1
|
Jani P, Nayani K, Abbott NL. Sculpting the shapes of giant unilamellar vesicles using isotropic-nematic-isotropic phase cycles. SOFT MATTER 2021; 17:9078-9086. [PMID: 34558596 DOI: 10.1039/d1sm00910a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding how soft matter deforms in response to mechanical interactions is central to the design of functional synthetic materials as well as elucidation of the behaviors of biological assemblies. Here we explore how cycles of thermally induced transitions between nematic (N) and isotropic (I) phases can be used to exert cyclical elastic stresses on dispersions of giant unilamellar vesicles (GUVs) and thereby evolve GUV shape and properties. The measurements were enabled by the finding that I-N-I phase transitions of the lyotropic chromonic liquid crystal disodium cromoglycate, when conducted via an intermediate columnar (M) phase, minimized transport of GUVs on phase fronts to confining surfaces. Whereas I to N phase transitions strained spherical GUVs into spindle-like shapes, with an efflux of GUV internal volume, subsequent N to I transitions generated a range of complex GUV shapes, including stomatocyte, pear- and dumbbell-like shapes that depended on the extent of strain in the N phase. The highest strained GUVs were observed to form buds (daughter vesicles) that we show, via a cycle of I-N-I-N phase transitions, are connected via a neck to the parent vesicle. Additional experiments established that changes in elasticity of the phase surrounding the GUVs and not thermal expansion of membranes were responsible for the shape transitions, and that I-N-I transformations that generate stomatocytes can be understood from the Bilayer-Coupling model of GUV shapes. Overall, these observations advance our understanding of how LC elastic stresses can be regulated to evolve the shapes of soft biological assemblies as well as provide new approaches for engineering synthetic soft matter.
Collapse
Affiliation(s)
- Purvil Jani
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| | - Karthik Nayani
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas L Abbott
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Park G, Čopar S, Suh A, Yang M, Tkalec U, Yoon DK. Periodic Arrays of Chiral Domains Generated from the Self-Assembly of Micropatterned Achiral Lyotropic Chromonic Liquid Crystal. ACS CENTRAL SCIENCE 2020; 6:1964-1970. [PMID: 33274273 PMCID: PMC7706096 DOI: 10.1021/acscentsci.0c00995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 05/20/2023]
Abstract
Achiral building blocks forming achiral structures is a common occurrence in nature, while chirality emerging spontaneously from an achiral system is usually associated with important scientific phenomena. We report on the spontaneous chiral symmetry-breaking phenomena upon the topographic confinement of achiral lyotropic chromonic liquid crystals in periodically arranged micrometer scale air pillars. The anisotropic fluid arranges into chiral domains that depend on the arrangement and spacing of the pillars. We characterize the resulting domains by polarized optical microscopy, support their reconstruction by numerical calculations, and extend the findings with experiments, which include chiral dopants. Well-controlled and addressed chiral structures will be useful in potential applications like programmable scaffolds for living liquid crystals and as sensors for detecting chirality at the molecular level.
Collapse
Affiliation(s)
- Geonhyeong Park
- Graduate
School of Nanoscience and Technology, Korea
Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Simon Čopar
- Faculty
of Mathematics and Physics, University of
Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Ahram Suh
- Graduate
School of Nanoscience and Technology, Korea
Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Minyong Yang
- Graduate
School of Nanoscience and Technology, Korea
Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Uroš Tkalec
- Institute
of Biophysics, Faculty of Medicine, University
of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Faculty
of Natural Sciences and Mathematics, University
of Maribor, Koroška
160, 2000 Maribor, Slovenia
- Department
of Condensed Matter Physics, Jožef
Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- E-mail: (U. Tkalec)
| | - Dong Ki Yoon
- Graduate
School of Nanoscience and Technology, Korea
Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department
of Chemistry and KINC, Korea Advanced Institute
of Science and Technology, Daejeon 34141, Republic of Korea
- E-mail: (D.K. Yoon)
| |
Collapse
|
3
|
Topological Defect Arrays in Nematic Liquid Crystals Assisted by Polymeric Pillar Arrays: Effect of the Geometry of Pillars. CRYSTALS 2020. [DOI: 10.3390/cryst10040314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Topological defects that spontaneously occur in condensed matter and structured fluids such as liquid crystals are useful for their elastic and optical properties, but often the applicability of defect arrays to optics and photonic devices relies on the regularity and tunability of the system. In our recent work [Adv. Opt. Mater. 8, 1900991 (2020)], we showed the formation of regular, reconfigurable, and scalable patterns by exploiting the elastic response of a defect array in liquid crystals in the presence of a polymeric pillar array. In this work, we experimentally investigate the role of size and shape of the pillars on the defect array. We find that the pillar size and geometry provide additional means to regulate the response time, the threshold voltage for the defects’ formation, and the spatial arrangement of the defects.
