1
|
Oliveira LKRD, Nascimento Neto CDD, Costa E Silva AB, Rocha SMW, Bianchi PR, Galdino AGDS, Silva DN. Physicochemical characterization and effects of monetite obtained from titania-reinforced eggshell on bone repair: a new possibility for tissue bioengineering? Clin Oral Investig 2025; 29:108. [PMID: 39903319 DOI: 10.1007/s00784-025-06195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
OBJECTIVES To carry out physicomechanical characterization of the HA/DCPA/TiO2 and to evaluate the tissue repair in rat calvaria. METHODS Two bone defects were made in the calvaria of 36 Wistar rats, divided into groups: HA/DCPA, HA/DCPA/TiO2 and sham (blood clot). The animals were euthanized at 30, 60 and 90 days and calvaria slides were processed with hematoxylin/eosin. The newly formed bone, connective tissue, biomaterial remnant, and total tissue repair percentages were calculated in relation to the total defect area. The HA/DCPA/TiO2 was characterized structurally by scanning electron microscopy (SEM), and chemically by energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). It was submitted to apparent density (AD), apparent porosity (AP), water absorption (WA) and compressive strength (CS) physical tests. The ANOVA test was applied, followed by Turkey's test and Student's t-test (p ≤ 0,05). RESULTS The SEM showed biomaterials inside the bone defects and newly formed bone. EDS identified oxygen, calcium, phosphorus, and titanium in the sample. The HA/DCPA/TiO2 and HA/DCPA groups presented a total tissue repair area that was larger than the sham group (p < 0.001). CONCLUSIONS The physical-mechanical assays showed that HA/DCPA/TiO2 has AD and CS properties within the limits of trabecular bone and with values higher than HA/DCPA.HA/DCPA/TiO2 presented higher densification and compressive strength rates than HA/DCPA. CLINICAL RELEVANCE Potential as a scaffold for bone.
Collapse
Affiliation(s)
- Laisa Kindely Ramos de Oliveira
- Postgraduate Program in Dental Sciences, UFES, Vitória, ES, Brazil.
- , Marechal Campos, 1.355, Bonfim, Vitória, Espírito Santo, 29047160, Brazil.
| | | | | | | | | | | | - Daniela Nascimento Silva
- Department of Clinical Dentistry, Postgraduate Program in Dental Sciences, UFES, Vitória, ES, Brazil
| |
Collapse
|
2
|
Şahin E, Ruggiero R, Tatullo M, Paduano F, Alp M, Şeref A. Design and characterization of β-tricalcium phosphate-based self-passivating coatings on magnesium alloys. J Mater Chem B 2024; 12:11477-11490. [PMID: 39397647 DOI: 10.1039/d4tb01214c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background: Magnesium alloys degrade rapidly in salt solutions, which limits their use without passivating treatments. AZ31 alloy is particularly promising for implant applications owing to its biodegradability and mechanical properties, necessitating effective corrosion-resistant coatings. Aim: In this study, a self-passivating reactive coating was designed and evaluated for AZ31 magnesium alloy plates using β-tricalcium phosphate (TCP) to enhance corrosion resistance and biocompatibility. Methods: Solutions of TCP, trisodium citrate, magnesium nitrate, hydroxyethyl cellulose (HEC), and sodium chloride were used to dip-coat AZ31 plates. The coated samples were immersed in 3.5 wt% NaCl solution. Phase evolution was analysed using gravimetry, X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The biological response of the coated samples was evaluated through MTT and resazurin assays. Results: The coating formed a stable TCP/HEC layer that gradually dissolved over two weeks, converting the surface to magnesium hydroxide, magnesium oxychloride, and magnesium phosphate phases. The formation of brucite, responsible for passivation in the long term, was observed. The coating effectively prevented excessive magnesium oxychloride formation and stabilised magnesium hydroxide after one week. Biological characterization indicated that the coating on AZ31 is safe on the Saos-2 and L929 cell lines. Conclusion: The TCP-based coating enhances the corrosion resistance of AZ31 alloy in salt solutions, promoting passivating phases and limiting corrosive products, thereby ameliorating biocompatibility issues. This coating demonstrates substantial potential for extending the longevity and functionality of magnesium alloy implants.
