1
|
Das S, Negi S. A novel strategy for partial purification of alkane hydroxylase from P. chrysogenum SNP5 through reconstituting its native membrane into liposome. Sci Rep 2024; 14:3779. [PMID: 38360875 PMCID: PMC10869349 DOI: 10.1038/s41598-024-54074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
Integral proteins or enzymes are still challenging to purify into their native state because of their need for an amphipathic environment and cofactors. Alkane hydroxylase (AlkB) is a membrane-bound enzyme that catalyzes the hydroxylation of a range of alkanes that have a broad spectrum of applications. In the current study, a novel approach has been explored for partial purification of alkane hydroxylase (AlkB) in its native state through restructuring the lipid bilayer of Penicillium chrysogenum SNP5 into a liposome to extend the native and protective environment to AlkB enzyme. Three different methods i.e., reverse-phase evaporation method (RPEM), detergent-based method (DBM), and ethanol injection method (EIM) have been used for reconstituting its native membrane into liposome. On characterizing liposomes through fluorescence imaging, AFM, and particle size analysis, the reverse-phase evaporation method gave the best results based on the size distribution (i.e., 100-300 nm), the morphology of liposomes, and maximum AlkB specific activity (i.e., 140.68 U/mg). The maximum reconstitution efficiency of 29.48% was observed in RPEM followed by 17.3% in DBM and 12.3% in EIM. On the characterization of the purified AlkB, the molecular weight was measured of 44.6 KDa and the thermostability of liposomes synthesized with the RPEM method was obtained maximum at 55 °C. This approach may open a new strategy for the purification of integral enzymes/proteins in their native state in the field of protein purification and its applications in diversified industries.
Collapse
Affiliation(s)
- Satyapriy Das
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, U.P., 211004, India
| | - Sangeeta Negi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, U.P., 211004, India.
| |
Collapse
|
2
|
Rahimi F, Hajizadeh P, Amoabediny G, Ebrahimi B, Khaledi M, Sameni F, Afkhami H, Bakhti S, Rafiee Taqanaki E, Zafari M. Prognosticating the effect of temperature and pH parameters on size and stability of the nanoliposome system based on thermodynamic modeling. J Liposome Res 2023; 33:392-409. [PMID: 37171257 DOI: 10.1080/08982104.2023.2203250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/28/2022] [Indexed: 05/13/2023]
Abstract
The main challenge of using nanoliposome systems is controlling their size and stability. In order to overcome this challenge, according to the research conducted at the Research Centre for New Technologies of Biological Engineering, University of Tehran, a model for predicting the size and stability of nanoliposome systems based on thermodynamic relations has been presented. In this model, by using the presented equations and without performing many experiments in the laboratory environment, the effect of temperature, ionic power and different pH can be considered simultaneously whereas examining the components of size, stability and any feature were considered before. Synthesis and application of liposomal nanocarriers in different operating conditions can be investigated and predicted, and due to the change in temperature and pH, the smallest size of th system can be obtained. In this study, we were able to model the synthesis and storage conditions of liposomal nanocarriers at different temperatures and acidic, neutral and alkaline pHs, based on the calculation of mathematical equations. This model also indicates that with increasing temperature, the radius increases but with increasing pH, the radius first increases and then decreases. Therefore, this model can be used to predict size and stability in different operating conditions. In fact, with this modelling method, there is no need to study through laboratory methods and analysis to determine the size, stability and surface loads, and in terms of Accuracy, time and cost savings are affordable.
Collapse
Affiliation(s)
- Fardin Rahimi
- Nanobio Technology, Head of Research Laboratory and Nanobiotechnology, Shahed University, Tehran, Iran
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Pari Hajizadeh
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ghassem Amoabediny
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
- Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Bahman Ebrahimi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mansoor Khaledi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Hamed Afkhami
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Shahriar Bakhti
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Elham Rafiee Taqanaki
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Zafari
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Guillot AJ, Martínez-Navarrete M, Garrigues TM, Melero A. Skin drug delivery using lipid vesicles: A starting guideline for their development. J Control Release 2023; 355:624-654. [PMID: 36775245 DOI: 10.1016/j.jconrel.2023.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
Lipid vesicles can provide a cost-effective enhancement of skin drug absorption when vesicle production process is optimised. It is an important challenge to design the ideal vesicle, since their properties and features are related, as changes in one affect the others. Here, we review the main components, preparation and characterization methods commonly used, and the key properties that lead to highly efficient vesicles for transdermal drug delivery purposes. We stand by size, deformability degree and drug loading, as the most important vesicle features that determine the further transdermal drug absorption. The interest in this technology is increasing, as demonstrated by the exponential growth of publications on the topic. Although long-term preservation and scalability issues have limited the commercialization of lipid vesicle products, freeze-drying and modern escalation methods overcome these difficulties, thus predicting a higher use of these technologies in the market and clinical practice.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Teresa M Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain.