Collapse
|
4
|
Kil KH, Yethiraj A, Kim JS. Nematic ordering of hard rods under strong confinement in a dense array of nanoposts. Phys Rev E 2020; 101:032705. [PMID: 32289982 DOI: 10.1103/physreve.101.032705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/26/2020] [Indexed: 11/07/2022]
Abstract
The effect of confinement on the behavior of liquid crystals is interesting from a fundamental and practical standpoint. In this work, we report Monte Carlo simulations of hard rods in an array of hard nanoposts, where the surface-to-surface separations between nanoposts are comparable to or less than the length of hard rods. This particular system shows promise as a means of generating large-scale organization of the nematic liquid by introducing an entropic external field set by the alignment of nanoposts. The simulations show that nematic ordering of hard rods is enhanced in the nanopost arrays compared with that in bulk, in the sense that the nematic order is significant even at low concentrations at which hard rods remain isotropic in bulk, and the enhancement becomes more significant as the passage width between two nearest nanoposts decreases. An analysis of local distribution of hard-rod orientations at low concentrations with weak nematic ordering reveals that hard rods are preferentially aligned along nanoposts in the narrowing regions between two curved surfaces of nearest nanoposts; hard rods are less ordered in the passages and in the centers of interpost spaces. It is concluded that at low concentrations the confinement in a dense array of nanoposts induces the localized nematic order first in the narrowing regions and, as the concentration further increases, the nematic order spreads over the whole region. The formation of a well-ordered phase at low concentrations of hard rods in a dense array of nanoposts can provide a new route to the low-concentration preparation of nematic liquid crystals that can be used as anisotropic dispersion media.
Collapse
Affiliation(s)
- Kye Hyoung Kil
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Arun Yethiraj
- Department of Chemistry, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Jun Soo Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
5
|
Roy P, Mukherjee R, Bandyopadhyay D, Gooh Pattader PS. Electrodynamic-contact-line-lithography with nematic liquid crystals for template-less E-writing of mesopatterns on soft surfaces. NANOSCALE 2019; 11:16523-16533. [PMID: 31454013 DOI: 10.1039/c9nr05729c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the development of a single-step, template-less and fast pathway, namely, Electrodynamic-Contact-Line-Lithography (ECLL), to write micro to nanopatterns on the surface of a soft polymer film. As a model system, a layer of nematic liquid crystals (NLC), resting on a polymer thin film, was sandwiched between a pair of electrodes emulating the electrowetting on a dielectric (EWOD) setup. Upon the application of electric field, the Maxwell stresses thus generated at the NLC-polymer interface due to the high dielectric contrast stimulated an unprecedented fingering instability at the advancing NLC-polymer-air contact line. In the process, the advancing electrospreading front of NLC left the footprint of an array of micro to nanoscale wells on the polymer surface with a long-range ordering thus unveiling a pathway for maskless patterning of a soft elastic film. Unlike the conventional electric field induced lithography (EFL), the meso-scale morphology was found to follow the short wavelength-scales as the periodicity of the patterns (λc) varied linearly with the thickness of the film (h), (λc∝h). The high dielectric contrast at the NLC-polymer interface and the local fluctuation of the NLC directors ensured a time scale much faster than the same observed for the polymer-air systems.