Collapse
Affiliation(s)
- Erdem Şahin
- Department of Metallurgical and Materials Engineering, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye
| | - Roberta Ruggiero
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy.
| | - Marco Tatullo
- Department of Translational Biomedicine and Neuroscience, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Paduano
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy.
| | - Meltem Alp
- Department of Metallurgical and Materials Engineering, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye
| | - Ahmed Şeref
- Department of Metallurgical and Materials Engineering, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye
| |
Collapse
|
3
|
Zhou H, Yang L, Gbureck U, Bhaduri SB, Sikder P. Monetite, an important calcium phosphate compound-Its synthesis, properties and applications in orthopedics. Acta Biomater 2021; 127:41-55. [PMID: 33812072 DOI: 10.1016/j.actbio.2021.03.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
This review recognizes a unique calcium phosphate (CaP) phase known as monetite or dicalcium phosphate anhydrous (DCPA, CaHPO4), and presents an overview of its properties, processing, and applications in orthopedics. The motivation for the present effort is to highlight the state-of-the-art research and development of monetite and propel the research community to explore more of its potentials in orthopedics. After a brief introduction of monetite, we provide a summary of its various synthesis routes like dehydration, solvent-based, energy-assisted processes and also discuss the formation of different crystal structures with respect to the synthesis conditions. Subsequently, we discuss the material's noteworthy physico-chemical properties including the crystal structure, vibrational spectra, solubility, thermal decomposition, and conversion to other phases. Of note, we focus on the biological (in vitro and in vivo) properties of monetite, given its ever-increasing popularity as a biomaterial for medical implants. Appropriately, we discuss various orthopedic applications of monetite as bone cement, implant coatings, granules for defect fillers, and scaffolds. Many in vitro and in vivo studies confirmed the favorable osteointegration and osteoconduction properties of monetite products, along with a better balance between implant resorption and new bone formation as compared to other CaP phases. The review ends with translational aspects of monetite and presents thoughts about its possible future research directions. Further research may explore but not limited to improvements in mechanical strength of monetite-based scaffolds, using monetite particles as a therapeutic agent delivery, and tissue engineering strategies where monetite serves as the biomaterial. STATEMENT OF SIGNIFICANCE: This is the first review that focusses on the favorable potential of monetite for hard tissue repair and regeneration. The article accurately covers the "Synthesis-Structure-Property-Applications" correlations elaborating on monetite's diverse material properties. Special focus is put on the in vitro and in vivo properties of the material highlighting monetite as an orthopedic material-of-choice. The synthesis techniques are discussed which provide important information about the different fabrication routes for monetite. Most importantly, the review provides comprehensive knowledge about the diverse biomedical applications of monetite as granules, defect--specific scaffolds, bone cements and implant coatings. This review will help to highlight monetite's potential as an effective regenerative medicine and catalyze the continuing translation of this bioceramic from the laboratory to clinics.
