1
|
Cruz-Gómez A, Burillo G, Perez-Calixto D, Palomino K, Magaña H. Interpenetrated Polymer Network Systems (PEG/PNIPAAm) Using Gamma Irradiation: Biological Evaluation for Potential Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4998. [PMID: 39459702 PMCID: PMC11509373 DOI: 10.3390/ma17204998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
The potential antimicrobial and antibiofouling properties of previously synthesized PEG/NiPAAm interpenetrated polymer networks (IPNs) were investigated against three of the most common bacteria (E. coli, S. aureus, and S. epidermidis). The main goal was to evaluate the material's biocompatibility and determine its potential use as an antifouling component in medical devices. This was intended to provide an alternative option that avoids drug usage as the primary treatment, thus contributing to the fight against antimicrobial resistance (AMR). Additionally, characterization and mechanical testing of the IPN were carried out to determine its resistance to manipulation processes in medical/surgical procedures. IPNs with different NiPAAm ratios exhibited excellent cytocompatibility with BALB/3T3 murine fibroblast cells, with cell viability values of between 90 and 98%. In addition, the results regarding the adsorption of albumin as a model protein showed a nearly constant adsorption percentage of almost zero. Furthermore, the bacterial inhibition tests yielded promising results, demonstrating effective pathogen growth inhibition after 48 h. These findings suggest the material's suitability for use in biomedical applications.
Collapse
Affiliation(s)
- Angélica Cruz-Gómez
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico; (A.C.-G.); (G.B.)
| | - Guillermina Burillo
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico; (A.C.-G.); (G.B.)
| | - Daniel Perez-Calixto
- Instituto Nacional de Medicina Genómica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Kenia Palomino
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| | - Héctor Magaña
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| |
Collapse
|
2
|
Regato-Herbella M, Mantione D, Blachman A, Gallastegui A, Calabrese GC, Moya SE, Mecerreyes D, Criado-Gonzalez M. Multiresponsive 4D Printable Hydrogels with Anti-Inflammatory Properties. ACS Macro Lett 2024; 13:1119-1126. [PMID: 39140782 PMCID: PMC11411719 DOI: 10.1021/acsmacrolett.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Multiresponsive hydrogels are valuable as biomaterials due to their ability to respond to multiple biologically relevant stimuli, i.e., temperature, pH, or reactive oxygen species (ROS), which can be present simultaneously in the body. In this work, we synthesize triple-responsive hydrogels through UV light photopolymerization of selected monomer compositions that encompass thermoresponsive N-isopropylacrylamide (NIPAM), pH-responsive methacrylic acid (MAA), and a tailor-made ROS-responsive diacrylate thioether monomer (EG3SA). As a result, smart P[NIPAMx-co-MAAy-co-(EG3SA)z] hydrogels capable of being manufactured by digital light processing (DLP) 4D printing are obtained. The thermo-, pH-, and ROS-response of the hydrogels are studied by swelling tests and rheological measurements at different temperatures (25 and 37 °C), pHs (3, 5, 7.4, and 11), and in the absence or presence of ROS (H2O2). The hydrogels are employed as matrixes for the encapsulation of ketoprofen (KET), an anti-inflammatory drug that shows a tunable release, depending on the hydrogel composition and stimuli applied. The cytotoxicity properties of the hydrogels are tested in vitro with mouse embryonic fibroblasts (NIH 3T3) and RAW 264.7 murine macrophage (RAW) cells. Finally, the anti-inflammatory properties are assessed, and the results exhibit a ≈70% nitric oxide reduction up to base values of pro-inflammatory RAW cells, which highlights the anti-inflammatory capacity of P[NIPAM80-co-MAA15-co-(EG3SA)5] hydrogels, per se, without being necessary to encapsulate an anti-inflammatory drug within their network. It opens the route for the fabrication of customizable 4D printable scaffolds for the effective treatment of inflammatory pathologies.
Collapse
Affiliation(s)
- Maria Regato-Herbella
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA). Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
| | - Daniele Mantione
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Agustín Blachman
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Buenos Aires C1053ABH, Argentina
| | - Antonela Gallastegui
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
| | - Graciela C Calabrese
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Buenos Aires C1053ABH, Argentina
| | - Sergio E Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA). Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain
| |
Collapse
|
3
|
Kumar Chaudhary H, Singh P, Niveria K, Yadav M, Malik A, Kamra Verma A. pH-sensitive semi-interpenetrating network of microcrystalline cellulose and methacrylic acid hydrogel for the oral delivery of insulin. Int J Pharm 2024; 662:124452. [PMID: 38996826 DOI: 10.1016/j.ijpharm.2024.124452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
Insulin is commonly administered to diabetic patients subcutaneously and has shown poor patient compliance. Due to this, research has been carried out extensively to find molecules that could deliver insulin orally. In this context, a new type of pH-responsive hydrogel, composed of microcrystalline cellulose and methacrylic acid-based hydrogels, has been developed and studied for the oral delivery of insulin. These hydrogels were prepared by free radical polymerization using potassium persulphate as initiator and N, N'-methylenebisacrylamide as a cross-linker. These pH-sensitive hydrogels showed swelling in distilled water as high as 5800 %. The hydrogels were investigated for swelling in saline and glucose solutions, and pH sensitivity was confirmed by swelling in solutions of different pH. The morphological shape was established by SEM, and the structure was analyzed by FTIR. Thermal degradation was investigated by TGA. In vitro release studies have confirmed pH sensitivity, showing lower insulin release at pH 1.2 than at pH 6.8. The encapsulation efficiency was determined to be 56.00 ± 0.04 %. It was further validated by in-vivo investigations for which insulin was loaded into hydrogels and administered orally to healthy and diabetic Wistar rats at 40 IU/kg, showing maximum hypoglycemic effect at 6 h, which was sustained for 24 h. In the stomach's acidic environment, the gels remained unaffected due to the formation of intermolecular polymer complexes. Insulin remained in the gel and was protected from proteolytic degradation. Thus, pH-responsive methacrylic acid-based hydrogels are promising for biomedical applications, especially oral drug delivery.
Collapse
Affiliation(s)
- Harish Kumar Chaudhary
- Department of Chemistry, Dyal Singh College, University of Delhi, 110003, New Delhi, India
| | - Priyanka Singh
- Nanobiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Karishma Niveria
- Nanobiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Monika Yadav
- Nanobiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Amita Malik
- Department of Chemistry, Dyal Singh College, University of Delhi, 110003, New Delhi, India.
| | - Anita Kamra Verma
- Nanobiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi 110007, India; Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi 110007, India.
| |
Collapse
|
4
|
Lei C, Guan W, Zhao Y, Yu G. Chemistries and materials for atmospheric water harvesting. Chem Soc Rev 2024; 53:7328-7362. [PMID: 38896434 DOI: 10.1039/d4cs00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Atmospheric water harvesting (AWH) is recognized as a crucial strategy to address the global challenge of water scarcity by tapping into the vast reserves of atmospheric moisture for potable water supply. Within this domain, sorbents lie in the core of AWH technologies as they possess broad adaptability across a wide spectrum of humidity levels, underpinned by the cyclic sorption and desorption processes of sorbents, necessitating a multi-scale viewpoint regarding the rational material and chemical selection and design. This Invited Review delves into the essential sorption mechanisms observed across various classes of sorbent systems, emphasizing the water-sorbent interactions and the progression of water networks. A special focus is placed on the insights derived from isotherm profiles, which elucidate sorbent structures and sorption dynamics. From these foundational principles, we derive material and chemical design guidelines and identify key tuning factors from a structural-functional perspective across multiple material systems, addressing their fundamental chemistries and unique attributes. The review further navigates through system-level design considerations to optimize water production efficiency. This review aims to equip researchers in the field of AWH with a thorough understanding of the water-sorbent interactions, material design principles, and system-level considerations essential for advancing this technology.
Collapse
Affiliation(s)
- Chuxin Lei
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Weixin Guan
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Yaxuan Zhao
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Lee JH, Hyun JE, Kim J, Yang J, Zhang H, Ahn H, Lee S, Kim JH, Lim T. A highly conductive, robust, self-healable, and thermally responsive liquid metal-based hydrogel for reversible electrical switches. J Mater Chem B 2024; 12:5238-5247. [PMID: 38699788 DOI: 10.1039/d4tb00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
This study introduces a thermally responsive smart hydrogel with enhanced electrical properties achieved through volume switching. This advancement was realized by incorporating multiscale liquid metal particles (LMPs) into the PNIPAM hydrogel during polymerization, using their inherent elasticity and conductivity when deswelled. Unlike traditional conductive additives, LMPs endow the PNIPAM hydrogel with a remarkably consistent volume switching ratio, significantly enhancing electrical switching. This is attributed to the minimal nucleation effect of LMPs during polymerization and their liquid-like behavior, like vacancies in the polymeric hydrogel under compression. The PNIPAM/LMP hydrogel exhibits the highest electrical switching, with an unprecedented switch of 6.1 orders of magnitude. Even after repeated swelling/deswelling cycles that merge some LMPs and increase the conductivity when swelled, the hydrogel consistently maintains an electrical switch exceeding 4.5 orders of magnitude, which is still the highest record to date. Comprehensive measurements reveal that the hydrogel possesses robust mechanical properties, a tissue-like compression modulus, biocompatibility, and self-healing capabilities. These features make the PNIPAM/LMP hydrogel an ideal candidate for long-term implantable bioelectronics, offering a solution to the mechanical mismatch with dynamic human tissues.