| |
Collapse
|
4
|
Formulation Development of Doxycycline-Loaded Lipid Nanocarriers using Microfluidics by QbD Approach. J Pharm Sci 2023; 112:740-750. [PMID: 36170906 DOI: 10.1016/j.xphs.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Liposomes have been used to improve therapeutic efficacy of drugs by increasing their bioavailability and altering biodistribution. The loading capacity of small molecules in liposomes remains a critical issue. Besides, the manufacturing process of liposomes requires multi-step procedures which hinders the clinical development. In this study, we developed a promising lipid-based nanocarriers (LN) delivery system for hydrophilic charged compounds using doxycycline (Doxy) as a model drug. This Doxy-loaded lipid nanocarrier (LN-Doxy) was fabricated by microfluidic technology. Design of experiments (DoE) was constructed to outline the interactions among the critical attributes of formulation, the parameters of microfluidic systems and excipient compositions. Response surface methodology (RSM) was furthered used for the optimization of LN-Doxy formulation. The LN-Doxy developed in this study showed high drug to lipid ratio and uniform distribution of particle size. Compared to Doxy solution, this LN-Doxy has reduced in vitro cellular toxicity and significant therapeutic efficacy which was verified in a peritonitis animal model. These results show the feasibility of using microfluidic technology combined with QbD approach to develop the LN formulation with high loading efficiency for ionizable hydrophilic drugs.
Collapse
|
5
|
Aman Mohammadi M, Farshi P, Ahmadi P, Ahmadi A, Yousefi M, Ghorbani M, Hosseini SM. Encapsulation of Vitamins Using Nanoliposome: Recent Advances and Perspectives. Adv Pharm Bull 2023; 13:48-68. [PMID: 36721823 PMCID: PMC9871282 DOI: 10.34172/apb.2023.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Abstract
Nowadays the importance of vitamins is clear for everyone. However, many patients are suffering from insufficient intake of vitamins. Incomplete intake of different vitamins from food sources due to their destruction during food processing or decrease in their bioavailability when mixing with other food materials, are factors resulting in vitamin deficiency in the body. Therefore, various lipid based nanocarriers such as nanoliposomes were developed to increase the bioavailability of bioactive compounds. Since the function of nanoliposomes containing vitamins on the body has a direct relationship with the quality of produced nanoliposomes, this review study was planned to investigate the several aspects of liposomal characteristics such as size, polydispersity index, zeta potential, and encapsulation efficiency on the quality of synthesized vitamin-loaded nanoliposomes.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Science and Food Technology, Nutritional and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,These authors contributed equally in this Article
| | - Parastou Farshi
- Food Science Institute, Kansas State University, Manhattan KS, USA.,These authors contributed equally in this Article
| | - Parisa Ahmadi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Ahmadi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousefi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Corresponding Authors: Marjan Ghorbani, Tel: +98 41 33378165, Fax: +98 41 33378165, , and Seyede Marzieh Hosseini, Tel: +98 21 22622322, Fax: +98 21 22622322,
| | - Seyede Marzieh Hosseini
- Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding Authors: Marjan Ghorbani, Tel: +98 41 33378165, Fax: +98 41 33378165, , and Seyede Marzieh Hosseini, Tel: +98 21 22622322, Fax: +98 21 22622322,
| |
Collapse
|
6
|
Patterning-mediated supramolecular assembly of lipids into nanopalms. iScience 2022; 25:105344. [DOI: 10.1016/j.isci.2022.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/04/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
|
7
|
Demartis S, Anjani QK, Volpe-Zanutto F, Paredes AJ, Jahan SA, Vora LK, Donnelly RF, Gavini E. Trilayer dissolving polymeric microneedle array loading Rose Bengal transfersomes as a novel adjuvant in early-stage cutaneous melanoma management. Int J Pharm 2022; 627:122217. [PMID: 36155790 DOI: 10.1016/j.ijpharm.2022.122217] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 12/24/2022]
Abstract
Melanoma remains a global concern, but current therapies present critical limitations pointing out the urgent need for novel strategies. Among these, the cutaneous delivery of drugs selectively damaging cancer cells is highly attractive. Rose Bengal (RB) is a dye exhibiting selective cytotoxicity towards melanoma, but the high water solubility and low permeability hinder its therapeutic potential. We previously developed RB-loaded transfersomes (RBTF) to mediate the RB dermal delivery; however, a platform efficiently delivering RBTF in the deepest strata is essential for a successful therapeutic activity. In this regard, dissolving microneedles release the encapsulated cargo up to the dermis, painlessly piercing the outmost skin layers. Therefore, herein we developed and characterised a trilayer dissolving microneedle array (RBTF-TDMNs) loading RBTF to maximise RBTF intradermal delivery in melanoma management. RBTF-TDMNs were proven strong enough to pierce excised porcine skin and rapidly dissolve and deposit RBTF intradermally while maintaining their physicochemical properties. Also, 3D visualisation of the system itself and while penetrating the skin was performed by multi-photon microscopy. Finally, a dermatokinetic study showed that RBTF-TDMNs offered unique delivery efficiency advantages compared to RBTF dispersion and free drug-loaded TDMNs. The proposed RBTF-TDMNs represent a valuable potential adjuvant tool for the topical management of melanoma.