Collapse
Affiliation(s)
- H Zhou
- Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China; International Research Center for Translational Orthopaedics (IRCTO), Jiangsu, China
| | - L Yang
- Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China; International Research Center for Translational Orthopaedics (IRCTO), Jiangsu, China
| | - U Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Würzburg, Germany
| | - S B Bhaduri
- Department of Mechanical, Industrial & Manufacturing Engineering, The University of Toledo, Toledo, OH, USA; ENG-EEC Division, The National Science Foundation (NSF), Alexandria, VA, USA
| | - P Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Şahin E, Çiftçioğlu M. Compositional, microstructural and mechanical effects of NaCl porogens in brushite cement scaffolds. J Mech Behav Biomed Mater 2021; 116:104363. [PMID: 33550144 DOI: 10.1016/j.jmbbm.2021.104363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
Abstract
Modification of the setting process of brushite cements by varying the concentration of ions that alter calcium phosphate crystallization kinetics, is known to enable control on the monetite conversion extent and the accompanying microporosity. This is useful because monetite serves as a suitable matrix in macroporous scaffolds due to its higher phase stability and finer crystal morphology compared to its hydrous counterpart brushite. In this study the synergistic effect of NaCl and citric acid on the microstructural evolution of brushite cement was demonstrated and microporosity of macroporous monetite-rich cement blocks was minimized by a variable NaCl porogen size distribution approach. Initially, maximum packing ratio of various combinations of NaCl size groups in PEG were determined by their rheological analysis in a range between 57% and 69%. Statistical analysis revealed a positive correlation between the amounts of NaCl particles under 38μm and 212μm and the maximum packing ratio. Further broadening the size distributions of NaCl porogens with fine cement precursors was effective in increasing the solids packing ratio of cement blocks more than the maximum packing ratio for the porogens. This improvement in packing was accompanied by a reduction in microporosity despite the increase in micropore volume with ion induced monetite formation. The detrimental effect of the microporosity introduced to the structure during monetite formation was balanced for some size distributions and not so much for others, thereby resulting in a wide range of porosities and mechanical properties. Thus, the exponential dependence of mechanical properties on porosity and the mechanical properties of monetite-rich macroporous blocks at the theoretical zero-porosity were determined according to Rice's model. Zero-porosity extrapolations were much higher than those predicted for brushite cement, contrary to the common assumption that brushite is mechanically stronger than monetite.
Collapse
Affiliation(s)
- Erdem Şahin
- Department of Metallurgical and Materials Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey.
| | - Muhsin Çiftçioğlu
- Department of Chemical Engineering, İzmir Institute of Technology, İzmir, Turkey.
| |
Collapse
|
5
|
Şahin E, Kalyon DM. Preshearing is an in situ setting modification method for inorganic bone cements. MEDICAL DEVICES & SENSORS 2020; 3. [DOI: https:/doi.org/10.1002/mds3.10105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/26/2020] [Indexed: 07/21/2023]
Affiliation(s)
- Erdem Şahin
- Department of Metallurgical and Materials Engineering Muğla Sıtkı Koçman University Muğla Turkey
| | - Dilhan M. Kalyon
- Department of Biomedical Engineering, Chemistry and Biological Sciences Stevens Institute of Technology Hoboken NJ USA
| |
Collapse
|
6
|
Schröter L, Kaiser F, Stein S, Gbureck U, Ignatius A. Biological and mechanical performance and degradation characteristics of calcium phosphate cements in large animals and humans. Acta Biomater 2020; 117:1-20. [PMID: 32979583 DOI: 10.1016/j.actbio.2020.09.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Calcium phosphate cements (CPCs) have been used to treat bone defects and support bone regeneration because of their good biocompatibility and osteointegrative behavior. Since their introduction in the 1980s, remarkable clinical success has been achieved with these biomaterials, because they offer the unique feature of being moldable and even injectable into implant sites, where they harden through a low-temperature setting reaction. However, despite decades of research efforts, two major limitations concerning their biological and mechanical performance hamper a broader clinical use. Firstly, achieving a degradation rate that is well adjusted to the dynamics of bone formation remains a challenging issue. While apatite-forming CPCs frequently remain for years at the implant site without major signs of degradation, brushite-forming CPCs are considered to degrade to a greater extent. However, the latter tend to convert into lower soluble phases under physiological conditions, which makes their degradation behavior rather unpredictable. Secondly, CPCs exhibit insufficient mechanical properties for load bearing applications because of their inherent brittleness. This review places an emphasis on these limitations and provides an overview of studies that have investigated the biological and biomechanical performance as well as the degradation characteristics of different CPCs after implantation into trabecular bone. We reviewed studies performed in large animals, because they mimic human bone physiology more closely in terms of bone metabolism and mechanical loading conditions compared with small laboratory animals. We compared the results of these studies with clinical trials that have dealt with the degradation behavior of CPCs after vertebroplasty and kyphoplasty.