Collapse
Affiliation(s)
- Joo Hyung Lee
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, South Korea
| | - Ji Eun Hyun
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jongbeom Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Jungin Yang
- Division of Chemical Engineering and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea.
| | - Huanan Zhang
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Hyunchul Ahn
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, South Korea.
| | - Sohee Lee
- Department of Clothing and Textiles, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, South Korea.
| | - Jung Han Kim
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, South Korea.
| | - Taehwan Lim
- Division of Chemical Engineering and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea.
| |
Collapse
|
6
|
Suryavanshi P, Mahajan S, Banerjee SK, Seth K, Banerjee S. Synthesis and characterization of a pH/temperature-dual responsive hydrogel with promising biocompatibility features for stimuli-responsive 5-FU delivery. J Mater Chem B 2024; 12:5098-5110. [PMID: 38700289 DOI: 10.1039/d4tb00168k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The tunable properties of stimuli-responsive copolymers or hydrogels enable their application in different fields such as biomedical engineering, tissue engineering, or even drug release. Here we introduce a new PNIPAM-based triblock copolymer material comprising a controlled amount of a novel hydrophobic crosslinker 2,4'-diacryloyloxy benzophenone (DABP) and acrylic acid (AAc) to achieve lower critical solution temperature (LCST) between ambient and body temperatures. The dual stimuli-responsive p(NIPAM-co-DABP-co-AAc) triblock copolymer material and hydrogel were synthesized, and their temperature and pH-responsive behaviors were systematically investigated. The hydrogel exhibited excellent temperature and pH-responsive properties with an LCST of around 30 °C. Moreover, the synthesized copolymer has been demonstrated to be nontoxic both in vitro and in vivo. When the hydrogel was preloaded with the model drug 5-fluorouracil (5-FU), the designed hydrogel released the drug in a temperature and pH-controlled fashion. It was observed that the prepared hydrogel has the ability to entrap 5-FU, and the loading is more than 85%. In the case of temperature-controlled release, we observed almost complete release of 5-FU at lower temperatures and sustained release behavior at higher temperatures. In addition, the hydrogel matrix was able to retard the release of 5-FU in an acidic environment and selectively release 5-FU in a basic environment. By realizing how the hydrogel properties influence the release of drugs from preloaded hydrogels, it is possible to design new materials with myriad applications in the drug delivery field.
Collapse
Affiliation(s)
- Purushottam Suryavanshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India.
| | - Shriram Mahajan
- Department of Biotechnology, NIPER-Guwahati, Changsari 781101, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, NIPER-Guwahati, Changsari 781101, Assam, India
| | - Kapileswar Seth
- Department of Medicinal Chemistry, NIPER-Guwahati, Changsari 781101, Assam, India.
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India.
| |
Collapse
|
7
|
Sangar FH, Farahpour MR, Tabatabaei ZG. Facile synthesis of 2-hydroxy-β-cyclodextrin/polyacrylamide/carbazole hydrogel and its application for the treatment of infected wounds in a murine model. Int J Biol Macromol 2024; 267:131252. [PMID: 38554897 DOI: 10.1016/j.ijbiomac.2024.131252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
This work aimed to synthesize hydrogels by combining carbazole (Carb) with 2-hydroxy, β-cyclodextrin (HPβCD)/polyacrylamide (PAA) hybrid complexes. The hydrogels were then evaluated for their potential use in treating infected wounds. The physicochemical structures of the preparations were evaluated using several characterization methods including FTIR, FESEM, EDX, XRD, pH sensitivity, and TGA. Moreover, In vitro release, toxicity, antibacterial activity and in vivo infected wound healing activity were evaluated. Physicochemical testing verified the effective synthesis of the preparations and the timely release of Carb. The P(AA-co-AM)/HPβCD material exhibited an open structure characterized by macroscopic voids, whereas the hydrogels displayed surfaces that were not uniform. The FTIR analysis revealed the creation of a novel polymeric hydrogel composed of HPβCD as the main polymer structure. The hydrogels exhibited good reversible swelling and recoverable deformation, with an optimal swelling ratio of 30.12 achieved at pH 7.4. The antibacterial and safety of the formulations were validated by in vitro studies. β.Dex/PAA/Carb hydrogels have been shown to effectively expedite the healing of infected wounds by promoting the production of CD31, FGF-2, and COL1A, while reducing the levels of ROS, CD68, COX-2, and NF-κB. Overall, the combination of Carb, β.Dex, and PAA molecules had a synergistic impact on the healing process of infected wounds.
Collapse
Affiliation(s)
- Fatemeh Hemmatpour Sangar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | | |
Collapse
|
8
|
Kim JR, Kim SY, Kang H, Kim DI, Yoo HJ, Han SM, Lu P, Moon GD, Hyun DC. Contact Lens with pH Sensitivity for On-Demand Drug Release in Wearing Situation. ACS APPLIED BIO MATERIALS 2023; 6:5372-5384. [PMID: 37967413 DOI: 10.1021/acsabm.3c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Drug-releasing contact lenses are emerging therapeutic systems for treating ocular diseases. However, their applicability is limited by the burst release of drugs during lens wear and premature drug leakage during packaging, rendering the precise control of release duration or dose difficult. Here, we introduce a pH-sensitive contact lens exhibiting on-demand drug release only during lens wear and negligible premature drug leakage during packaging and transportation, which is accomplished by incorporating drug-loaded mesoporous silica nanoparticles (MSNs) coated with a pH-sensitive polymer into the contact lens. The compositionally optimized pH-sensitive polymer has a lower critical solution temperature (LCST) at >45 °C at pH 7.4, whereas its LCST decreases to <35 °C under acidic conditions (pH ∼ 6.5). Consequently, the MSN-incorporated contact lens sustainably releases the loaded drugs only in the acidic state at 35 °C, which corresponds to lens-wear conditions, through the MSN pores that open because of the shrinkage of polymer chains. Conversely, negligible drug leakage is observed from the contact lens under low-temperature or neutral-pH conditions corresponding to packaging and transportation. Furthermore, compared with the plain contact lens, the pH-sensitive contact lens exhibits good biocompatibility and unchanged bulk characteristics, such as optical (transmittance in the visible-light region), mechanical (elastic modulus and tensile strength), and physical (surface roughness, oxygen permeability, and water content) properties. These findings suggest that the pH-sensitive contact lens can be potentially applied in ocular disease treatment.
Collapse
Affiliation(s)
- Jong Ryeol Kim
- Department of Polymer Science and Engineering, Polymeric Nano-Materials Laboratory, Kyungpook National University, Daegu 41566, South Korea
| | - So Young Kim
- Department of Polymer Science and Engineering, Polymeric Nano-Materials Laboratory, Kyungpook National University, Daegu 41566, South Korea
| | - Hosu Kang
- Department of Polymer Science and Engineering, Polymeric Nano-Materials Laboratory, Kyungpook National University, Daegu 41566, South Korea
| | - Da In Kim
- Department of Polymer Science and Engineering, Polymeric Nano-Materials Laboratory, Kyungpook National University, Daegu 41566, South Korea
| | - Hye Jin Yoo
- Department of Polymer Science and Engineering, Polymeric Nano-Materials Laboratory, Kyungpook National University, Daegu 41566, South Korea
| | - Sung Mi Han
- Optical Convergence Technology Center, Daegu Catholic University, Gyeongsan-si, Gyeongbuk 38430, Korea
| | - Ping Lu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Geon Dae Moon
- Dongnam Regional Division, Korea Institute of Industrial Technology, Busan 46938, Korea
| | - Dong Choon Hyun
- Department of Polymer Science and Engineering, Polymeric Nano-Materials Laboratory, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
9
|
Jia J, Liu RK, Sun Q, Wang JX. Efficient Construction of pH-Stimuli-Responsive Colloidosomes with High Encapsulation Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38015806 DOI: 10.1021/acs.langmuir.3c02415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Intelligent responsive colloidosomes have attracted increasing attention for their potential to enhance the efficacy and decrease the side effects of drugs in biomedical applications. However, a low encapsulation efficiency and complicated preparation method greatly limit their development. Herein, we report an efficient approach for the construction of pH-stimuli-responsive colloidosomes with high encapsulation efficiency by a high-gravity technology. The conditions under which latex particles with different methacrylic acid contents can successfully self-assemble into colloidosomes are explored. During the preparation process, emulsions emulsified for only 10 min at 2500 rpm in a unique high-gravity shearing surroundings are clarified owing to the greatly enhanced micromixing, while the emulsions emulsified for 30 min by a traditional high-speed shear machine at 4000 rpm are still yellow-white. More importantly, regular spherical colloidosomes encapsulating an anticancer drug doxorubicin not only achieve a small mean diameter of 2.82 μm but also realize a high encapsulation efficiency of 76.5%. The release performance of doxorubicin has an obvious pH-stimuli-responsive regularity and follows the first-order model of sustained release. The construction of intelligent responsive colloidosomes as drug carriers provides a route for controlled drug release and biomedical applications.