Collapse
Affiliation(s)
- Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Italy; School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | | | - Subrin A Jahan
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, UK.
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
8
|
Demartis S, Rassu G, Murgia S, Casula L, Giunchedi P, Gavini E. Improving Dermal Delivery of Rose Bengal by Deformable Lipid Nanovesicles for Topical Treatment of Melanoma. Mol Pharm 2021; 18:4046-4057. [PMID: 34554752 PMCID: PMC8564756 DOI: 10.1021/acs.molpharmaceut.1c00468] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Cutaneous melanoma
is one of the most aggressive and metastatic
forms of skin cancer. However, current therapeutic options present
several limitations, and the annual death rate due to melanoma increases
every year. Dermal delivery of nanomedicines can effectively eradicate
primary melanoma lesions, avoid the metastatic process, and improve
survival. Rose Bengal (RB) is a sono-photosensitizer drug with intrinsic
cytotoxicity toward melanoma without external stimuli but the biopharmaceutical
profile limits its clinical use. Here, we propose deformable lipid
nanovesicles, also known as transfersomes (TF), for the targeted dermal
delivery of RB to melanoma lesions to eradicate them in the absence
of external stimuli. Considering RB’s poor ability to cross
the stratum corneum and its photosensitizer nature, transfersomal
carriers were selected simultaneously to enhance RB penetration to
the deepest skin layers and protect RB from undesired photodegradation.
RB-loaded TF dispersion (RB-TF), prepared by a modified reverse-phase
evaporation method, were nanosized with a ζ-potential value
below −30 mV. The spectrophotometric and fluorimetric analysis
revealed that RB efficiently interacted with the lipid phase. The
morphological investigations (transmission electron microscopy and
small-angle X-ray scattering) proved that RB intercalated within the
phospholipid bilayer of TF originating unilamellar and deformable
vesicles, in contrast to the rigid multilamellar unloaded ones. Such
outcomes agree with the results of the in vitro permeation study,
where the lack of a burst RB permeation peak for RB-TF, observed instead
for the free drug, suggests that a significant amount of RB interacted
with lipid nanovesicles. Also, RB-TF proved to protect RB from undesired
photodegradation over 24 h of direct light exposure. The ex vivo epidermis
permeation study proved that RB-TF significantly increased RB’s
amount permeating the epidermis compared to the free drug (78.31 vs
38.31%). Finally, the antiproliferative assays on melanoma cells suggested
that RB-TF effectively reduced cell growth compared to free RB at
the concentrations tested (25 and 50 μM). RB-TF could potentially
increase selectivity toward cancer cells. Considering the outcomes
of the characterization and cytotoxicity studies performed on RB-TF,
we conclude that RB-TF represents a valid potential alternative tool
to fight against primary melanoma lesions via dermal delivery in the
absence of light.
Collapse
Affiliation(s)
- Sara Demartis
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Sergio Murgia
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy.,CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, Florence, Italy
| | - Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
9
|
Microfluidics for Multiphase Mixing and Liposomal Encapsulation of Nanobioconjugates: Passive vs. Acoustic Systems. FLUIDS 2021. [DOI: 10.3390/fluids6090309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the main routes to ensure that biomolecules or bioactive agents remain active as they are incorporated into products with applications in different industries is by their encapsulation. Liposomes are attractive platforms for encapsulation due to their ease of synthesis and manipulation and the potential to fuse with cell membranes when they are intended for drug delivery applications. We propose encapsulating our recently developed cell-penetrating nanobioconjugates based on magnetite interfaced with translocating proteins and peptides with the purpose of potentiating their cell internalization capabilities even further. To prepare the encapsulates (also known as magnetoliposomes (MLPs)), we introduced a low-cost microfluidic device equipped with a serpentine microchannel to favor the interaction between the liposomes and the nanobioconjugates. The encapsulation performance of the device, operated either passively or in the presence of ultrasound, was evaluated both in silico and experimentally. The in silico analysis was implemented through multiphysics simulations with the software COMSOL Multiphysics 5.5® (COMSOL Inc., Stockholm, Sweden) via both a Eulerian model and a transport of diluted species model. The encapsulation efficiency was determined experimentally, aided by spectrofluorimetry. Encapsulation efficiencies obtained experimentally and in silico approached 80% for the highest flow rate ratios (FRRs). Compared with the passive mixer, the in silico results of the device under acoustic waves led to higher discrepancies with respect to those obtained experimentally. This was attributed to the complexity of the process in such a situation. The obtained MLPs demonstrated successful encapsulation of the nanobioconjugates by both methods with a 36% reduction in size for the ones obtained in the presence of ultrasound. These findings suggest that the proposed serpentine micromixers are well suited to produce MLPs very efficiently and with homogeneous key physichochemical properties.
