo M, Bejaud J, Marigo I, Virgone-Carlotta A, Dehoux T, Rivière C, Rieu JP, Briançon S, Perrier T, Meyer O, Benoit JP. Drug delivery to tumours using a novel 5-FU derivative encapsulated into lipid nanocapsules. J Drug Target 2018; 27:634-645. [PMID: 30461322 DOI: 10.1080/1061186x.2018.1547733] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this work, a novel lipophilic 5-fluorouracil (5-FU) derivative was synthesised and encapsulated into lipid nanocapsules (LNC). 5-FU was modified with lauric acid to give a lipophilic mono-lauroyl-derivative (5-FU-C12, MW of about 342 g/mol, yield of reaction 70%). 5-FU-C12 obtained was efficiently encapsulated into LNC (encapsulation efficiency above 90%) without altering the physico-chemical characteristics of LNC. The encapsulation of 5-FU-C12 led to an increased stability of the drug when in contact with plasma being the drug detectable until 3 h following incubation. Cytotoxicity assay carried out using MTS on 2D cell culture showed that 5-FU-C12-loaded LNC had an enhanced cytotoxic effect on glioma (9L) and human colorectal (HTC-116) cancer cell line in comparison with 5-FU or 5-FU-C12. Then, HCT-116 tumour spheroids were cultivated and the reduction of spheroid volume was measured following treatment with drug-loaded LNC and drugs alone. Similar reduction on spheroids volume was observed following the treatment with drug-loaded LNC, 5-FU-C12 and 5-FU alone, while blank LNC displayed a reduction in cell viability only at high concentration. Globally, our data suggest that the encapsulation increased the activity of the 5-FU-C12. However, in-depth evaluations of LNC permeability into spheroids are needed to disclose the potential of these nanosystems for cancer treatment.
Collapse
Affiliation(s)
- Giovanna Lollo
- a Laboratoire d'Automatique et de Génie des Procédés (LAGEP) , Univ Lyon, Université Claude Bernard Lyon 1 , Villeurbanne , France.,b Institut des Sciences Pharmaceutiques et Biologiques , Lyon , France.,c MINT, INSERM U1066, CNRS UMR 6021 , Université d'Angers , Angers , France
| | - Kevin Matha
- c MINT, INSERM U1066, CNRS UMR 6021 , Université d'Angers , Angers , France.,d Pharmacy Department , Angers University Hospital , Angers , France
| | - Martina Bocchiardo
- c MINT, INSERM U1066, CNRS UMR 6021 , Université d'Angers , Angers , France
| | - Jérôme Bejaud
- c MINT, INSERM U1066, CNRS UMR 6021 , Université d'Angers , Angers , France
| | - Ilaria Marigo
- e Veneto Institute of Oncology IOV-IRCCS , Padova , Italy
| | | | - Thomas Dehoux
- f Institut Lumière Matière , Univ Lyon, Université Claude Bernard Lyon 1, CNRS , Villeurbanne , France
| | - Charlotte Rivière
- f Institut Lumière Matière , Univ Lyon, Université Claude Bernard Lyon 1, CNRS , Villeurbanne , France
| | - Jean-Paul Rieu
- f Institut Lumière Matière , Univ Lyon, Université Claude Bernard Lyon 1, CNRS , Villeurbanne , France
| | - Stephanie Briançon
- a Laboratoire d'Automatique et de Génie des Procédés (LAGEP) , Univ Lyon, Université Claude Bernard Lyon 1 , Villeurbanne , France.,b Institut des Sciences Pharmaceutiques et Biologiques , Lyon , France
| | | | | | - Jean-Pierre Benoit
- a Laboratoire d'Automatique et de Génie des Procédés (LAGEP) , Univ Lyon, Université Claude Bernard Lyon 1 , Villeurbanne , France.,b Institut des Sciences Pharmaceutiques et Biologiques , Lyon , France.,c MINT, INSERM U1066, CNRS UMR 6021 , Université d'Angers , Angers , France
| |
Collapse
|
22
|
Bastiancich C, Lemaire L, Bianco J, Franconi F, Danhier F, Préat V, Bastiat G, Lagarce F. Evaluation of lauroyl-gemcitabine-loaded hydrogel efficacy in glioblastoma rat models. Nanomedicine (Lond) 2018; 13:1999-2013. [DOI: 10.2217/nnm-2018-0057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Chiara Bastiancich
- Louvain Drug Research Institute, Advanced Drug Delivery & Biomaterials, Université Catholique de Louvain, Avenue Mounier, 1200 Brussels, Belgium
- Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Université Bretagne Loire, Angers, France
| | - Laurent Lemaire
- Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Université Bretagne Loire, Angers, France
- PRISM Plate-forme de recherche en imagerie et spectroscopie multi-modales, PRISM-Icat Angers, UBL, France
| | - John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery & Biomaterials, Université Catholique de Louvain, Avenue Mounier, 1200 Brussels, Belgium
| | - Florence Franconi
- Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Université Bretagne Loire, Angers, France