Collapse
Affiliation(s)
- Jia Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Rong-Kun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qian Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
10
|
Kauser S, Mughees M, Swami S, Wajid S. Pre-clinical toxicity assessment of Artemisia absinthium extract-loaded polymeric nanoparticles associated with their oral administration. Front Pharmacol 2023; 14:1196842. [PMID: 37492095 PMCID: PMC10363985 DOI: 10.3389/fphar.2023.1196842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Background: This study was designed to quantify the composition of the ethanolic extract of Artemisia absinthium through gas chromatography-mass spectrometry analysis and ensure in vivo safety of A. absinthium extract-loaded polymeric nanoparticles (ANPs) before considering their application as a drug carrier via the oral route. Methods: We synthesized N-isopropylacrylamide, N-vinyl pyrrolidone, and acrylic acid crosslinked polymeric NPs by free-radical polymerization reaction and characterized them by Fourier-transform infrared spectroscopy, transmission electron microscopy, and dynamic light scattering spectroscopy. Different concentrations of extract (50 mg/kg, 300 mg/kg, and 2,000 mg/kg body weight) were encapsulated into the hydrophobic core of polymeric micelles for the assessment of acute oral toxicity and their LD50 cut-off value as per the test procedure of OECD guideline 423. Orally administered female Wistar rats were observed for general appearance, behavioral changes, and mortality for the first 30 min, 4 h, 24 h, and then, daily once for 14 days. Result: ANPs at the dose of 300 mg/kg body weight were used as an initial dose, and rats showed few short-lived signs of toxicity, with few histological alterations in the kidney and intestine. Based on these observations, the next set of rats were treated at a lower dose of 50 mg/kg and a higher dose of 2,000 mg/kg ANPs. Rats administered with 50 mg/kg ANPs remained normal throughout the study with insignificant histological disintegration; however, rats treated at 2,000 mg/kg ANPs showed some signs of toxicity followed by mortality among all three rats within 24-36 h, affecting the intestine, liver, and kidney. There were no significant differences in hematological and biochemical parameters among rats treated at 50 mg/kg and 300 mg/kg ANPs. Conclusion: We conclude that the LD50 cut-off value of these ANPs will be 500 mg/kg extract loaded in polymeric NPs.
Collapse
|
11
|
Ye S, Cheng Y, Guo Z, Wang X, Wei W. A lipid toolbox of sugar alcohol fatty acid monoesters for single-component lipid nanoparticles with temperature-controlled release. Colloids Surf B Biointerfaces 2023; 228:113426. [PMID: 37399694 DOI: 10.1016/j.colsurfb.2023.113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
This study aimed to prepare single-component LNPs with sugar alcohol fatty acid monoesters for temperature-controlled release. In total, 20 kinds of lipids with a series of sugar alcohol head groups (ethylene glycol, glycerol, erythritol, xylitol and sorbitol) and fatty acyl tails (12:0, 14:0, 16:0 and 18:0) were synthesised via lipase-catalysed esterification. Their physicochemical properties and upper/lower critical solution temperature (LCST/USCT) were analysed. Two groups of mixed lipids, 78 % ethylene glycol lauric acid monoester + 22 % sorbitol stearic acid monoester (LNP-1) and 90 % ethylene glycol lauric acid monoester + 10 % xylitol myristic acid monoester (LNP-2), had LCST/USCT of approximately 37 °C, which formed empty LNPs using the emulsification-diffusion method. These two mixed lipids were prepared for LNPs loaded with curcumin, showing high encapsulation (>90 %), mean particle sizes of approximately 250 nm and low polydispersity index (≤0.2). These lipids have the potential for tailor-made LNPs achieving thermo-responsivity in delivering bioactive agents and drugs.
Collapse
Affiliation(s)
- Shengyuan Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, 8000 Aarhus, Denmark
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Xu X, Wang X, Cui X, Jia B, Xu B, Sun J. Dispersion Performances of Naphthalimides Doped in Dual Temperature- and pH-Sensitive Poly (N-Isopropylacrylamide-co-acrylic Acid) Shell Assembled with Vinyl-Modified Mesoporous SiO 2 Core for Fluorescence Cell Imaging. Polymers (Basel) 2023; 15:polym15102339. [PMID: 37242914 DOI: 10.3390/polym15102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Developing effective intelligent nanocarriers is highly desirable for fluorescence imaging and therapeutic applications but remains challenging. Using a vinyl-grafted BMMs (bimodal mesoporous SiO2 materials) as a core and PAN ((2-aminoethyl)-6-(dimethylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione))-dispersed dual pH/thermal-sensitive poly(N-isopropylacrylamide-co-acrylic acid) as a shell, PAN@BMMs with strong fluorescence and good dispersibility were prepared. Their mesoporous features and physicochemical properties were extensively characterized via XRD patterns, N2 adsorption-desorption analysis, SEM/TEM images, TGA profiles, and FT-IR spectra. In particular, their mass fractal dimension (dm) features based on SAXS patterns combined with fluorescence spectra were successfully obtained to evaluate the uniformity of the fluorescence dispersions, showing that the dm values increased from 2.49 to 2.70 with an increase of the AN-additive amount from 0.05 to 1%, along with the red shifting of their fluorescent emission wavelength from 471 to 488 nm. The composite (PAN@BMMs-I-0.1) presented a densification trend and a slight decrease in peak (490 nm) intensity during the shrinking process. Its fluorescent decay profiles confirmed two fluorescence lifetimes of 3.59 and 10.62 ns. The low cytotoxicity obtained via in vitro cell survival assay and the efficient green imaging performed via HeLa cell internalization suggested that the smart PAN@BMM composites are potential carriers for in vivo imaging and therapy.
Collapse
Affiliation(s)
- Xiaohuan Xu
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Xueqing Cui
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Bingying Jia
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Bang Xu
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Jihong Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Di Luca G, Chen G, Jin W, Gugliuzza A. Aliquots of MIL-140 and Graphene in Smart PNIPAM Mixed Hydrogels: A Nanoenvironment for a More Eco-Friendly Treatment of NaCl and Humic Acid Mixtures by Membrane Distillation. MEMBRANES 2023; 13:437. [PMID: 37103864 PMCID: PMC10142398 DOI: 10.3390/membranes13040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
The problem of water scarcity is already serious and risks becoming dramatic in terms of human health as well as environmental safety. Recovery of freshwater by means of eco-friendly technologies is an urgent matter. Membrane distillation (MD) is an accredited green operation for water purification, but a viable and sustainable solution to the problem needs to be concerned with every step of the process, including managed amounts of materials, membrane fabrication procedures, and cleaning practices. Once it is established that MD technology is sustainable, a good strategy would also be concerned with the choice of managing low amounts of functional materials for membrane manufacturing. These materials are to be rearranged in interfaces so as to generate nanoenvironments wherein local events, conceived to be crucial for the success and sustainability of the separation, can take place without endangering the ecosystem. In this work, discrete and random supramolecular complexes based on smart poly(N-isopropyl acrylamide) (PNIPAM) mixed hydrogels with aliquots of ZrO(O2C-C10H6-CO2) (MIL-140) and graphene have been produced on a polyvinylidene fluoride (PVDF) sublayer and have been proven to enhance the performance of PVDF membranes for MD operations. Two-dimensional materials have been adhered to the membrane surface through combined wet solvent (WS) and layer-by-layer (LbL) spray deposition without requiring further subnanometer-scale size adjustment. The creation of a dual responsive nanoenvironment has enabled the cooperative events needed for water purification. According to the MD's rules, a permanent hydrophobic state of the hydrogels together with a great ability of 2D materials to assist water vapor diffusion through the membranes has been targeted. The chance to switch the density of charge at the membrane-aqueous solution interface has further allowed for the choice of greener and more efficient self-cleaning procedures with a full recovery of the permeation properties of the engineered membranes. The experimental evidence of this work confirms the suitability of the proposed approach to obtain distinct effects on a future production of reusable water from hypersaline streams under somewhat soft working conditions and in full respect to environmental sustainability.
Collapse
Affiliation(s)
- Giuseppe Di Luca
- Institute on Membrane Technology, National Research Council (CNR-ITM), Via Pietro Bucci 17C, 87036 Rende, Italy;
| | - Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, China; (G.C.); (W.J.)