Collapse
|
10
|
Tjandra AD, Weston M, Tang J, Kuchel RP, Chandrawati R. Solvent injection for polydiacetylene particle synthesis – Effects of varying solvent, injection rate, monomers and needle size on polydiacetylene properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Bochicchio S, Dalmoro A, Lamberti G, Barba AA. Advances in Nanoliposomes Production for Ferrous Sulfate Delivery. Pharmaceutics 2020; 12:E445. [PMID: 32403375 PMCID: PMC7284685 DOI: 10.3390/pharmaceutics12050445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, a continuous bench scale apparatus based on microfluidic fluid dynamic principles was used in the production of ferrous sulfate-nanoliposomes for pharmaceutical/nutraceutical applications, optimizing their formulation with respect to the products already present on the market. After an evaluation of its fluid dynamic nature, the simil-microfluidic (SMF) apparatus was first used to study the effects of the adopted process parameters on vesicles dimensional features by using ultrasonic energy to enhance liposomes homogenization. Subsequently, iron-nanoliposomes were produced at different weight ratios of ferrous sulfate to the total formulation components (0.06, 0.035, 0.02, and 0.01 w/w) achieving, by using the 0.01 w/w, vesicles of about 80 nm, with an encapsulation efficiency higher than 97%, an optimal short- and long-term stability, and an excellent bioavailability in Caco-2 cell line. Moreover, a comparison realized between the SMF method and two more conventional production techniques showed that by using the SMF setup the process time was drastically reduced, and the process yield increased, achieving a massive nanoliposomes production. Finally, duty-cycle sonication was detected to be a scalable technique for vesicles homogenization.
Collapse
Affiliation(s)
- Sabrina Bochicchio
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy; (S.B.); (A.D.); (G.L.)
| | - Annalisa Dalmoro
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy; (S.B.); (A.D.); (G.L.)
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy
| | - Gaetano Lamberti
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy; (S.B.); (A.D.); (G.L.)
- Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy
| | - Anna Angela Barba
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy; (S.B.); (A.D.); (G.L.)
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy
| |
Collapse
|
12
|
Core-shell lipid-polymer nanoparticles as a promising ocular drug delivery system to treat glaucoma. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Lipid Delivery Systems for Nucleic-Acid-Based-Drugs: From Production to Clinical Applications. Pharmaceutics 2019; 11:pharmaceutics11080360. [PMID: 31344836 PMCID: PMC6723796 DOI: 10.3390/pharmaceutics11080360] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
In the last years the rapid development of Nucleic Acid Based Drugs (NABDs) to be used in gene therapy has had a great impact in the medical field, holding enormous promise, becoming “the latest generation medicine” with the first ever siRNA-lipid based formulation approved by the United States Food and Drug Administration (FDA) for human use, and currently on the market under the trade name Onpattro™. The growth of such powerful biologic therapeutics has gone hand in hand with the progress in delivery systems technology, which is absolutely required to improve their safety and effectiveness. Lipid carrier systems, particularly liposomes, have been proven to be the most suitable vehicles meeting NABDs requirements in the medical healthcare framework, limiting their toxicity, and ensuring their delivery and expression into the target tissues. In this review, after a description of the several kinds of liposomes structures and formulations used for in vitro or in vivo NABDs delivery, the broad range of siRNA-liposomes production techniques are discussed in the light of the latest technological progresses. Then, the current status of siRNA-lipid delivery systems in clinical trials is addressed, offering an updated overview on the clinical goals and the next challenges of this new class of therapeutics which will soon replace traditional drugs.
Collapse
|
14
|
Amaral VSG, Fernandes CM, Felício MR, Valle AS, Quintana PG, Almeida CC, Barreto-Bergter E, Gonçalves S, Santos NC, Kurtenbach E. Psd2 pea defensin shows a preference for mimetic membrane rafts enriched with glucosylceramide and ergosterol. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2019; 1861:713-728. [PMID: 30639288 DOI: 10.1016/j.bbamem.2018.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 12/26/2022]
Abstract
Psd2 is a pea defensin with 47 amino acid residues that inhibits the growth of fungal species by an uncharacterized mechanism. In this work, Psd2 interactions with model membranes mimicking the lipid compositions of different organisms were evaluated. Protein-lipid overlay assays indicated that Psd2 recognizes Fusarium solani glucosylceramide (GlcCerF.solani) and ergosterol (Erg) in addition to phosphatidylcholine (POPC) and some phosphatidylinositol species, such as PtdIns (3)P, (5)P and (3,5)P2, suggesting that these lipids may play important roles as Psd2 targets. Assays using lipid vesicles were also performed to study the behaviour and dynamics that occur after peptide-membrane interactions. Surface plasmon resonance analysis showed that Psd2 has a higher affinity for pure POPC and POPC-based vesicles containing GlcCer and Erg at a 70:30 proportion than for vesicles containing cholesterol (Chol). Partition experiments by fluorescence spectroscopy showed a decrease in Trp42 quantum yield of Psd2 in the presence of GlcCerF.solani and Erg, individually or in simultaneously enriched membranes. The partition coefficient (Kp) obtained indicated a Psd2 partition preference for this vesicles, confirmed by quenching assays using acrylamide and 5/16-doxyl-stearic acid. Furthermore, we showed that the presence of C8C9 double bonds and a methyl group at position C9 of the sphingoid base backbone of GlcCer was relevant to Psd2 activity against Aspergillus nidulans. These results are consistent with the selectivity of Psd2 against fungi and its lack of toxicity in human erythrocytes. Psd2 represents a promising natural compound for the treatment of fungal infections.