Collapse
Affiliation(s)
- Lena Schröter
- Institute for Orthopedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstrasse 14, D-89081 Ulm, Germany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Svenja Stein
- Institute for Orthopedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstrasse 14, D-89081 Ulm, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany.
| | - Anita Ignatius
- Institute for Orthopedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstrasse 14, D-89081 Ulm, Germany
| |
Collapse
|
7
|
Di Marco V, Pastore P, Tosato M, Andrighetto A, Borgna F, Realdon N. pH-static titrations for kinetic studies of metal-ligand complex formation: The case example of the reaction between Strontium(II) and DOTA. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Yang C, Guan L, Wang J, Yang X, Lin M, You G, Tan S, Yu X, Ge M. Enhanced fluoride removal behaviour and mechanism by dicalcium phosphate from aqueous solution. ENVIRONMENTAL TECHNOLOGY 2019; 40:3668-3677. [PMID: 29857785 DOI: 10.1080/09593330.2018.1484523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Dicalcium phosphate was prepared by ethylenediaminetetraacetic acid as a calcium chelating agent, and further explored to remove the fluoride ions from aqueous solution. The as-prepared samples main existed in the monetite phase from the result of XRD. The dried sample consisted of small nanoparticles and displayed irregular particles with a size of ca. 3 μm due to the agglomeration. The fluoride removal ability was evaluated by batch adsorption experiments. The as-prepared adsorbent exhibited the enhanced fluoride removal behaviour with the maximum adsorption capacity of 66.72 mg/g from the Langmuir isotherm model, which was higher than that of other previously reported calcium phosphate. The adsorbent could be utilized in the wide pH range of 3-10. The adsorption kinetics could be better described by the pseudo-second-order model than first-second-order model. The co-existing anions had a negligible influence on the fluoride adsorption. The investigation of adsorption mechanism suggested that the chemical reaction and/or dissolution - precipitation mechanism should be dominant in the fluoride adsorption process, accompanying with electronic interaction and ions exchange, which enhanced the fluoride removal performance.
Collapse
Affiliation(s)
- Chongling Yang
- Department of Chemical Engineering, Guangdong Industry Technical College, Guangzhou, People's Republic of China
| | - Litao Guan
- College of Materials and Energy, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jiyuan Wang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Xueqin Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Mengya Lin
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Gexin You
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Shouzai Tan
- Department of Chemical Engineering, Guangdong Industry Technical College, Guangzhou, People's Republic of China
| | - Xiaolin Yu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
9
|
|
10
|
Self-Setting Calcium Orthophosphate (CaPO4) Formulations. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-5975-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Schamel M, Barralet JE, Gelinsky M, Groll J, Gbureck U. Intrinsic 3D Prestressing: A New Route for Increasing Strength and Improving Toughness of Hybrid Inorganic Biocements. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701035. [PMID: 28714141 DOI: 10.1002/adma.201701035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Cement is the most consumed resource and is the most widely used material globally. The ability to extrinsically prestress cementitious materials with tendons usually made from steel allows the creation of high-strength bridges and floors from this otherwise brittle material. Here, a dual setting cement system based on the combination of hydraulic cement powder with an aqueous silk fibroin solution that intrinsically generates a 3D prestressing during setting, dramatically toughening the cement to the point it can be cut with scissors, is reported. Changes of both ionic concentration and pH during cement setting are shown to create an interpenetrating silk fibroin inorganic composite with the combined properties of the elastic polymer and the rigid cement. These hybrid cements are self-densifying and show typical ductile fracture behavior when dry and a high elasticity under wet conditions with mechanical properties (bending and compressive strength) nearly an order of magnitude higher than the fibroin-free cement reference.