Collapse
Affiliation(s)
- Pritam Roy
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Rabibrata Mukherjee
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India. and Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Partho Sarathi Gooh Pattader
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India. and Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
6
|
Cha YJ, Park SM, You R, Kim H, Yoon DK. Microstructure arrays of DNA using topographic control. Nat Commun 2019; 10:2512. [PMID: 31175307 PMCID: PMC6555807 DOI: 10.1038/s41467-019-10540-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 05/17/2019] [Indexed: 11/09/2022] Open
Abstract
DNA is a common biomaterial in nature as well as a good building block for producing useful structures, due to its fine feature size and liquid crystalline phase. Here, we demonstrate that a combination of shear-induced flow and microposts can be used to create various kinds of interesting microstructure DNA arrays. Our facile method provides a platform for forming multi-scale hierarchical orientations of soft- and biomaterials, using a process of simple shearing and controlled evaporation on a patterned substrate. This approach enables potential patterning applications using DNA or other anisotropic biomaterials based on their unique structural characteristics.
Collapse
Affiliation(s)
- Yun Jeong Cha
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Soon Mo Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Ra You
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyoungsoo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,Department of Chemistry and KINC, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
7
|
Nehring A, Shendruk TN, de Haan HW. Morphology of depletant-induced erythrocyte aggregates. SOFT MATTER 2018; 14:8160-8171. [PMID: 30260361 DOI: 10.1039/c8sm01026a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Red blood cells suspended in quiescent plasma tend to aggregate into multicellular assemblages, including linearly stacked columnar rouleaux, which can reversibly form more complex clusters or branching networks. While these aggregates play an essential role in establishing hemorheological and pathological properties, the biophysics behind their self-assembly into dynamic mesoscopic structures remains under-explored. We employ coarse-grained molecular simulations to model low-hematocrit erythrocytes subject to short-range implicit depletion forces, and demonstrate not only that depletion interactions are sufficient to account for a sudden dispersion-aggregate transition, but also that the volume fraction of depletant macromolecules controls small aggregate morphology. We observe a sudden transition from a dispersion to a linear column rouleau, followed by a slow emergence of disorderly amorphous clusters of many short rouleaux at larger volume fractions. This work demonstrates how discocyte topology and short-range, non-specific, physical interactions are sufficient to self-assemble erythrocytes into various aggregate structures, with markedly different morphologies and biomedical consequences.
Collapse
Affiliation(s)
- Austin Nehring
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada.
| | - Tyler N Shendruk
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Hendrick W de Haan
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada.
| |
Collapse
|
8
|
Araki T, Nagura J. Bistable director alignments of nematic liquid crystals confined in frustrated substrates. Phys Rev E 2017; 95:012706. [PMID: 28208316 DOI: 10.1103/physreve.95.012706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Indexed: 11/07/2022]
Abstract
We studied in-plane bistable alignments of nematic liquid crystals confined by two frustrated surfaces by means of Monte Carlo simulations of the Lebwohl-Lasher spin model. The surfaces are prepared with orientational checkerboard patterns, on which the director field is locally anchored to be planar yet orthogonal between the neighboring blocks. We found the director field in the bulk tends to be aligned along the diagonal axes of the checkerboard pattern, as reported experimentally [J.-H. Kim et al., Appl. Phys. Lett. 78, 3055 (2001)APPLAB0003-695110.1063/1.1371246]. The energy barrier between the two stable orientations is increased, when the system is brought to the isotropic-nematic transition temperature. Based on an elastic theory, we found that the bistability is attributed to the spatial modulation of the director field near the frustrated surfaces. As the block size is increased and/or the elastic modulus is reduced, the degree of the director inhomogeneity is increased, enlarging the energy barrier. We also found that the switching rate between the stable states is decreased when the block size is comparable to the cell thickness.
Collapse
Affiliation(s)
- Takeaki Araki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan.,CREST, Japan Science and Technology Agency, Japan
| | - Jumpei Nagura
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Cha YJ, Yoon DK. Control of Periodic Zigzag Structures of DNA by a Simple Shearing Method. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604247. [PMID: 27862385 DOI: 10.1002/adma.201604247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/19/2016] [Indexed: 06/06/2023]
Abstract
A periodic zigzag structure of DNA material is successfully fabricated by a simple shearing method. The periodicity of the pattern can be finely controlled by combining the mechanical shearing method with topographic patterns of microchannels. The resultant zigzag patterns can be used as a template to control the alignment of rod-like liquid crystals due to its highly regular periodicity.