- PRISM Plate-forme de recherche en imagerie et spectroscopie multi-modales, PRISM-Icat Angers, UBL, France
| | - Fabienne Danhier
- Louvain Drug Research Institute, Advanced Drug Delivery & Biomaterials, Université Catholique de Louvain, Avenue Mounier, 1200 Brussels, Belgium
| | - Veronique Préat
- Louvain Drug Research Institute, Advanced Drug Delivery & Biomaterials, Université Catholique de Louvain, Avenue Mounier, 1200 Brussels, Belgium
| | - Guillaume Bastiat
- Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Université Bretagne Loire, Angers, France
| | - Frederic Lagarce
- Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Université Bretagne Loire, Angers, France
- Pharmacy Department, CHU Angers, Angers University Hospital, Angers, France
| |
Collapse
|
23
|
Fuhrmann G, Chandrawati R, Parmar PA, Keane TJ, Maynard SA, Bertazzo S, Stevens MM. Engineering Extracellular Vesicles with the Tools of Enzyme Prodrug Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706616. [PMID: 29473230 PMCID: PMC5901706 DOI: 10.1002/adma.201706616] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/14/2017] [Indexed: 05/26/2023]
Abstract
Extracellular vesicles (EVs) have recently gained significant attention as important mediators of intercellular communication, potential drug carriers, and disease biomarkers. These natural cell-derived nanoparticles are postulated to be biocompatible, stable under physiological conditions, and to show reduced immunogenicity as compared to other synthetic nanoparticles. Although initial clinical trials are ongoing, the use of EVs for therapeutic applications may be limited due to undesired off-target activity and potential "dilution effects" upon systemic administration which may affect their ability to reach their target tissues. To fully exploit their therapeutic potential, EVs are embedded into implantable biomaterials designed to achieve local delivery of therapeutics taking advantage of enzyme prodrug therapy (EPT). In this first application of EVs for an EPT approach, EVs are used as smart carriers for stabilizing enzymes in a hydrogel for local controlled conversion of benign prodrugs to active antiinflammatory compounds. It is shown that the natural EVs' antiinflammatory potential is comparable or superior to synthetic carriers, in particular upon repeated long-term incubations and in different macrophage models of inflammation. Moreover, density-dependent color scanning electron microscopy imaging of EVs in a hydrogel is presented herein, an impactful tool for further understanding EVs in biological settings.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Biogenic Nanotherapeutics Group, Campus E8.1, 66123, Saarbrücken, Germany
| | - Rona Chandrawati
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Paresh A Parmar
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Timothy J Keane
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Stephanie A Maynard
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
24
|
Liu X, Li W, Chen T, Yang Q, Huang T, Fu Y, Gong T, Zhang Z. Hyaluronic Acid-Modified Micelles Encapsulating Gem-C 12 and HNK for Glioblastoma Multiforme Chemotherapy. Mol Pharm 2018; 15:1203-1214. [PMID: 29397747 DOI: 10.1021/acs.molpharmaceut.7b01035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM), a prevalent brain cancer with high mortality, is resistant to the conventional single-agent chemotherapy. In this study, we employed a combination chemotherapy strategy to inhibit GBM growth and addressed its possible beneficial effects. The synergistic effect of lauroyl-gemcitabine (Gem-C12) and honokiol (HNK) was first tested and optimized using U87 cells in vitro. Then, the hyaluronic acid-grafted micelles (HA-M), encapsulating the optimal mole ratio (1:1) of Gem-C12 and HNK, were prepared and characterized. Cell-based studies demonstrated that HA-M could be transported into cells by a CD44 receptor-mediated endocytosis, which could penetrate deeper into tumor spheroids and enhance the cytotoxicity of payloads to glioma cells. In vivo, drug-loaded HA-M significantly increased the survival rate of mice bearing orthotopic xenograft GBM compared with the negative control (1.85-fold). Immunohistochemical analysis indicated that the enhanced efficacy of HA-M was attributed to the stronger inhibition of glioma proliferation and induction of apoptosis. Altogether, our findings showed advantages of combination chemotherapy of GBM using HA-grafted micelles.