Collapse
Affiliation(s)
- Virginia Sara Grancieri Amaral
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Aline Sol Valle
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula G Quintana
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Correa Almeida
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Discovery of a New Xanthone against Glioma: Synthesis and Development of (Pro)liposome Formulations. Molecules 2019; 24:molecules24030409. [PMID: 30678085 PMCID: PMC6384625 DOI: 10.3390/molecules24030409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 02/02/2023] Open
Abstract
Following our previous work on the antitumor activity of acetylated flavonosides, a new acetylated xanthonoside, 3,6-bis(2,3,4,6-tetra-O-acetyl-β-glucopyranosyl)xanthone (2), was synthesized and discovered as a potent inhibitor of tumor cell growth. The synthesis involved the glycosylation of 3,6-di-hydroxyxanthone (1) with acetobromo-α-d-glucose. Glycosylation with silver carbonate decreased the amount of glucose donor needed, comparative to the biphasic glycosylation. Xanthone 2 showed a potent anti-growth activity, with GI50 < 1 μM, in human cell lines of breast, lung, and glioblastoma cancers. Current treatment for invasive brain glioma is still inadequate and new agents against glioblastoma with high brain permeability are urgently needed. To overcome these issues, xanthone 2 was encapsulated in a liposome. To increase the well-known low stability of these drug carriers, a proliposome formulation was developed using the spray drying method. Both formulations were characterized and compared regarding three months stability and in vitro anti-growth activity. While the proliposome formulation showed significantly higher stability, it was at the expense of losing its biocompatibility as a drug carrier in higher concentrations. More importantly, the new xanthone 2 was still able to inhibit the growth of glioblastoma cells after liposome formulation.
Collapse
|
16
|
Dalmoro A, Bochicchio S, Lamberti G, Bertoncin P, Janssens B, Barba AA. Micronutrients encapsulation in enhanced nanoliposomal carriers by a novel preparative technology. RSC Adv 2019; 9:19800-19812. [PMID: 35519406 PMCID: PMC9065329 DOI: 10.1039/c9ra03022k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
Micronutrients administration by fortification of staple and complementary foods is a followed strategy to fight malnutrition and micronutrient deficiencies and related pathologies. There is a great industrial interest in preparation of formulations for joint administration of vitamin D3 and vitamin K2 for providing bone support, promoting heart health and helping boost immunity. To respond to this topic, in this work, uncoated nanoliposomes loaded with vitamin D3 and K2 were successfully prepared, by using a novel, high-yield and semi continuous technique based on simil-microfluidic principles. By the same technique, to promote and to enhance mucoadhesiveness and stability of the produced liposomal structures, chitosan was tested as covering material. By this way polymer–lipid hybrid nanoparticles, encapsulating vitamin D3 and vitamin K2, with improved features in terms of stability, loading and mucoadhesiveness were produced for potential nutraceutical and pharmaceutical applications. Micronutrients administration by liposomal vectors is a growing strategy in fortification processes of staple and complementary foods to fight malnutrition and micronutrient deficiencies and related pathologies.![]()
Collapse
Affiliation(s)
- Annalisa Dalmoro
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Farmacia
- Università degli Studi di Salerno
| | | | - Gaetano Lamberti
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Ingegneria Industriale
- Università degli Studi di Salerno
| | - Paolo Bertoncin
- Dipartimento di Scienze della Vita – Centro Microscopia Elettronica
- Università degli Studi di Trieste
- 34127 Trieste
- Italy
| | | | - Anna Angela Barba
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Farmacia
- Università degli Studi di Salerno
| |
Collapse
|
17
|
Local delivery of macromolecules to treat diseases associated with the colon. Adv Drug Deliv Rev 2018; 136-137:2-27. [PMID: 30359631 DOI: 10.1016/j.addr.2018.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Abstract
Current treatments for intestinal diseases including inflammatory bowel diseases, irritable bowel syndrome, and colonic bacterial infections are typically small molecule oral dosage forms designed for systemic delivery. The intestinal permeability hurdle to achieve systemic delivery from oral formulations of macromolecules is challenging, but this drawback can be advantageous if an intestinal region is associated with the disease. There are some promising formulation approaches to release peptides, proteins, antibodies, antisense oligonucleotides, RNA, and probiotics in the colon to enable local delivery and efficacy. We briefly review colonic physiology in relation to the main colon-associated diseases (inflammatory bowel disease, irritable bowel syndrome, infection, and colorectal cancer), along with the impact of colon physiology on dosage form design of macromolecules. We then assess formulation strategies designed to achieve colonic delivery of small molecules and concluded that they can also be applied some extent to macromolecules. We describe examples of formulation strategies in preclinical research aimed at colonic delivery of macromolecules to achieve high local concentration in the lumen, epithelial-, or sub-epithelial tissue, depending on the target, but with the benefit of reduced systemic exposure and toxicity. Finally, the industrial challenges in developing macromolecule formulations for colon-associated diseases are presented, along with a framework for selecting appropriate delivery technologies.