Collapse
Affiliation(s)
- Martha Schamel
- Department of Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, Würzburg, 97070, Germany
| | - Jake E Barralet
- Department of Surgery, Faculty of Medicine, Faculty of Dentistry, McGill University, 1650 Cedar Ave., Montréal, Québec, H3G 1A4, Canada
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, Würzburg, 97070, Germany
| | - Uwe Gbureck
- Department of Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, Würzburg, 97070, Germany
| |
Collapse
|
12
|
Şahin E, Kalyon DM. The rheological behavior of a fast-setting calcium phosphate bone cement and its dependence on deformation conditions. J Mech Behav Biomed Mater 2017; 72:252-260. [DOI: https:/doi.org/10.1016/j.jmbbm.2017.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
|
13
|
Şahin E, Kalyon DM. The rheological behavior of a fast-setting calcium phosphate bone cement and its dependence on deformation conditions. J Mech Behav Biomed Mater 2017; 72:252-260. [PMID: 28505594 DOI: 10.1016/j.jmbbm.2017.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
|
14
|
Schamel M, Barralet JE, Groll J, Gbureck U. In vitro ion adsorption and cytocompatibility of dicalcium phosphate ceramics. Biomater Res 2017; 21:10. [PMID: 28616254 PMCID: PMC5465584 DOI: 10.1186/s40824-017-0096-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/31/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND In vitro cell testing of degradable bioceramics such as brushite or monetite is often challenging due to the ion release into or adsorption from the culture medium. These ionic changes are then mostly responsible for cell proliferation and activity, which prohibits the investigation of effects originating from surface topography or further material modifications. METHODS Here, we aimed to solve this problem by developing a pre-conditioning regime following the repeated immersion of brushite and monetite samples in various Ca2+, Mg2+ and PO43- containing electrolytes, followed by studying ion adsorption / release as well as changes in phase composition and in vitro cytocompatibility with MG63 cells. RESULTS The results demonstrated that by using DMEM cell culture medium in a ratio of 10 ml/sample was sufficient to minimize changes of ionic composition after 7 d with a daily change of the medium. This leads to changes of the surface composition with dissolution of the brushite phase. In turn, this also positively influences the in vitro cytocompatibility with a 2-3 fold higher cell number and cell activity on the DMEM pretreated surfaces. CONCLUSIONS Controlled sample washing prior to cell testing using DMEM medium seems to be a valuable procedure not only to stabilize the pH during cell culture but also to maintain ion concentrations within a cell friendly range.
Collapse
Affiliation(s)
- Martha Schamel
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, 97070 Würzburg, Germany
| | - Jake E. Barralet
- Department of Surgery, Faculty of Medicine, Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B2 Canada
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, 97070 Würzburg, Germany
| | - Uwe Gbureck
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
15
|
Meininger S, Blum C, Schamel M, Barralet JE, Ignatius A, Gbureck U. Phytic acid as alternative setting retarder enhanced biological performance of dicalcium phosphate cement in vitro. Sci Rep 2017; 7:558. [PMID: 28373697 PMCID: PMC5429644 DOI: 10.1038/s41598-017-00731-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/09/2017] [Indexed: 01/23/2023] Open
Abstract
Dicalcium phosphate cement preparation requires the addition of setting retarders to meet clinical requirements regarding handling time and processability. Previous studies have focused on the influence of different setting modifiers on material properties such as mechanical performance or injectability, while ignoring their influence on biological cement properties as they are used in low concentrations in the cement pastes and the occurrence of most compounds in human tissues. Here, analyses of both material and biological behavior were carried out on samples with common setting retardants (citric acid, sodium pyrophosphate, sulfuric acid) and novel (phytic acid). Cytocompatibility was evaluated by in vitro tests with osteoblastic (hFOB 1.19) and osteoclastic (RAW 264.7) cells. We found cytocompatibility was better for sodium pyrophosphate and phytic acid with a three-fold cell metabolic activity by WST-1 test, whereas samples set with citric acid showed reduced cell number as well as cell activity. The compressive strength (CS) of cements formed with phytic acid (CS = 13 MPa) were nearly equal to those formed with citric acid (CS = 15 MPa) and approximately threefold higher than for other setting retardants. Due to a proven cytocompatibility and high mechanical strength, phytic acid seems to be a candidate replacement setting retardant for dicalcium phosphate cements.