Collapse
Affiliation(s)
- Xing Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China.,Sichuan Institute for Food and Drug Control , Western High-tech Zone, No. 8 Xinwen Road , Chengdu 610017 , PR China
| | - Wenhao Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China
| | - Tijia Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China
| | - Qin Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China
| | - Ting Huang
- Sichuan Institute for Food and Drug Control , Western High-tech Zone, No. 8 Xinwen Road , Chengdu 610017 , PR China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy , Sichuan University , Chengdu 610041 , PR China
| |
Collapse
|
25
|
Bastiancich C, Bastiat G, Lagarce F. Gemcitabine and glioblastoma: challenges and current perspectives. Drug Discov Today 2017; 23:416-423. [PMID: 29074439 DOI: 10.1016/j.drudis.2017.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/22/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022]
Abstract
Gemcitabine is a nucleoside analog currently used for the treatment of various solid tumors as a single agent or in combination with other chemotherapeutic drugs. Its use against highly aggressive brain tumors (glioblastoma) has been evaluated in preclinical and clinical trials leading to controversial results. Gemcitabine can inhibit DNA chain elongation, is a potent radiosensitizer and it can enhance antitumor immune activity, but it also presents some drawbacks (e.g., short half-life, side effects, chemoresistance). The aim of this review is to discuss the challenges related to the use of gemcitabine for glioblastoma and to report recent studies that suggest overcoming these obstacles opening new perspectives for its use in the field (e.g., gemcitabine derivatives and/or nanomedicines).
Collapse
Affiliation(s)
- Chiara Bastiancich
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Guillaume Bastiat
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | - Frederic Lagarce
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France; Pharmacy Department, CHU Angers, Angers University Hospital, France.
| |
Collapse
|
26
|
Bastiancich C, Bianco J, Vanvarenberg K, Ucakar B, Joudiou N, Gallez B, Bastiat G, Lagarce F, Préat V, Danhier F. Injectable nanomedicine hydrogel for local chemotherapy of glioblastoma after surgical resection. J Control Release 2017; 264:45-54. [DOI: 10.1016/j.jconrel.2017.08.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 12/28/2022]
|
27
|
Zhou J, Li J, Du X, Xu B. Supramolecular biofunctional materials. Biomaterials 2017; 129:1-27. [PMID: 28319779 PMCID: PMC5470592 DOI: 10.1016/j.biomaterials.2017.03.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/27/2022]
Abstract
This review discusses supramolecular biofunctional materials, a novel class of biomaterials formed by small molecules that are held together via noncovalent interactions. The complexity of biology and relevant biomedical problems not only inspire, but also demand effective molecular design for functional materials. Supramolecular biofunctional materials offer (almost) unlimited possibilities and opportunities to address challenging biomedical problems. Rational molecular design of supramolecular biofunctional materials exploit powerful and versatile noncovalent interactions, which offer many advantages, such as responsiveness, reversibility, tunability, biomimicry, modularity, predictability, and, most importantly, adaptiveness. In this review, besides elaborating on the merits of supramolecular biofunctional materials (mainly in the form of hydrogels and/or nanoscale assemblies) resulting from noncovalent interactions, we also discuss the advantages of small peptides as a prevalent molecular platform to generate a wide range of supramolecular biofunctional materials for the applications in drug delivery, tissue engineering, immunology, cancer therapy, fluorescent imaging, and stem cell regulation. This review aims to provide a brief synopsis of recent achievements at the intersection of supramolecular chemistry and biomedical science in hope of contributing to the multidisciplinary research on supramolecular biofunctional materials for a wide range of applications. We envision that supramolecular biofunctional materials will contribute to the development of new therapies that will ultimately lead to a paradigm shift for developing next generation biomaterials for medicine.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Jie Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