Collapse
|
18
|
Nam JH, Kim SY, Seong H. Investigation on Physicochemical Characteristics of a Nanoliposome-Based System for Dual Drug Delivery. NANOSCALE RESEARCH LETTERS 2018; 13:101. [PMID: 29654484 PMCID: PMC5899077 DOI: 10.1186/s11671-018-2519-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/05/2018] [Indexed: 05/13/2023]
Abstract
Synergistic effects of multiple drugs with different modes of action are utilized for combinatorial chemotherapy of intractable cancers. Translation of in vitro synergistic effects into the clinic can be realized using an efficient delivery system of the drugs. Despite a few studies on nano-sized liposomes containing erlotinib (ERL) and doxorubicin (DOX) in a single liposome vesicle, reliable and reproducible preparation methods as well as physicochemical characteristics of a non-PEGylated nanoliposome co-encapsulated with ERL and DOX have not been yet elucidated. In this study, ERL-encapsulated nanoliposomes were prepared using the lipid film-hydration method. By ultrasonication using a probe sonicator, the liposome diameter was reduced to less than 200 nm. DOX was loaded into the ERL-encapsulated nanoliposomes using ammonium sulfate (AS)-gradient or pH-gradient method. Effects of DOX-loading conditions on encapsulation efficiency (EE) of the DOX were investigated to determine an efficient drug-loading method. In the EE of DOX, AS-gradient method was more effective than pH gradient. The dual drug-encapsulated nanoliposomes had more than 90% EE of DOX and 30% EE of ERL, respectively. Transmission electron microscopy and selected area electron diffraction analyses of the dual drug-encapsulated nanoliposomes verified the highly oriented DOX-sulfate crystals inside the liposome as well as the less oriented small crystals of ERL in the outermost region of the nanoliposome. The nanoliposomes were stable at different temperatures without an increase of the nanoliposome diameter. The dual drug-encapsulated nanoliposomes showed a time-differential release of ERL and DOX, implying proper sequential releases for their synergism. The preparation methods and the physicochemical characteristics of the dual drug delivery system contribute to the development of the optimal process and more advanced systems for translational researches.
Collapse
Affiliation(s)
- Jae Hyun Nam
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-Gu, Deajeon, 34114 Republic of Korea
| | - So-Yeon Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-Gu, Deajeon, 34114 Republic of Korea
| | - Hasoo Seong
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-Gu, Deajeon, 34114 Republic of Korea
| |
Collapse
|
19
|
Abstract
Weak magnetic and electromagnetic fields affect physiological processes in animals, plants, and microorganisms. Ion cyclotron resonance (ICR) is discussed as one of the sensitive mechanisms, which enable perception of the geomagnetic field and its orientation. Numerous biological effects are observed involving several small ions, showing windows of predicted frequencies and intensities. The pioneering work of Guiliano Preparata and Emilio Del Giudice using quantum electrodynamics showed that spontaneously originating coherent regions in water facilitate ICR effects at incoherent water phase boundaries. Here we examine the ICR response of the calcium ion (Ca2+), crucial for many life processes. We use an aqueous solution containing the biologically ubiquitous membrane lipid L-α-phosphatidylcholine that serves as a biomimetic proxy for dynamic light scattering (DLS) and nonlinear dielectric spectroscopy (NLDS) measurements. One notable result is that this system approaches a new equilibrium upon addition of calcium by means of the oscillatory Belousov-Zhabotinsky chemical reaction, oscillations are significantly reduced under Ca2+ ICR application. Secondly an "oscillator" of calcium ions appears to be able to itself couple coherently and predictably to large-scale coherent regions in water. This system appears able to regulate ion fluxes in response to very weak environmental electromagnetic fields.
Collapse
|
20
|
Bochicchio S, Dalmoro A, Bertoncin P, Lamberti G, Moustafine RI, Barba AA. Design and production of hybrid nanoparticles with polymeric-lipid shell–core structures: conventional and next-generation approaches. RSC Adv 2018; 8:34614-34624. [PMID: 35548606 PMCID: PMC9087338 DOI: 10.1039/c8ra07069e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/27/2018] [Indexed: 11/21/2022] Open
Abstract
An innovative, simil-microfluidic, nanoliposome-covering method operating continuously with massive production yield overcoming the disadvantages of conventional methods is proposed.