Collapse
Affiliation(s)
- Susanne Meininger
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070, Würzburg, Germany
| | - Carina Blum
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070, Würzburg, Germany
| | - Martha Schamel
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070, Würzburg, Germany
| | - Jake E Barralet
- Department of Surgery, Faculty of Medicine, Faculty of Dentistry, McGill University, Montreal, Quebec, H3A 2B2, Canada
| | - Anita Ignatius
- Centre for Musculoskeletal Research, Institute for Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, D-89081, Ulm, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070, Würzburg, Germany.
| |
Collapse
|
16
|
Blum C, Brückner T, Ewald A, Ignatius A, Gbureck U. Mg:Ca ratio as regulating factor for osteoclastic in vitro resorption of struvite biocements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:111-119. [PMID: 28183587 DOI: 10.1016/j.msec.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/28/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
Abstract
Bioceramic degradation can occur by both passive dissolution and following active osteoclastic bone remodeling. Key parameters controlling ceramic degradation are the pH-dependent solubility product of the ceramic phase, which alters ion concentrations in physiological solution and hence regulates cell activity. This study investigated the in vitro degradation profiles of various calcium magnesium phosphate ceramics formed at low temperature. The passive resorption was measured by incubating the cement samples in cell culture medium, while active resorption was determined during a surface culture of multinuclear osteoclastic cells derived from RAW 264.7 macrophages. All surfaces showed mostly similar TRAP activities after adding RANKL-factor to stimulate osteoclastogenesis. The active degradation of the materials by osteoclasts was found to be the predominant factor for ceramic dissolution as determined by measuring the ion concentrations of cell culture medium. Here, large sized osteoclasts formed predominantly on ceramics with a Mg:Ca ratio ≥2.0 seemed to be less effective compared to smaller macrophages.
Collapse
Affiliation(s)
- Carina Blum
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Theresa Brückner
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Andrea Ewald
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Anita Ignatius
- Centre for Musculoskeletal Research, Institute for Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, D-89081 Ulm, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany.
| |
Collapse
|
17
|
Abstract
Calcium phosphate biocements based on calcium phosphate chemistry are well-established biomaterials for the repair of non-load bearing bone defects due to the brittle nature and low flexural strength of such cements. This article features reinforcement strategies of biocements based on various intrinsic or extrinsic material modifications to improve their strength and toughness. Altering particle size distribution in conjunction with using liquefiers reduces the amount of cement liquid necessary for cement paste preparation. This in turn decreases cement porosity and increases the mechanical performance, but does not change the brittle nature of the cements. The use of fibers may lead to a reinforcement of the matrix with a toughness increase of up to two orders of magnitude, but restricts at the same time cement injection for minimal invasive application techniques. A novel promising approach is the concept of dual-setting cements, in which a second hydrogel phase is simultaneously formed during setting, leading to more ductile cement–hydrogel composites with largely unaffected application properties.
Collapse
|
18
|
Dual-setting brushite-silica gel cements. Acta Biomater 2015; 11:467-76. [PMID: 25263032 DOI: 10.1016/j.actbio.2014.09.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/19/2014] [Accepted: 09/21/2014] [Indexed: 11/21/2022]
Abstract
The current study describes a dual-mechanism-setting cement that combines a brushite-forming cement paste with a second inorganic silica-based precursor. Materials were obtained by pre-hydrolyzing tetraethyl orthosilicate (TEOS) under acidic conditions following the addition of a calcium phosphate cement (CPC) powder mixed of β-tricalcium phosphate and monocalcium phosphate. Cement setting occurred by a dissolution-precipitation process, while changes in pH during setting simultaneously initiated the condensation reaction of the hydrolyzed TEOS. This resulted in an interpenetrating phase composite material in which the macropores of the CPC were infiltrated by the microporous silica gel, leading to a higher density and a compressive strength ∼5-10 times higher than the CPC reference. This also altered the release of vancomycin as a model drug, whereby in contrast to the quantitative release from the CPC reference, 25% of the immobilized drug remained in the composite matrix. By varying the TEOS content in the composite, the cement phase composition could be controlled to form either brushite, anhydrous monetite or a biphasic mixture of both. The composites with the highest silicate content showed a cell proliferation similar to a hydroxyapatite reference with a significantly higher activity per cell. Surprisingly, the biological response did not seem to be attributed to the released silicate ions, but to the release of phosphate and the adsorption of magnesium ions from the cell culture medium.