28
|
Graphene oxide (GO)/polyacrylamide (PAM) composite hydrogels as efficient cationic dye adsorbents. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.10.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J Control Release 2016; 243:29-42. [DOI: 10.1016/j.jconrel.2016.09.034] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
|
30
|
Hu X, Wang Y, Zhang L, Xu M, Dong W, Zhang J. Redox/pH dual stimuli-responsive degradable Salecan-g-SS-poly(IA-co-HEMA) hydrogel for release of doxorubicin. Carbohydr Polym 2016; 155:242-251. [PMID: 27702509 DOI: 10.1016/j.carbpol.2016.08.077] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 01/06/2023]
Abstract
Salecan is a novel water-soluble extracellular β-glucan and possesses excellent physicochemical and biological properties. Here, redox/pH dual stimuli-responsive hydrogel based on Salecan grafted with itaconic acid (IA) and 2-hydroxyethyl methacrylate (HEMA) were prepared using disulfide-functionalized crosslinker N,N-bis(acryloyl)cystamine (BAC) for controlled drug delivery. The introduction of carboxylic groups endows the system with pH-sensitive character, swelling behavior of the hydrogel was conducted by changing the pH and Salecan content. It was demonstrated that DOX was efficiently loaded into the hydrogels and released in a controlled fashion via pH-control and swelling-shrinking mechanism. More importantly, DOX-loaded hydrogels showed dose dependent cytotoxicity toward A549 cell, and efficient cell killing was observed. Furthermore, a key point of this study was that the presence of disulfide linkage in system favored the degradation of hydrogels in the reductive environment. These results highlight the potential of Salecan-g-SS-poly(IA-co-HEMA) hydrogel as a novel system for the controlled release of anti-cancer drugs.
Collapse
Affiliation(s)
- Xinyu Hu
- Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210042, China.
| | - Yongmei Wang
- Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210042, China
| | - Liangliang Zhang
- Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210042, China
| | - Man Xu
- Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210042, China
| | - Wei Dong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
31
|
Dubey RD, Saneja A, Gupta PK, Gupta PN. Recent advances in drug delivery strategies for improved therapeutic efficacy of gemcitabine. Eur J Pharm Sci 2016; 93:147-62. [PMID: 27531553 DOI: 10.1016/j.ejps.2016.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdC) is an efficacious anticancer agent acting against a wide range of solid tumors, including pancreatic, non-small cell lung, bladder, breast, ovarian, thyroid and multiple myelomas. However, short plasma half-life due to metabolism by cytidine deaminase necessitates administration of high dose, which limits its medical applicability. Further, due to its hydrophilic nature, it cannot traverse cell membranes by passive diffusion and, therefore, enters via nucleoside transporters that may lead to drug resistance. To circumvent these limitations, macromolecular prodrugs and nanocarrier-based formulations of Gemcitabine are gaining wide recognition. The nanoformulations based approaches by virtue of their controlled release and targeted delivery have proved to improve bioavailability, increase therapeutic efficacy and reduce adverse effects of the drug. Furthermore, the combination of Gemcitabine with other anticancer agents as well as siRNAs using nanocarriers has also been investigated in order to enhance its therapeutic potential. This review deals with challenges and recent advances in the delivery of Gemcitabine with particular emphasis on macromolecular prodrugs and nanomedicines.