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, China; (G.C.); (W.J.)
| | - Annarosa Gugliuzza
- Institute on Membrane Technology, National Research Council (CNR-ITM), Via Pietro Bucci 17C, 87036 Rende, Italy;
| |
Collapse
|
14
|
Wang N, Tian J, Guo L, Chen X, Hu B, Song S, Wen C. Fucoidan/κ-carrageenan mixed gel: Effect of anions of different valence including chloride, bromide, iodide, sulfate and phosphate. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Shin Y, Hu Y, Park S, Jung S. Novel succinoglycan dialdehyde/aminoethylcarbamoyl-β-cyclodextrin hydrogels for pH-responsive delivery of hydrophobic drugs. Carbohydr Polym 2023; 305:120568. [PMID: 36737206 DOI: 10.1016/j.carbpol.2023.120568] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
β-Cyclodextrin cross-linked succinoglycan dialdehyde hydrogels was prepared for hydrophobic drug delivery. Succinoglycan dialdehyde (SGDA) was synthesized from sodium periodate oxidation of succinoglycan isolated from Sinorhizobium meliloti Rm1021. Aminoethylcarbamoyl-β-cyclodextrin (ACD) was crosslinked with SGDA to form a succinoglycan dialdehyde/aminoethylcarbamoyl-β-cyclodextrin (SGDA/ACD) hydrogels. The SGDA/ACD hydrogels exhibited a 65.7 % improvement in storage modulus (G') and a 5.7-fold higher compressive strain than the SGDA/poly(ethylene glycol) diamine (PEG) hydrogels as controls. A hardly soluble drug, baicalein was used for the drug loading and release properties of SGDA/ACD hydrogels. Baicalein was released about 98 % within 48 h at pH 7.4, but not completely released even after 48 h at pH 2.0. In addition, at pH 7.4, only about 56 % of the baicalein loaded on the SGDA/PEG hydrogels was released within 48 h, while about 98 % of the baicalein loaded on the SGDA/ACD hydrogels was released within 48 h. It indicates that ACD significantly improved the solubilization efficacy of the baicalein. In vitro testing of cell viability using HEK-293 cells also showed that the SGDA/ACD hydrogels were suitable for the cells. In conclusion, SGDA/ACD hydrogels significantly enhance the utilization of baicalein and provide potential applications in drug delivery systems for hardly soluble drugs.
Collapse
Affiliation(s)
- Younghyun Shin
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Yiluo Hu
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Sohyun Park
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
16
|
Altamirano MG, Abebe MG, Hergué N, Lejeune J, Cayla A, Campagne C, Maes B, Devaux E, Odent J, Raquez JM. Environmentally responsive hydrogel composites for dynamic body thermoregulation. SOFT MATTER 2023; 19:2360-2369. [PMID: 36880670 DOI: 10.1039/d2sm01548j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hydrogel composites exhibiting dynamic thermo-hydro responsive modulation of infrared radiation (IR) in the 5-15 μm range are designed for personalized body thermoregulation. Fabrication of the proposed system relies on the periodic arrangement of submicron-sized spherical fine silica (SiO2) particles within poly(N-isopropylacrylamide) (PNIPAM)-based hydrogels. The dependence of the SiO2 particles content on the IR reflection, followed by its modulation in response to any immediate environmental changes are thereby investigated. The addition of 20 wt% of SiO2 allowed the hydrogel composites to reflect 20% of the IR emitted by the human body at constant temperature (i.e. T = 20 °C) and relative humidity (i.e. RH = 0%). According to Bragg's law, we found that the smaller the distance between the SiO2 particles, the higher the IR reflection. The IR reflection further increased to a maximum of 42% when the resulting hydrogel composites are subjected to changes in relative humidity (i.e. RH = 60%) and temperature (i.e. T = 35 °C). Thermography is used to map the IR radiation emitted from the hydrogel composites when placed on the skin of the human body, demonstrating that the composite is actually reflecting IR. The latter results are supported by theoretical models that define the IR reflection profile of the resulting hydrogel composites with respect to the silica content, relative humidity and temperature.
Collapse
Affiliation(s)
- M Garzón Altamirano
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Mons, Belgium.
- University of Lille, ENSAIT, ULR 2461 - GEMTEX - Génie et Matériaux Textiles, F-59000 Lille, France
| | - M G Abebe
- Micro- and Nanophotonic Materials Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, B-7000, Mons, Belgium
| | - N Hergué
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Mons, Belgium.
| | - J Lejeune
- University of Lille, ENSAIT, ULR 2461 - GEMTEX - Génie et Matériaux Textiles, F-59000 Lille, France
| | - A Cayla
- University of Lille, ENSAIT, ULR 2461 - GEMTEX - Génie et Matériaux Textiles, F-59000 Lille, France
| | - C Campagne
- University of Lille, ENSAIT, ULR 2461 - GEMTEX - Génie et Matériaux Textiles, F-59000 Lille, France
| | - B Maes
- Micro- and Nanophotonic Materials Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, B-7000, Mons, Belgium
| | - E Devaux
- University of Lille, ENSAIT, ULR 2461 - GEMTEX - Génie et Matériaux Textiles, F-59000 Lille, France
| | - J Odent
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Mons, Belgium.
| | - J M Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Mons, Belgium.
| |
Collapse
|
17
|
Rational Design of Hydrogels for Cationic Antimicrobial Peptide Delivery: A Molecular Modeling Approach. Pharmaceutics 2023; 15:pharmaceutics15020474. [PMID: 36839798 PMCID: PMC9966382 DOI: 10.3390/pharmaceutics15020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
In light of the growing bacterial resistance to antibiotics and in the absence of the development of new antimicrobial agents, numerous antimicrobial delivery systems over the past decades have been developed with the aim to provide new alternatives to the antimicrobial treatment of infections. However, there are few studies that focus on the development of a rational design that is accurate based on a set of theoretical-computational methods that permit the prediction and the understanding of hydrogels regarding their interaction with cationic antimicrobial peptides (cAMPs) as potential sustained and localized delivery nanoplatforms of cAMP. To this aim, we employed docking and Molecular Dynamics simulations (MDs) that allowed us to propose a rational selection of hydrogel candidates based on the propensity to form intermolecular interactions with two types of cAMPs (MP-L and NCP-3a). For the design of the hydrogels, specific building blocks were considered, named monomers (MN), co-monomers (CM), and cross-linkers (CL). These building blocks were ranked by considering the interaction with two peptides (MP-L and NCP-3a) as receptors. The better proposed hydrogel candidates were composed of MN3-CM7-CL1 and MN4-CM5-CL1 termed HG1 and HG2, respectively. The results obtained by MDs show that the biggest differences between the hydrogels are in the CM, where HG2 has two carboxylic acids that allow the forming of greater amounts of hydrogen bonds (HBs) and salt bridges (SBs) with both cAMPs. Therefore, using theoretical-computational methods allowed for the obtaining of the best virtual hydrogel candidates according to affinity with the specific cAMP. In conclusion, this study showed that HG2 is the better candidate for future in vitro or in vivo experiments due to its possible capacity as a depot system and its potential sustained and localized delivery system of cAMP.
Collapse
|
18
|
Bhaladhare S, Bhattacharjee S. Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review. Int J Biol Macromol 2023; 226:535-553. [PMID: 36521697 DOI: 10.1016/j.ijbiomac.2022.12.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The development of nanotechnology has influenced the advancements in biomedical and pharmaceutical fields. The design and formulation of stimuli-responsive nano-drug delivery systems, also called smart drug delivery systems, have attracted significant research worldwide and have been seen as a breakthrough in nanomedicines. The ability of these nanocarriers to respond to external and internal stimuli, such as pH, temperature, redox, electric and magnetic fields, enzymes, etc., has allowed them to deliver the cargo at targeted sites in a controlled fashion. The targeted drug delivery systems limit the harmful side effects on healthy tissue by toxic drugs and furnish spatial and temporal control drug delivery, improved patient compliance, and treatment efficiency. The polymeric nanogels (hydrogel nanoparticles) with stimuli-responsive characteristics have shown great potential in various biomedical, tissue engineering, and pharmaceutical fields. It is primarily because of their small size, biocompatibility, biodegradability, stimuli-triggered drug deliverability, high payload capacity, and tailored functionality. This comprehensive review deals distinctively with polymeric nanogels, their chemical, physical, and biological stimuli, the concepts of nanogels response to different stimuli, and recent advancements. This document will further improve the current understanding of stimuli-responsive materials and drug delivery systems and assist in exploring advanced potential applications of these intelligent materials.
Collapse
Affiliation(s)
- Sachin Bhaladhare
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India.
| | - Sulagna Bhattacharjee
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India
| |
Collapse
|
19
|
Structure and Dynamics of Inhomogeneities in Aqueous Solutions of Graft Copolymers of N-Isopropylacrylamide with Lactide (P(NIPAM-graft-PLA)) by Spin Probe EPR Spectroscopy. Polymers (Basel) 2022; 14:polym14214746. [DOI: 10.3390/polym14214746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Coil-to-globule transition and dynamics of inhomogeneities in aqueous solutions of graft copolymers of NIPAM with different content of oligolactide groups were studied using spin probe continuous wave EPR spectroscopy. The technique of the suppressing of TEMPO as spin probe by spin exchange with Cu2+ ions was applied. This approach allowed us to detect individual EPR spectra of the probe in collapsed globules and estimate its magnetic and dynamic parameters reliably. The formation of inhomogeneities at temperatures lower than the volume phase transition temperature measured via transmission, and differential scanning calorimetry was fixed. An increase in oligolactide content in copolymers leads to the formation of looser globules, allowing for the exchange of the probe molecules between the globules and the external solution.