Collapse
|
19
|
Cama G, Gharibi B, Knowles JC, Romeed S, DiSilvio L, Deb S. Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method. J R Soc Interface 2014; 11:20140727. [PMID: 25297314 PMCID: PMC4223900 DOI: 10.1098/rsif.2014.0727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022] Open
Abstract
Brushite (dicalcium phosphate dihydrate) and monetite (dicalcium phosphate anhydrous) are of considerable interest in bone augmentation owing to their metastable nature in physiological fluids. The anhydrous form of brushite, namely monetite, has a finer microstructure with higher surface area, strength and bioresorbability, which does not transform to the poorly resorbable hydroxyapatite, thus making it a viable alternative for use as a scaffold for engineering of bone tissue. We recently reported the formation of monetite cements by a simple processing route without the need of hydrothermal treatment by using a high concentration of sodium chloride in the reaction mix of β-tricalcium phosphate and monocalcium phosphate monohydrate. In this paper, we report the biological responsiveness of monetite formed by this method. The in vitro behaviour of monetite after interaction and ageing both in an acellular and cellular environment showed that the crystalline phase of monetite was retained over three weeks as evidenced from X-ray diffraction measurements. The crystal size and morphology also remained unaltered after ageing in different media. Human osteoblast cells seeded on monetite showed the ability of the cells to proliferate and express genes associated with osteoblast maturation and mineralization. Furthermore, the results showed that monetite could stimulate osteoblasts to undergo osteogenesis and accelerate osteoblast maturation earlier than cells cultured on hydroxyapatite scaffolds of similar porosity. Osteoblasts cultured on monetite cement also showed higher expression of osteocalcin, which is an indicator of the maturation stages of osteoblastogenesis and is associated with matrix mineralization and bone forming activity of osteoblasts. Thus, this new method of fabricating porous monetite can be safely used for generating three-dimensional bone graft constructs.
Collapse
Affiliation(s)
- G Cama
- Biomaterials, Biomimetics and Biophotonics, King's College London Dental Institute, Floor 17, Tower Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - B Gharibi
- Biomaterials, Biomimetics and Biophotonics, King's College London Dental Institute, Floor 17, Tower Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - J C Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK Department of Nanobiomedical Science and BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - S Romeed
- Biomaterials, Biomimetics and Biophotonics, King's College London Dental Institute, Floor 17, Tower Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - L DiSilvio
- Biomaterials, Biomimetics and Biophotonics, King's College London Dental Institute, Floor 17, Tower Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | - S Deb
- Biomaterials, Biomimetics and Biophotonics, King's College London Dental Institute, Floor 17, Tower Wing, Guy's Hospital, London Bridge, London SE1 9RT, UK
| |
Collapse
|
20
|
Şahin E, Çiftçioğlu M. Monetite promoting effect of citric acid on brushite cement setting kinetics. MATERIALS RESEARCH INNOVATIONS 2014; 18:138-145. [DOI: https:/doi.org/10.1179/1433075x13y.0000000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Affiliation(s)
- E. Şahin
- Department of Chemical Engineeringİzmir Institute of Technology, Gülbahçe Urla, İzmir 35430, Turkey
| | - M. Çiftçioğlu
- Department of Chemical Engineeringİzmir Institute of Technology, Gülbahçe Urla, İzmir 35430, Turkey
| |
Collapse
|
21
|
Şahin E, Çiftçioğlu M. Monetite promoting effect of citric acid on brushite cement setting kinetics. MATERIALS RESEARCH INNOVATIONS 2014; 18:138-145. [DOI: 10.1179/1433075x13y.0000000175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Affiliation(s)
- E. Şahin
- Department of Chemical Engineeringİzmir Institute of Technology, Gülbahçe Urla, İzmir 35430, Turkey
| | - M. Çiftçioğlu
- Department of Chemical Engineeringİzmir Institute of Technology, Gülbahçe Urla, İzmir 35430, Turkey
| |
Collapse
|
22
|
Dorozhkin SV. Self-setting calcium orthophosphate formulations. J Funct Biomater 2013; 4:209-311. [PMID: 24956191 PMCID: PMC4030932 DOI: 10.3390/jfb4040209] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided.
Collapse
|