Collapse
Affiliation(s)
- Yun Jeong Cha
- Graduate School of Nanoscience and Technology and KINC, KAIST, Daejeon, 305-701, Republic of Korea
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology and KINC, KAIST, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
10
|
Kos Ž, Ravnik M. Relevance of saddle-splay elasticity in complex nematic geometries. SOFT MATTER 2016; 12:1313-1323. [PMID: 26610395 DOI: 10.1039/c5sm02417j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate the relevance of saddle-splay elasticity in nematic liquid crystalline fluids in the context of complex surface anchoring conditions and the complex geometrical confinement. Specifically, nematic cells with patterns of surface anchoring and colloidal knots are shown as examples where saddle-splay free energy contribution can have a notable role which originates from nonhomogeneous surface anchoring and the varying surface curvature. Patterned nematic cells are shown to exhibit various (meta)stable configurations of nematic field, with relative (meta)stability depending on the saddle-splay. We show that for high enough values of saddle-splay elastic constant K24 a previously unstable conformation can be stabilised, more generally indicating that the saddle-splay can reverse or change the (meta)stability of various nematic structures affecting their phase diagrams. Furthermore, we investigate saddle-splay elasticity in the geometry of highly curved boundaries - the colloidal particle knots in nematic - where the local curvature of the particles induces complex spatial variations of the saddle-splay contributions. Finally, a nematic order parameter tensor based saddle-splay invariant is shown, which allows for the direct calculation of saddle-splay free energy from the Q-tensor, a possibility very relevant for multiple mesoscopic modelling approaches, such as Landau-de Gennes free energy modelling.
Collapse
Affiliation(s)
- Žiga Kos
- Faculty of Mathematics and Physics, University of Ljubljana, Slovenia.
| | - Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Slovenia. and Josef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
11
|
DeBenedictis A, Atherton TJ, Anquetil-Deck C, Cleaver DJ, Emerson DB, Wolak M, Adler JH. Competition of lattice and basis for alignment of nematic liquid crystals. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042501. [PMID: 26565259 DOI: 10.1103/physreve.92.042501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 06/05/2023]
Abstract
Due to elastic anisotropy, two-dimensional patterning of substrates can promote weak azimuthal alignment of adjacent nematic liquid crystals. Here we consider how such alignment can be achieved using a periodic square lattice of circular or elliptical motifs. In particular, we examine ways in which the lattice and motif can combine to favor differing orientations. Using Monte Carlo simulation and continuum elasticity we find, for circular motifs, that the coverage fraction controls both the polar anchoring angle and a transition in the azimuthal orientation. If the circles are generalized to ellipses, arbitrary control of the effective easy axis and effective anchoring potential becomes achievable by appropriate tuning of the ellipse motif relative to the periodic lattice patterning. This has possible applications in both monostable and bistable liquid crystal device contexts.
Collapse
Affiliation(s)
- Andrew DeBenedictis
- Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Timothy J Atherton
- Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Candy Anquetil-Deck
- Materials and Engineering Research Institute, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, United Kingdom
| | - Douglas J Cleaver
- Materials and Engineering Research Institute, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, United Kingdom
| | - David B Emerson
- Department of Mathematics, Tufts University, 503 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Mathew Wolak
- Department of Mathematics, Tufts University, 503 Boston Avenue, Medford, Massachusetts 02155, USA
| | - James H Adler
- Department of Mathematics, Tufts University, 503 Boston Avenue, Medford, Massachusetts 02155, USA
| |
Collapse
|
12
|
Chaudhury MK, Chakrabarti A, Ghatak A. Adhesion-induced instabilities and pattern formation in thin films of elastomers and gels. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:82. [PMID: 26223988 DOI: 10.1140/epje/i2015-15082-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 05/24/2023]
Abstract
A hydrostatically stressed soft elastic film circumvents the imposed constraint by undergoing a morphological instability, the wavelength of which is dictated by the minimization of the surface and the elastic strain energies of the film. While for a single film, the wavelength is entirely dependent on its thickness, a co-operative energy minimization dictates that the wavelength depends on both the elastic moduli and thicknesses of two contacting films. The wavelength can also depend on the material properties of a film if its surface tension has a pronounced effect in comparison to its elasticity. When such a confined film is subjected to a continually increasing normal displacement, the morphological patterns evolve into cracks, which, in turn, govern the adhesive fracture behavior of the interface. While, in general, the thickness provides the relevant length scale underlying the well-known Griffith-Kendall criterion of debonding of a rigid disc from a confined film, it is modified non-trivially by the elasto-capillary number for an ultra-soft film. Depending upon the degree of confinement and the spatial distribution of external stress, various analogs of the canonical instability patterns in liquid systems can also be reproduced with thin confined elastic films.