Collapse
Affiliation(s)
- Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India
| | - Ankit Saneja
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India
| | - Prasoon K Gupta
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India.
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India.
| |
Collapse
|
32
|
Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 2016; 21:1835-1849. [PMID: 27423369 DOI: 10.1016/j.drudis.2016.07.006] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/17/2023]
Abstract
Common chemotherapy is often associated with adverse effects in normal cells and tissues. As an alternative approach, localized chemotherapy can diminish the toxicity of systemic chemotherapy while providing a sustained release of the chemotherapeutics at the target tumor site. Therefore, injectable biodegradable hydrogels as drug delivery systems for chemotherapeutics have become a matter of importance. Here, we review the application of a variety of injectable hydrogel-based drug delivery systems, including thermosensitive, pH-sensitive, photosensitive, dual-sensitive, as well as active targeting hydrogels, for the treatment of different types of cancer. Generally, injectable hydrogel-based drug delivery systems are found to be more efficacious than the conventional systemic chemotherapy in terms of cancer treatment.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran.
| | - Bahareh Nazari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Donald W Miller
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
33
|
Sasso MS, Lollo G, Pitorre M, Solito S, Pinton L, Valpione S, Bastiat G, Mandruzzato S, Bronte V, Marigo I, Benoit JP. Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy. Biomaterials 2016; 96:47-62. [PMID: 27135716 DOI: 10.1016/j.biomaterials.2016.04.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
Tumor-induced expansion of myeloid-derived suppressor cells (MDSCs) is known to impair the efficacy of cancer immunotherapy. Among pharmacological approaches for MDSC modulation, chemotherapy with selected drugs has a considerable interest due to the possibility of a rapid translation to the clinic. However, such approach is poorly selective and may be associated with dose-dependent toxicities. In the present study, we showed that lipid nanocapsules (LNCs) loaded with a lauroyl-modified form of gemcitabine (GemC12) efficiently target the monocytic (M-) MDSC subset. Subcutaneous administration of GemC12-loaded LNCs reduced the percentage of spleen and tumor-infiltrating M-MDSCs in lymphoma and melanoma-bearing mice, with enhanced efficacy when compared to free gemcitabine. Consistently, fluorochrome-labeled LNCs were preferentially uptaken by monocytic cells rather than by other immune cells, in both tumor-bearing mice and human blood samples from healthy donors and melanoma patients. Very low dose administration of GemC12-loaded LNCs attenuated tumor-associated immunosuppression and increased the efficacy of adoptive T cell therapy. Overall, our results show that GemC12-LNCs have monocyte-targeting properties that can be useful for immunomodulatory purposes, and unveil new possibilities for the exploitation of nanoparticulate drug formulations in cancer immunotherapy.
Collapse
Affiliation(s)
- Maria Stella Sasso
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Giovanna Lollo
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - Marion Pitorre
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - Samantha Solito
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Laura Pinton
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Sara Valpione
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Guillaume Bastiat
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France
| | - Susanna Mandruzzato
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Vincenzo Bronte
- Immunology Section, Department of Medicine, University of Verona, 37135 Verona, Italy
| | - Ilaria Marigo
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy.
| | - Jean-Pierre Benoit
- LUNAM Université - Micro et Nanomédecines Biomimétiques, F-49933 Angers, France; INSERM U1066, IBS-CHU, 4 Rue Larrey, F-49933 Angers Cedex 9, France.
| |
Collapse
|
34
|
Lauroyl-gemcitabine-loaded lipid nanocapsule hydrogel for the treatment of glioblastoma. J Control Release 2016; 225:283-93. [DOI: 10.1016/j.jconrel.2016.01.054] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/19/2022]
|
35
|
Fabien V, Minh-Quan L, Michelle S, Guillaume B, Van-Thanh T, Marie-Claire VJ. Development of prilling process for biodegradable microspheres through experimental designs. Int J Pharm 2016; 498:96-109. [PMID: 26656302 DOI: 10.1016/j.ijpharm.2015.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 01/29/2023]
Abstract
The prilling process proposes a microparticle formulation easily transferable to the pharmaceutical production, leading to monodispersed and highly controllable microspheres. PLGA microspheres were used for carrying an encapsulated protein and adhered stem cells on its surface, proposing a tool for regeneration therapy against injured tissue. This work focused on the development of the production of PLGA microspheres by the prilling process without toxic solvent. The required production quality needed a complete optimization of the process. Seventeen parameters were studied through experimental designs and led to an acceptable production. The key parameters and mechanisms of formation were highlighted.