Collapse
|
20
|
Sun Y, Davis EW. Multi-Stimuli-Responsive Janus Hollow Polydopamine Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9777-9789. [PMID: 35921245 DOI: 10.1021/acs.langmuir.2c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A tubular-shaped Janus nanoparticle based on polydopamine that responds to near-infrared, magnetic, and pH stimuli is reported. The robust tubular polydopamine structure was obtained by optimizing the halloysite template-to-dopamine ratio during synthesis. The inner and outer surfaces of the tube were exposed at different steps of the template-sonication--etching process, enabling the differential surface modification of these surfaces. Poly(ethylene glycol) (PEG) and poly(N-isopropylacrylamide) (PNIPAM) were grafted to the outer and inner surface of the nanotube, respectively. The PEG-coated surface limited aggregation of the nanoparticles at elevated temperatures. The PNIPAM-coated interior enhanced doxorubicin loading and endowed the nanoparticle with temperature-responsive behavior. The deposition of precipitated Fe3O4 nanoparticles further modified the nanoparticles. The resulting magnetic Janus nanoparticles responded to pH, temperature, and magnetic fields. Temperature changes could be induced by near-infrared laser, and all three stimuli were found to influence release rates of adsorbed doxorubicin from the nanoparticles. The interaction of the stimuli on release kinetics was elucidated using a linear mixed model; reduced pH and NIR irradiation enhanced release while applying a static magnetic field retarded release. Furthermore, the mechanism was shifted toward Fickian behavior by applying a static magnetic field and low pH conditions. However, NIR irradiation only shifted the behavior toward Fickian behavior at low pH.
Collapse
Affiliation(s)
- Yuzhe Sun
- Materials Research and Education Center, Auburn University, 274 Wilmore Labs, Auburn, Alabama 36849, United States
| | - Edward W Davis
- Materials Research and Education Center, Auburn University, 274 Wilmore Labs, Auburn, Alabama 36849, United States
| |
Collapse
|
21
|
Emoto J, Kitayama Y, Harada A. Thermoresponsiveness of Carboxylated Polyallylamines Induced by Divalent Counterions as Ionic Effectors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junya Emoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yukiya Kitayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
22
|
Yasmeen N, Karpinska A, Kalecki J, Kutner W, Kwapiszewska K, Sharma PS. Electrochemically Synthesized Polyacrylamide Gel and Core-Shell Nanoparticles for 3D Cell Culture Formation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32836-32844. [PMID: 35848208 PMCID: PMC9335524 DOI: 10.1021/acsami.2c04904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Biocompatible polyacrylamide gel and core-shell nanoparticles (NPs) were synthesized using a one-step electrochemically initiated gelation. Constant-potential electrochemical decomposing of ammonium persulfate initiated the copolymerization of N-isopropyl acrylamide, methacrylic acid, and N,N'-methylenebisacrylamide monomers. This decomposing potential and monomers' concentrations were optimized to prepare gel NPs and thin gel film-grafted core-shell NPs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging confirmed the gel NP formation. The lyophilized gel NPs and core-shell NPs were applied to support the three-dimensional (3D) cell culture. In all, core-shell NPs provided superior support for complex 3D tissue structures.
Collapse
Affiliation(s)
- Nabila Yasmeen
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Aneta Karpinska
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Kalecki
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Karina Kwapiszewska
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush S. Sharma
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
23
|
Kaur J, Gulati M, Zacconi F, Dureja H, Loebenberg R, Ansari MS, AlOmeir O, Alam A, Chellappan DK, Gupta G, Jha NK, Pinto TDJA, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Biomedical Applications of polymeric micelles in the treatment of diabetes mellitus: Current success and future approaches. Expert Opin Drug Deliv 2022; 19:771-793. [PMID: 35695697 DOI: 10.1080/17425247.2022.2087629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetes mellitus (DM) is the most common metabolic disease and multifactorial, harming patients worldwide. Extensive research has been carried out in the search for novel drug delivery systems offering reliable control of glucose levels for diabetics, aiming at efficient management of DM. AREAS COVERED Polymeric micelles (PMs) as smart drug delivery nanocarriers are discussed, focusing on oral drug delivery applications for the management of hyperglycemia. The most recent approaches used for the preparation of smart PMs employ molecular features of amphiphilic block copolymers (ABCs), such as stimulus sensitivity, ligand conjugation, and as a more specific example the ability to inhibit islet amyloidosis. EXPERT OPINION PMs provide a unique platform for self-regulated or spatiotemporal drug delivery, mimicking the working mode of pancreatic islets to maintain glucose homeostasis for prolonged periods. This unique characteristic is achieved by tailoring the functional chemistry of ABCs considering the physicochemical traits of PMs, including sensing capabilities, hydrophobicity, etc. In addition, the application of ABCs for the inhibition of conformational changes in islet amyloid polypeptide garnered attention as one of the root causes of DM. However, research in this field is limited and further studies at the clinical level are required.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Flavia Zacconi
- de Farmacia, Pontificia Universidad Cat´olica de ChileDepartamento de Química Org´anica, Facultad de Química y , Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Cat´olica de Chile, Macul, Chile
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Raimar Loebenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta AB, Canada
| | - Md Salahuddin Ansari
- Department of Pharmacy Practice, College of Pharmacy Aldawadmi, Shaqra University Shaqra, Saudi Arabia
| | - Othman AlOmeir
- Department of Pharmacy Practice, College of Pharmacy Aldawadmi, Shaqra University Shaqra, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Kharj, KSA
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia
| | - Gaurav Gupta
- Department of pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | | | - Andrew Morris
- Swansea University Medical School, Swansea University, Singleton Park, Swansea
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
24
|
Nizardo NM, Alimin DF, Lestari MLAD. Synthesis and characterization of dual-responsive poly(N-vinylcaprolactam-co-N-methylolacrylamide) nanogels. Des Monomers Polym 2022; 25:155-164. [PMID: 35711620 PMCID: PMC9196741 DOI: 10.1080/15685551.2022.2086412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This article reports the synthesis of poly(N-vinylcaprolactam-co-N-methylolacrylamide) (P(NVCL-co-NMA)) nanogels and investigates their thermo-/pH-responsive behavior. The formation of nanogels was synthesized using free radical emulsion polymerization by varying the monomer composition of NVCL:NMA, and their molecular structure was characterized by 1H-NMR and FTIR. It was found that the nanogels were successfully prepared, and the nanogels exhibited LCST-type phase transition behavior. Cloud point transition temperature (Tc) was studied as a function of copolymer composition, MBA concentration, and pH of the solution by exploring their changes in turbidity using UV-vis spectrophotometer. Our studies reveal that Tc nanogels increased with increasing concentration of NMA, which is due to the hydrophilicity of NMA. Our research also demonstrated that the increase in MBA percentage could decrease the Tc of the synthesized nanogels. Interestingly, P(NVCL-co-NMA) nanogels showed not only a thermoresponsive behavior but also a pH response with increasing Tc in a strong acidic environment owing to the H-bonds within the polymer chains. The results show that nanogels with initial monomer composition of NVCL and NMA of 75% and 25%, respectively, and using 4% of MBA showed Tc around 35°C at pH 7.4. In addition, DLS studies also confirmed this result since the particle sizes became much larger after surpassing the temperature of 35°C. Due to this founding, such nanogels might have potential application in controlled release. Nevertheless, further studies regarding the adjustment of Tc are still needed.
Collapse
Affiliation(s)
- Noverra M Nizardo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Dzul Fadli Alimin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Maria L A D Lestari
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
25
|
Pandey S, Son N, Kang M. Synergistic sorption performance of karaya gum crosslink poly(acrylamide-co-acrylonitrile) @ metal nanoparticle for organic pollutants. Int J Biol Macromol 2022; 210:300-314. [PMID: 35537588 DOI: 10.1016/j.ijbiomac.2022.05.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023]
Abstract
In this work, we tailor facile hydrogels nanocomposite (HNC) based on sustainable karaya gum for water treatment. Karaya gum crosslink poly(acrylamide-co-acrylonitrile) @ silver nanoparticle (KG-cl-P(AAm-co-AN)@AgNPs) HNC were made by an aqueous free radical in situ crosslink copolymerization of acrylamide (AAm) and acrylic acid (AA) in aqueous solution of KG-stabilized AgNPs. FTIR, XRD, DTA-TGA, SEM, and TEM were used to characterize HNC. The hydrogels' swelling, diffusion, and network characteristics were investigated. The removal efficiency of HNC was found to be 99% at pH 8 for a crystal violet (CV), dose of 0.02 g after 1 h. Dye adsorption by these hydrogels was also investigated in terms of isotherms, and kinetics. The dye's exceptionally high adsorption capacity on HNC for CV removal is explained by H-bonding interactions, as well as dipole-dipole and electrostatic interactions between anionic adsorbent and cationic dye molecules (Qmax, 1000 mg/g). The HNC can be regenerated with 0.1 M HCl and reused at least 10 times maintaining over 68% dye removal. The loading of AgNPs into the polymeric matrix of KG-cl-P(AAm-co-AN) significantly increases the removal percentage of CV dye from its aqueous solution, according to this study.