Collapse
Affiliation(s)
- Manoj K Chaudhury
- Department of Chemical and Biomolecular Engineering, Lehigh University, 18015, Bethlehem, PA, USA,
| | | | | |
Collapse
|
13
|
Całus S, Kityk AV, Eich M, Huber P. Inhomogeneous relaxation dynamics and phase behaviour of a liquid crystal confined in a nanoporous solid. SOFT MATTER 2015; 11:3176-3187. [PMID: 25759093 DOI: 10.1039/c5sm00108k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report filling-fraction dependent dielectric spectroscopy measurements on the relaxation dynamics of the rod-like nematogen 7CB condensed in 13 nm silica nanochannels. In the film-condensed regime, a slow interface relaxation dominates the dielectric spectra, whereas from the capillary-condensed state up to complete filling an additional, fast relaxation in the core of the channels is found. The temperature-dependence of the static capacitance, representative of the averaged, collective molecular orientational ordering, indicates a continuous, paranematic-to-nematic (P-N) transition, in contrast to the discontinuous bulk behaviour. It is well described by a Landau-de-Gennes free energy model for a phase transition in cylindrical confinement. The large tensile pressure of 10 MPa in the capillary-condensed state, resulting from the Young-Laplace pressure at highly curved liquid menisci, quantitatively accounts for a downward-shift of the P-N transition and an increased molecular mobility in comparison to the unstretched liquid state of the complete filling. The strengths of the slow and fast relaxations provide local information on the orientational order: the thermotropic behaviour in the core region is bulk-like, i.e. it is characterized by an abrupt onset of the nematic order at the P-N transition. By contrast, the interface ordering exhibits a continuous evolution at the P-N transition. Thus, the phase behaviour of the entirely filled liquid crystal-silica nanocomposite can be quantitatively described by a linear superposition of these distinct nematic order contributions.
Collapse
Affiliation(s)
- Sylwia Całus
- Faculty of Electrical Engineering, Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa, Poland.
| | | | | | | |
Collapse
|
14
|
Zhou S, Neupane K, Nastishin YA, Baldwin AR, Shiyanovskii SV, Lavrentovich OD, Sprunt S. Elasticity, viscosity, and orientational fluctuations of a lyotropic chromonic nematic liquid crystal disodium cromoglycate. SOFT MATTER 2014; 10:6571-81. [PMID: 25043812 DOI: 10.1039/c4sm00772g] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Using dynamic light scattering, we study orientational fluctuation modes in the nematic phase of a self-assembled lyotropic chromonic liquid crystal (LCLC) disodium cromoglycate and measure the Frank elastic moduli and viscosity coefficients. The elastic moduli of splay (K1) and bend (K3) are in the order of 10 pN while the twist modulus (K2) is an order of magnitude smaller. The splay constant K1 and the ratio K1/K3 both increase substantially as the temperature T decreases, which we attribute to the elongation of the chromonic aggregates at lower temperatures. The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger. The temperature dependence of bend viscosity is weak. The splay and twist viscosities change exponentially with the temperature. In addition to the director modes, the fluctuation spectrum reveals an additional mode that is attributed to diffusion of structural defects in the column-like aggregates.
Collapse
Affiliation(s)
- Shuang Zhou
- Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | | | | | | | | | | | | |
Collapse
|