Collapse
Affiliation(s)
- Sabrina Bochicchio
- Dipartimento di Farmacia
- Università degli Studi di Salerno
- Italy
- Eng4Life Srl
- Spin-off Accademico
| | - Annalisa Dalmoro
- Dipartimento di Farmacia
- Università degli Studi di Salerno
- Italy
- Eng4Life Srl
- Spin-off Accademico
| | - Paolo Bertoncin
- Dipartimento di Scienze della Vita
- Centro Microscopia Elettronica
- Università degli Studi di Trieste
- 34127 Trieste
- Italy
| | - Gaetano Lamberti
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Ingegneria Industriale
- Università degli Studi di Salerno
| | - Rouslan I. Moustafine
- Department of Pharmaceutical
- Analytical and Toxicological Chemistry
- Kazan State Medical University
- 420012 Kazan
- Russian Federation
| | - Anna Angela Barba
- Dipartimento di Farmacia
- Università degli Studi di Salerno
- Italy
- Eng4Life Srl
- Spin-off Accademico
| |
Collapse
|
21
|
Guo Z, Zhang X, Zhang T, Tian J, Fang K, Gu N. The effect of ratios of egg white to yolk on the shape of droplets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:947-954. [PMID: 28532115 DOI: 10.1016/j.msec.2017.03.271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/12/2016] [Accepted: 03/28/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Zhenchao Guo
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Sipailou 2, Nanjing 210096, China; Suzhou Key Lab of Biomedical Materials and Technology, Research Institute of Southeast University in Suzhou, Ren Ai Road 150, Suzhou Industrial Park, Suzhou 215123, China; Department of Biological science and food engineering, Bengbu University, Tang He Road 1866, Bengbu 233000, China
| | - Xianfeng Zhang
- Department of chemistry engineering, Bengbu University, Tang He Road 1866, Bengbu 233000, China
| | - Tianzhu Zhang
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Sipailou 2, Nanjing 210096, China; Suzhou Key Lab of Biomedical Materials and Technology, Research Institute of Southeast University in Suzhou, Ren Ai Road 150, Suzhou Industrial Park, Suzhou 215123, China.
| | - Jilai Tian
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Sipailou 2, Nanjing 210096, China; Suzhou Key Lab of Biomedical Materials and Technology, Research Institute of Southeast University in Suzhou, Ren Ai Road 150, Suzhou Industrial Park, Suzhou 215123, China
| | - Kun Fang
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Sipailou 2, Nanjing 210096, China; Suzhou Key Lab of Biomedical Materials and Technology, Research Institute of Southeast University in Suzhou, Ren Ai Road 150, Suzhou Industrial Park, Suzhou 215123, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Sipailou 2, Nanjing 210096, China; Suzhou Key Lab of Biomedical Materials and Technology, Research Institute of Southeast University in Suzhou, Ren Ai Road 150, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
22
|
|
23
|
Engineering approaches in siRNA delivery. Int J Pharm 2017; 525:343-358. [PMID: 28213276 DOI: 10.1016/j.ijpharm.2017.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 12/18/2022]
Abstract
siRNAs are very potent drug molecules, able to silence genes involved in pathologies development. siRNAs have virtually an unlimited therapeutic potential, particularly for the treatment of inflammatory diseases. However, their use in clinical practice is limited because of their unfavorable properties to interact and not to degrade in physiological environments. In particular they are large macromolecules, negatively charged, which undergo rapid degradation by plasmatic enzymes, are subject to fast renal clearance/hepatic sequestration, and can hardly cross cellular membranes. These aspects seriously impair siRNAs as therapeutics. As in all the other fields of science, siRNAs management can be advantaged by physical-mathematical descriptions (modeling) in order to clarify the involved phenomena from the preparative step of dosage systems to the description of drug-body interactions, which allows improving the design of delivery systems/processes/therapies. This review analyzes a few mathematical modeling approaches currently adopted to describe the siRNAs delivery, the main procedures in siRNAs vectors' production processes and siRNAs vectors' release from hydrogels, and the modeling of pharmacokinetics of siRNAs vectors. Furthermore, the use of physical models to study the siRNAs vectors' fate in blood stream and in the tissues is presented. The general view depicts a framework maybe not yet usable in therapeutics, but with promising possibilities for forthcoming applications.
Collapse
|
24
|
Bochicchio S, Dapas B, Russo I, Ciacci C, Piazza O, De Smedt S, Pottie E, Barba AA, Grassi G. In vitro and ex vivo delivery of tailored siRNA-nanoliposomes for E2F1 silencing as a potential therapy for colorectal cancer. Int J Pharm 2017; 525:377-387. [PMID: 28189855 DOI: 10.1016/j.ijpharm.2017.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/18/2017] [Accepted: 02/07/2017] [Indexed: 02/01/2023]
Abstract
Tailored developed nanoliposomes loaded with a siRNA against the transcription factor E2F1 (siE2F1), were produced and delivered to human colorectal adenocarcinoma cell lines and to intestinal human biopsies. siE2F1 loaded nanoliposomes were produced through a dedicated ultrasound assisted technique producing particles with about 40nm size (Small Unilamellar Vesicles, SUVs) and 100% siRNA encapsulation efficiency. Compared to other production methods, the one proposed here can easily produce particles in the nanometric scale by suitable ultrasonic duty cycle treatments. Furthermore, SUVs have a high degree of size homogeneity, a relevant feature for uniform delivery behaviour. siE2F1-loaded SUVs demonstrated a very low cytotoxicity in cells when compared to a commercial transfection agent. Moreover, SUVs loaded with siE2F1 were effective in the down regulation of the target in cultured colon carcinoma cells and in the consequent reduction of cell growth. Finally, a remarkable uptake and target silencing efficiencies were observed in cultured human biopsy of colonic mucosa. In conclusion, whereas further studies in more complex models are required, the siE2F1-SUVs generated have the potential to contribute to the development of novel effective inflammatory bowel diseases-associated colorectal cancer therapies for a future personalized medicine.