Collapse
Affiliation(s)
- Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Namgyu Son
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
26
|
Teoh JY, Jeon S, Yim B, Yang HM, Hwang Y, Kim J, Lee SK, Park E, Kong TY, Kim SY, Park Y, Kim YG, Kim J, Yoo D. Tuning Surface Plasmon Resonance Responses through Size and Crosslinking Control of Multivalent Protein Binding-Capable Nanoscale Hydrogels. ACS Biomater Sci Eng 2022; 8:2878-2889. [PMID: 35658391 DOI: 10.1021/acsbiomaterials.2c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface plasmon resonance (SPR) phenomena have been widely studied to detect biomolecules because of their high sensitivity and ability to determine biomolecular interactions with kinetic information. However, highly selective detection in specific concentration ranges relevant to target biomolecules is still a challenging task. Recently, we developed bioresponsive nanoscale hydrogels to selectively intensify SPR signals through multivalent protein binding (MPB) events with target biomolecules, including IL-2, where we were able to demonstrate exceptional selectivity for target biomolecules with minimal responses to nonspecific and monovalent binding events. In this work, we systematically explored the relationship between the physical properties of MPB-capable nanoscale hydrogels and their SPR response induced in the presence of the programmed cell death protein 1 antibody (PD-1Ab) as a model target biomolecule. First, we developed a synthetic protocol by controlling various reaction parameters to construct a library of nanoscale poly(N-isopropylacrylamide-co-acrylic acid) hydrogels (NHs) with different sizes (from 400 nm to 1 μm) and degrees of crosslinking (from 2 to 8%). Then, by incorporating MPB-capable PD-1 receptors onto the surface of NHs to form PD-1-responsive nanoscale hydrogels (PNHs), the hydrogel size and crosslinking dependency of their SPR responses were investigated. Our results reveal the appropriate hydrogel size regime and degree of crosslinking for effective PD-1Ab detection at specific concentrations range between a few nM and 1 μM. Overall, our study demonstrates that by tuning the physical properties of the nanoscale hydrogel matrix, the sensitivity and detection range of MPB-based SPR sensors can be modulated to potentially benefit clinical applications such as monitoring diverse therapeutic biomolecules.
Collapse
Affiliation(s)
- Jie Ying Teoh
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Suhwan Jeon
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Bora Yim
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul 02841, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Hae Min Yang
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunseo Hwang
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Juhui Kim
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Kyoung Lee
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul 02841, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Eunyoung Park
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Yeon Kong
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - So Youn Kim
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Young Gyu Kim
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongseong Kim
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul 02841, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dongwon Yoo
- Department of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
27
|
Xu X, Sun J, Bing L, Cui X, Jia B, Bai S. Fractal features of dual temperature/pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels and resultant effects on the controlled drug delivery performances. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
28
|
Effect of the macromolecular architecture on the thermoresponsive behavior of poly(N-isopropylacrylamide) in copolymers with poly(N,N-dimethylacrylamide) in aqueous solutions: Block vs random copolymers. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Güngör Z, Ozay H. Synthesis of new type temperature and pH sensitive hydrogels using drug-based p-(methacryloyloxy)acetanilide monomer and their usage as controlled drug carrier material. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2028552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zeynep Güngör
- School of Graduate Studies, Department of Chemistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Hava Ozay
- Laboratory of Inorganic Materials, Department of Chemistry, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
30
|
Yasmeen N, Kalecki J, Borowicz P, Kutner W, Sharma PS. Electrochemically Initiated Synthesis of Polyacrylamide Microgels and Core-shell Particles. ACS APPLIED POLYMER MATERIALS 2022; 4:452-462. [PMID: 35059644 PMCID: PMC8762648 DOI: 10.1021/acsapm.1c01359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/20/2021] [Indexed: 05/20/2023]
Abstract
Herein, we developed a simple procedure for synthesizing micrometer-sized microgel particles as a suspension in an aqueous solution and thin films deposited as shells on different inorganic cores. A sufficiently high constant potential was applied to the working electrode to commence the initiator decomposition that resulted in gelation. Under hydrodynamic conditions, this initiation allowed preparing different morphology microgels at room temperature. Importantly, neither heating nor UV-light illumination was needed to initiate the polymerization. Moreover, thin films of the cross-linked gel were anchored on different core substrates, including silica and magnetic nanoparticles. Scanning electron microscopy and transmission electron microscopy imaging confirmed the microgel particles' and films' irregular shape and porous structure. Energy-dispersive X-ray spectroscopy indicated that the core coating with the microgel film was successful. Dynamic light scattering measured the micrometer size of gel particles with different combinations of acrylic monomers. Thermogravimetric analysis and the first-derivative thermogravimetric analysis revealed that the microgels' thermal stability of different compositions was different. Fourier-transform infrared and 13C NMR spectroscopy showed successful copolymerization of the main, functional, and cross-linking monomers.
Collapse
Affiliation(s)
- Nabila Yasmeen
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Kalecki
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Pawel Borowicz
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Piyush S. Sharma
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
31
|
Şahin FC, Şimşek C, Erbil C. Study on preparation, compression strength and theophylline/diclofenac sodium release ability of NIPAAm/DMAPMAAm hydrogels. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:2267-2292. [PMID: 34436978 DOI: 10.1080/09205063.2021.1967700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The present study was undertaken to investigate the effect of the composition of the polymerization medium and the type of drug/drug loading process on the mechanical strengths and release profiles of poly(N-isopropylacrylamide-co-N-[3-(dimethylamino)propyl] methacrylamide) P(NIPAAm-co-DMAPMAAm) hydrogels. In line with this goal firstly, the temperature- and pH-responsive hydrogels of NIPAAm and DMAPMAAm were synthesized in three different media at 60 °C: pH 7.4 phosphate-buffered saline (PBS), pH 7.4 phosphate buffer without NaCl/KCl (PB), and distilled-deionized water (pH ≈ 5.5 DDW). The result is that the presence of anionic species such as phosphate (HPO42-/H2PO4-) and chloride (Cl-) ions in the solution affects on their basic network properties such as volumetric swelling ratio and compression modulus. To evaluate their intermolecular interactions with protonated DMAPMAAm units and drug molecules, depending on composition, type of loading process and drug structure, each of the hydrogels was loaded with diclofenac sodium (DFNa) and theophylline (Thp) by using both diffusion and in situ loading methods. DFNa and Thp release profiles in pH 7.4 PBS at 37 °C were analysed by using zero-order, first-order, Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin models. It has been observed that for the first 60% of DFNa and Thp releases from P(NIPAAm-co-DMAPMAAm) hydrogels synthesized in PB at 60 °C, the contribution of the chain relaxation for the copolymer hydrogels loaded during gelation process was higher than the ones loaded by diffusion process.
Collapse
Affiliation(s)
| | - Ceyda Şimşek
- Chemistry Department, Istanbul Technical University, Istanbul, Turkey
| | - Candan Erbil
- Chemistry Department, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
32
|
Sharma A, Raghunathan K, Solhaug H, Antony J, Stenvik J, Nilsen AM, Einarsrud MA, Bandyopadhyay S. Modulating acrylic acid content of nanogels for drug delivery & biocompatibility studies. J Colloid Interface Sci 2021; 607:76-88. [PMID: 34492356 DOI: 10.1016/j.jcis.2021.07.139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Dual stimuli-responsive nanogels (NGs) have gained popularity in the field of bio medicine due to their versatile nature of applicability. Poly(N-isopropylacrylamide)-co-poly(acrylic acid) (pNIPAm-pAAc)-based NGs provide such dual stimuli-response with pNIPAm and pAAc providing thermal and pH-based responses, respectively. Studying the growth of these NGs, as well as, understanding the effect of the incorporation of pAAc in the NG matrix, is important in determining the physico-chemical properties of the NG. Studies have been conducted investigating the effect of increasing pAAc content in the NGs, however, these are not detailed in understanding its effects on the physico-chemical properties of the pNIPAm-pAAc-based NGs. Also, the biocompatibility of the NGs have not been previously reported using human whole blood model. Herein, we report the effect of different reaction parameters, such as surfactant amount and reaction atmosphere, on the growth of pNIPAm-pAAc-based NGs. It is shown that the size of the NGs can be precisely controlled from ~130 nm to ~400 nm, by varying the amount of surfactant and the reaction atmosphere. The effect of increasing incorporation of pAAc in the NG matrix on its physico-chemical properties has been investigated. The potential of these NGs as drug delivery vehicles is investigated by conducting loading and release studies of a model protein drug, cytochrome C (Cyt C) from the NGs at temperature above the volume phase transition temperature (VPTT) and acidic pH. An ex vivo human whole blood model was used to investigate biocompatibility of the NGs by quantifying inflammatory responses during NG exposure. The NGs did not induce any significant production of chemokine IL-8 or pro-inflammatory cytokines (IL-1β, IL-6, TNF-α), and the cell viability in human whole blood was maintained during 4 h exposure. The NGs did neither activate the complement system, as determined by low Terminal Complement Complex (TCC) activation and Complement Receptor 3 (CR3) activation assays, thereby overall suggesting that the NGs could be potential candidates for biomedical applications.