Collapse
Affiliation(s)
- Violet Fabien
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France
| | - Le Minh-Quan
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France
| | - Sergent Michelle
- Aix Marseille Université, LISA, EA 4672, 13013 Marseille, France
| | - Bastiat Guillaume
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France
| | - Tran Van-Thanh
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France
| | - Venier-Julienne Marie-Claire
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France.
| |
Collapse
|
36
|
Phan VHG, Lee E, Maeng JH, Thambi T, Kim BS, Lee D, Lee DS. Pancreatic cancer therapy using an injectable nanobiohybrid hydrogel. RSC Adv 2016; 6:41644-41655. [DOI: 10.1039/c6ra07934b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Nanobiohybrid hydrogels, composed of biocompatible inorganic nanoparticles and biodegradable polymeric hydrogels, have been developed as the sustained delivery carrier of gemcitabine for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- V. H. Giang Phan
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Eunhye Lee
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Jin Hee Maeng
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Thavasyappan Thambi
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Bong Sup Kim
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Donheang Lee
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| |
Collapse
|
37
|
Du X, Zhou J, Shi J, Xu B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem Rev 2015; 115:13165-307. [PMID: 26646318 PMCID: PMC4936198 DOI: 10.1021/acs.chemrev.5b00299] [Citation(s) in RCA: 1332] [Impact Index Per Article: 133.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Indexed: 12/19/2022]
Abstract
In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers.
Collapse
Affiliation(s)
- Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Junfeng Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
38
|
Wauthoz N, Bastiat G, Moysan E, Cieślak A, Kondo K, Zandecki M, Moal V, Rousselet MC, Hureaux J, Benoit JP. Safe lipid nanocapsule-based gel technology to target lymph nodes and combat mediastinal metastases from an orthotopic non-small-cell lung cancer model in SCID-CB17 mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1237-45. [DOI: 10.1016/j.nano.2015.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/12/2015] [Accepted: 02/14/2015] [Indexed: 12/19/2022]
|
39
|
Zhao D, Jiao X, Zhang Y, An D, Shi X, Lu X, Qiu G, Shea KJ. Polymerization mechanism of poly(ethylene glycol dimethacrylate) fragrance nanocapsules. RSC Adv 2015. [DOI: 10.1039/c5ra16292k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At 80 °C, the homopolymerization of the monomer contained in the oil phase caused the precipitation of the polymer on the surface of nanoemulsion drops under the protection of N2 leading to the formation of nanocapsules.
Collapse
Affiliation(s)
- Di Zhao
- College of Chemistry
- Chemical Engineering and Biotechnology Donghua University
- Shanghai 201620
- People's Republic of China
| | - Xin Jiao
- College of Chemistry
- Chemical Engineering and Biotechnology Donghua University
- Shanghai 201620
- People's Republic of China
| | - Yao Zhang
- College of Chemistry
- Chemical Engineering and Biotechnology Donghua University
- Shanghai 201620
- People's Republic of China
| | - Dong An
- College of Chemistry
- Chemical Engineering and Biotechnology Donghua University
- Shanghai 201620
- People's Republic of China
| | - Xiaodi Shi
- College of Chemistry
- Chemical Engineering and Biotechnology Donghua University
- Shanghai 201620
- People's Republic of China
| | - Xihua Lu
- College of Chemistry
- Chemical Engineering and Biotechnology Donghua University
- Shanghai 201620
- People's Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
| | - Gao Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Shanghai 201620
- People's Republic of China
| | | |
Collapse
|