Collapse
Affiliation(s)
- Sabrina Bochicchio
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy; Dipartimento di Ingegneria Industriale, University of Salerno, Fisciano, SA, Italy
| | - Barbara Dapas
- Dipartimento di Scienze della Vita, University of Trieste, Italy
| | - Ilaria Russo
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", University of Salerno, Fisciano, SA, Italy
| | - Carolina Ciacci
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", University of Salerno, Fisciano, SA, Italy
| | - Ornella Piazza
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", University of Salerno, Fisciano, SA, Italy
| | | | - Eline Pottie
- Department of Pharmaceutics, University of Gent, Belgium
| | - Anna Angela Barba
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy.
| | - Gabriele Grassi
- Dipartimento di Scienze della Vita, University of Trieste, Italy; Dipartimento di Scienze Mediche, Chirurgiche e della Salute, Ospedale di Cattinara, University of Trieste, Italy
| |
Collapse
|
25
|
Bochicchio S, Sala M, Spensiero A, Scala MC, Gomez-Monterrey IM, Lamberti G, Barba AA. On the design of tailored liposomes for KRX29 peptide delivery. NEW J CHEM 2017. [DOI: 10.1039/c7nj03115g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high interest in therapeutic peptides, due to the specificity of their mechanisms of action, has stimulated the research of new delivery strategies to overcome bioavailability problems concerning the use of peptides in their naked form. In this study liposomal suitable delivery system was designed and produced.
Collapse
Affiliation(s)
- S. Bochicchio
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| | - M. Sala
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| | - A. Spensiero
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| | - M. C. Scala
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| | | | - G. Lamberti
- Dipartimento di Ingegneria Industriale
- University of Salerno
- Italy
| | - A. A. Barba
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| |
Collapse
|
26
|
Vitamin delivery: Carriers based on nanoliposomes produced via ultrasonic irradiation. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.01.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Li H, Liu Y, Zhang Y, Fang D, Xu B, Zhang L, Chen T, Ren K, Nie Y, Yao S, Song X. Liposomes as a Novel Ocular Delivery System for Brinzolamide: In Vitro and In Vivo Studies. AAPS PharmSciTech 2016; 17:710-7. [PMID: 26335415 DOI: 10.1208/s12249-015-0382-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/28/2015] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to investigate the potential of liposomes as an ophthalmic delivery system for brinzolamide (Brz) to enhance the local glaucomatous therapeutic effect. The liposomes of Brz (Brz-LPs) were produced by the thin-film dispersion method with a particle size of 84.33 ± 2.02 nm and an entrapment efficiency of 98.32 ± 1.61%. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) analysis proved that Brz was successfully entrapped into Brz-LPs. Brz-LPs displayed a biphasic release pattern in vitro with burst release initially and sustained release afterwards. The corneal permeability was measured using modified Franz-type diffusion cells, and Brz-LPs showed 6.2-fold increase in the apparent permeability coefficient when compared with the commercial available formulation (B rz-Sus). Moreover, Brz-LPs (1 mg/mL Brz) showed a more sustained and effective intraocular pressure reduction (5-10 mmHg) than Brz-Sus (10 mg/mL Brz) in white New Zealand rabbits. Therefore, Brz-LPs were a hopeful formulation of Brz for glaucoma treatment and worthy of further investigation.
Collapse
|
28
|
Chay SY, Tan WK, Saari N. Preparation and characterisation of nanoliposomes containing winged bean seeds bioactive peptides. J Microencapsul 2015; 32:488-95. [PMID: 26079597 DOI: 10.3109/02652048.2015.1057250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to produce and characterise nanosize liposomes containing bioactive peptides with antioxidative and ACE-inhibitory properties, derived from winged bean seeds (WBS) protein. WBS powder was papain-proteolysed, at 70 °C and pH 6.5 for six hours, followed by encapsulation via a solvent-free heating method. The results showed that the WBS proteolysate was successfully incorporated into spherical, unilamellar liposomal particles, with particle diameter, polydispersity index, zeta potential and encapsulation efficiency of 193.3 ± 0.12 nm, 0.4 ± 0.02 (unit less), -70.5 ± 0.30 mV and 27.6 ± 1.17%, respectively. It also demonstrated good storage stability over eight weeks at 4 °C, indicated by slight increment (15.1%) in particle size and a zeta potential only weaker by 17.2% at the end of the study period. These results suggested the feasibility of entrapping water soluble peptides in hydrophobic liposomal system that, upon optimisation, has the potential to act as bioactive food ingredient.
Collapse
Affiliation(s)
- Shyan Yea Chay
- Department of Food Science , Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang Selangor , Malaysia
| | | | | |
Collapse
|