Collapse
Affiliation(s)
- Anuvansh Sharma
- Department of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Norway
| | - Karthik Raghunathan
- Department of Chemical Engineering, NTNU Norwegian University of Science and Technology, Norway
| | - Helene Solhaug
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Jibin Antony
- Department of Chemical Engineering, NTNU Norwegian University of Science and Technology, Norway
| | - Jørgen Stenvik
- Centre of Molecular Inflammation Research, NTNU Norwegian University of Science and Technology, Trondheim, Norway; Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Asbjørn Magne Nilsen
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Mari-Ann Einarsrud
- Department of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Norway
| | - Sulalit Bandyopadhyay
- Department of Chemical Engineering, NTNU Norwegian University of Science and Technology, Norway.
| |
Collapse
|
33
|
Miclotte MJ, Lawrenson SB, Varlas S, Rashid B, Chapman E, O’Reilly RK. Tuning the Cloud-Point and Flocculation Temperature of Poly(2-(diethylamino)ethyl methacrylate)-Based Nanoparticles via a Postpolymerization Betainization Approach. ACS POLYMERS AU 2021; 1:47-58. [PMID: 34476421 PMCID: PMC8389998 DOI: 10.1021/acspolymersau.1c00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 11/28/2022]
Abstract
The ability to tune the behavior of temperature-responsive polymers and self-assembled nanostructures has attracted significant interest in recent years, particularly in regard to their use in biotechnological applications. Herein, well-defined poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA)-based core-shell particles were prepared by RAFT-mediated emulsion polymerization, which displayed a lower-critical solution temperature (LCST) phase transition in aqueous media. The tertiary amine groups of PDEAEMA units were then utilized as functional handles to modify the core-forming block chemistry via a postpolymerization betainization approach for tuning both the cloud-point temperature (T CP) and flocculation temperature (T CFT) of these particles. In particular, four different sulfonate salts were explored aiming to investigate the effect of the carbon chain length and the presence of hydroxyl functionalities alongside the carbon spacer on the particle's thermoresponsiveness. In all cases, it was possible to regulate both T CP and T CFT of these nanoparticles upon varying the degree of betainization. Although T CP was found to be dependent on the type of betainization reagent utilized, it only significantly increased for particles betainized using sodium 3-chloro-2-hydroxy-1-propanesulfonate, while varying the aliphatic chain length of the sulfobetaine only provided limited temperature variation. In comparison, the onset of flocculation for betainized particles varied over a much broader temperature range when varying the degree of betainization with no real correlation identified between T CFT and the sulfobetaine structure. Moreover, experimental results were shown to partially correlate to computational oligomer hydrophobicity calculations. Overall, the innovative postpolymerization betainization approach utilizing various sulfonate salts reported herein provides a straightforward methodology for modifying the thermoresponsive behavior of soft polymeric particles with potential applications in drug delivery, sensing, and oil/lubricant viscosity modification.
Collapse
Affiliation(s)
- Matthieu
P. J. Miclotte
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stefan B. Lawrenson
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Bilal Rashid
- BP
Exploration Operating Company Ltd., Chertsey Road, Sunbury-on-Thames,
Middlesex TW16 7LN, United
Kingdom
| | - Emma Chapman
- BP
Exploration Operating Company Ltd., Chertsey Road, Sunbury-on-Thames,
Middlesex TW16 7LN, United
Kingdom
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom,
| |
Collapse
|
34
|
Shaghaleh H, Hamoud YA, Xu X, Liu H, Wang S, Sheteiwy M, Dong F, Guo L, Qian Y, Li P, Zhang S. Thermo-/pH-responsive preservative delivery based on TEMPO cellulose nanofiber/cationic copolymer hydrogel film in fruit packaging. Int J Biol Macromol 2021; 183:1911-1924. [PMID: 34097955 DOI: 10.1016/j.ijbiomac.2021.05.208] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Hydrogels have great potential in food packaging. However, stimuli-responsive preservative delivery-based hydrogels for emerging active packaging have not yet been explored. Herein, Unprecedented pH/temperature-responsive hydrogel films for emerging active climacteric fruit packaging were developed based on TEMPO-oxidized nanofibrillated cellulose (TOCNFs) from wheat straw with food-grade cationic-modified poly(N-isopropyl acrylamide-co-acrylamide) (CPNIPAM-AM). TOCNF incorporation into CPNIPAM-AM revealed desirable enhancement of characterization, antimicrobial properties, and pH/thermal-responsive behaviour. In-vitro delivery and release mechanism studies with natamycin revealed the fastest release rates in preferred low pH media, up to 32.1 times higher than that under neutral conditions via anomalous diffusion. Applying a thermal stimulus increased natamycin release rates, providing 1.5-21% gradual-additional pulses by Fickian diffusion. The final hydrogel film showed efficient decay control in response to stimuli of the climacteric fruit environment with safe, recyclable, and feasible application demonstrating the significant potential to be used as an alternative-sustainable material for stimuli-triggered preservative delivery in climacteric fruit packaging.
Collapse
Affiliation(s)
- Hiba Shaghaleh
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China; Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Yousef Alhaj Hamoud
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Xu Xu
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China.
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Shifa Wang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China.
| | - Mohamed Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Fuhao Dong
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Lizhen Guo
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Yuehan Qian
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Pengfei Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Shuangsheng Zhang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
35
|
Porrang S, Rahemi N, Davaran S, Mahdavi M, Hassanzadeh B, Gholipour AM. Direct surface modification of mesoporous silica nanoparticles by DBD plasma as a green approach to prepare dual-responsive drug delivery system. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Thermo- and pH-responsive copolymer of N-isopropylacrylamide with acryloylvaline: synthesis and properties in aqueous solutions. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02515-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Valipour F, Valipour F, Rahbarghazi R, Navali AM, Rashidi MR, Davaran S. Novel hybrid polyester-polyacrylate hydrogels enriched with platelet-derived growth factor for chondrogenic differentiation of adipose-derived mesenchymal stem cells in vitro. J Biol Eng 2021; 15:6. [PMID: 33588910 PMCID: PMC7885552 DOI: 10.1186/s13036-021-00257-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Background The goal of the present study was to create a new biodegradable hybrid PCL-P (HEMA-NIPAAm) thermosensitive hydrogel scaffold by grafting PNIPAAm-based copolymers with biodegradable polyesters to promote the chondrogenic differentiation of human progenitor cells (adipose-derived stem cells-hASCs) in the presence of the platelet-derived growth factor (PDGF-BB). Different mixture ratios including 50 mmol ε-caprolactone and 10 mmol HEMA (S-1), 30 mmol ε-caprolactone and 10 mmol HEMA (S-2), 10 mmol ε-caprolactone and 30 mmol HEMA (S-3) were copolymerized followed by the addition of NIPAAm. Results A mild to moderate swelling and wettability rates were found in S-2 group copmpared to the S-1 ans S-3 samples. After 7 weeks, S-2 degradation rate reached ~ 43.78%. According to the LCST values, S-2, reaching 37 °C, was selected for different in vitro assays. SEM imaging showed nanoparticulate structure of the scaffold with particle size dimensions of about 62–85 nm. Compressive strength, Young’s modulus, and compressive strain (%) of S-2 were 44.8 MPa, 0.7 MPa, and 75.5%. An evaluation of total proteins showed that the scaffold had the potential to gradually release PDGF-BB. When hASCs were cultured on PCL-P (HEMA-NIPAAm) in the presence of PDGF-BB, the cells effectively attached and flattened on the scaffold surface for a period of at least 14 days, the longest time point evaluated, with increased cell viability rates as measured by performing an MTT assay (p < 0.05). Finally, a real-time RT-PCR analysis demonstrated that the combination of PCL-P (HEMA-NIPAAm) and PDGF-BB promoted the chondrogenesis of hASCs over a period of 14 days by up-regulating the expression of aggrecan, type-II collagen, SOX9, and integrin β1 compared with the non-treated control group (p < 0.05). Conclusion These results demonstrate that the PCL-P(HEMA-NIPAAm) hydrogel scaffold carrying PDGF-BB as a matrix for hASC cell seeding is a valuable system that may be used in the future as a three-dimensional construct for implantation in cartilage injuries.
Collapse
Affiliation(s)
- Fereshteh Valipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Valipour
- Department of Molecular Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Bell D, Ludwanowski S, Lüken A, Sarikaya B, Walther A, Wessling M. Hydrogel membranes made from crosslinked microgel multilayers with tunable density. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118912] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Gosecki M, Ziemczonek P, Maczugowska P, Czaderna-Lekka A, Kozanecki M, Gosecka M. The influence of 2-acrylamidephenylboronic acid on the phase behaviour of its copolymers with N-isopropylacrylamide in aqueous solution. Polym Chem 2021. [DOI: 10.1039/d1py00397f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, we report the synthesis and phase behaviour of statistical p(N-isopropylacrylamide-co-2-acrylamidephenylboronic acid), P(NIPAM-co-2-AAPBA) copolymers.
Collapse
Affiliation(s)
- Mateusz Gosecki
- Polymer Division
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Science
- Poland
- 90-363 Lodz
| | - Piotr Ziemczonek
- Polymer Division
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Science
- Poland
- 90-363 Lodz
| | - Paulina Maczugowska
- Department of Molecular Physics
- Faculty of Chemistry
- Lodz University of Technology
- 90-924 Lodz
- Poland
| | - Anna Czaderna-Lekka
- Department of Molecular Physics
- Faculty of Chemistry
- Lodz University of Technology
- 90-924 Lodz
- Poland
| | - Marcin Kozanecki
- Department of Molecular Physics
- Faculty of Chemistry
- Lodz University of Technology
- 90-924 Lodz
- Poland
| | - Monika Gosecka
- Polymer Division
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Science
- Poland
- 90-363 Lodz
| |
Collapse
|
40
|
Understanding the burst release phenomenon: toward designing effective nanoparticulate drug-delivery systems. Ther Deliv 2020; 12:21-36. [PMID: 33353422 DOI: 10.4155/tde-2020-0099] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Burst release of encapsulated drug with release of a significant fraction of payload into release medium within a short period, both in vitro and in vivo, remains a challenge for translation. Such unpredictable and uncontrolled release is often undesirable, especially from the perspective of developing sustained-release formulations. Moreover, a brisk release of the payload upsets optimal release kinetics. This account strives toward understanding burst release noticed in nanocarriers and investigates its causes. Various mathematical models to explain such untimely release were also examined, including their strengths and weaknesses. Finally, the account revisits current techniques of limiting burst release from nanocarriers and prioritizes future directions that harbor potential of fruitful translation by reducing such occurrences.
Collapse
|
41
|
Carvalhal AS, Costa GMN, Embiruçu M. Evaluation of Nonelectrolyte Hydrogel Swelling and Its Pressure Effects with Simple Equation of State and Mechanical Models Using Liquid–Liquid Equilibrium Data. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. S. Carvalhal
- Escola Politécnica, Universidade Federal da Bahia, 40210-630, Salvador, Bahia, Brazil
| | - G. M. N. Costa
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, no. 2, Federação, 40210-630, Salvador, Bahia, Brazil
| | - M. Embiruçu
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, no. 2, Federação, 40210-630, Salvador, Bahia, Brazil
| |
Collapse
|
42
|
Najafipour A, Gharieh A, Fassihi A, Sadeghi-Aliabadi H, Mahdavian AR. MTX-Loaded Dual Thermoresponsive and pH-Responsive Magnetic Hydrogel Nanocomposite Particles for Combined Controlled Drug Delivery and Hyperthermia Therapy of Cancer. Mol Pharm 2020; 18:275-284. [PMID: 33300343 DOI: 10.1021/acs.molpharmaceut.0c00910] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, the exploitation of magnetic nanoparticles in smart polymeric matrices have received increased attention in several fields as site-specific drug delivery systems. Here, ultrasonic-assisted emulsion copolymerization of N-isopropylacrylamide (NIPAM) and 2-(N,N-diethylaminoethyl) methacrylate (DEAEMA) in the presence of Fe3O4 nanoparticles was employed to prepare pH- and temperature-responsive magnetite nanocomposite particles (MNCPs). The obtained MNCPs were fully characterized by TEM, DSC, FT-IR, VSM, and XRD techniques. They had an average particle size of 70 nm with a lower critical solution temperature of 42 °C and superparamagnetic properties. In addition, MNCPs were loaded with methotrexate (MTX) as an anticancer drug, and their in vitro drug release was studied in different pH values and temperatures and in the presence of an alternating magnetic field. Noteworthy that the highest rate of MTX release was observed at pH 5.5 and 42 °C. Cell viability of the treated MCF-7 human breast cancer cell line with free MTX, MNCPs, and MTX-loaded MNCPs or in combination with magnetic hyperthermia (MHT) and water-based hyperthermia was comparatively studied. The obtained results showed about 17% higher antiproliferative activity for the MTX-loaded MNCPs accompanied by MHT relative to that of free MTX.
Collapse
Affiliation(s)
- Aylar Najafipour
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Ali Gharieh
- Department of Polymer Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer and Petrochemical Institute, PO Box 14965/115, Tehran 14967, Iran
| |
Collapse
|
43
|
Muttaqien SE, Nomoto T, Dou X, Takemoto H, Matsui M, Nishiyama N. Photodynamic therapy using LCST polymers exerting pH-responsive isothermal phase transition. J Control Release 2020; 328:608-616. [DOI: 10.1016/j.jconrel.2020.09.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
|
44
|
Carvalho WSP, Lee C, Zhang Y, Czarnecki A, Serpe MJ. Probing the response of poly (N-isopropylacrylamide) microgels to solutions of various salts using etalons. J Colloid Interface Sci 2020; 585:195-204. [PMID: 33279702 DOI: 10.1016/j.jcis.2020.11.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
The Hofmeister series is a qualitative ordering of ions according to their ability to precipitate proteins in aqueous solution and is extremely important to consider when trying to understand materials and biomolecular structure and function. Herein, we utilized optical devices (etalons) composed of poly(N-isopropylacrylamide) (pNIPAm)-co-10% acrylic acid (AAc) or pNIPAm-based microgels to investigate how various salts in the Hofmeister series influenced the microgel hydration state. Etalons were exposed to a series of salts solutions at different concentrations and the position of the peaks in the reflectance spectra monitored using reflectance spectroscopy. As expected, pNIPAm-co-10%AAc microgel-based etalons responded to the presence of ions, although in this case the response to cations deviated from the Hofmeister series. However, when using etalons prepared with pNIPAm-based microgels, the responses followed the Hofmeister series for both cation and anions. Finally, we observed that the sensitivity of etalons prepared with pNIPAm microgels was significantly higher than the response obtained from etalons composed of pNIPAm-co-10%AAc microgels. This was explained by considering the charge on the pNIPAm-co-10%AAc microgels that influences how osmotic and Hofmeister effects impacts hydration state.
Collapse
Affiliation(s)
| | - Cayo Lee
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Yingnan Zhang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Adam Czarnecki
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
45
|
|
46
|
Oliva N, Almquist BD. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2020; 161-162:22-41. [PMID: 32745497 DOI: 10.1016/j.addr.2020.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Wound repair is a fascinatingly complex process, with overlapping events in both space and time needed to pave a pathway to successful healing. This additional complexity presents challenges when developing methods for the controlled delivery of therapeutics for wound repair and tissue engineering. Unlike more traditional applications, where biomaterial-based depots increase drug solubility and stability in vivo, enhance circulation times, and improve retention in the target tissue, when aiming to modulate wound healing, there is a desire to enable localised, spatiotemporal control of multiple therapeutics. Furthermore, many therapeutics of interest in the context of wound repair are sensitive biologics (e.g. growth factors), which present unique challenges when designing biomaterial-based delivery systems. Here, we review the diverse approaches taken by the biomaterials community for creating stimuli-responsive materials that are beginning to enable spatiotemporal control over the delivery of therapeutics for applications in tissue engineering and regenerative medicine.
Collapse
|
47
|
Belman-Flores CE, Herrera-Kao W, Vargas-Coronado RF, May-Pat A, Oliva AI, Rodríguez-Fuentes N, Vázquez-Torres H, Cauich-Rodríguez JV, Cervantes-Uc JM. Synthesis and characterization of pH sensitive hydrogel nanoparticles based on poly(N-isopropyl acrylamide-co-methacrylic acid). JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:61. [PMID: 32696259 DOI: 10.1007/s10856-020-06400-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
In this work, pH-sensitive hydrogel nanoparticles based on N-isopropyl acrylamide (NIPAM) and methacrylic acid (MAA) at various molar ratios, were synthesized and characterized in terms of physicochemical and biological properties. FTIR and 1HNMR spectra confirmed the successful synthesis of the copolymer that formed nanoparticles. AFM images and FE-SEM micrographs showed that nanoparticles were spherical, but their round-shape was slightly compromised with MAA content; besides, the size of particles tends to decrease as MAA content increased. The hydrogels nanoparticles also exhibited an interesting pH-sensitivity, displaying changes in its particle size when changes in pH media occurred. Biological characterization results indicate that all the synthesized particles are non-cytotoxic to endothelial cells and hemocompatible, although an increase of MAA content leads to a slight increase in the hemolysis percentage. Therefore, the pH-sensitivity hydrogels may serve as a versatile platform as self-regulated drug delivery systems in response to environmental pH changes.
Collapse
Affiliation(s)
- C E Belman-Flores
- Centro de Investigación Científica de Yucatán, A.C. Unidad de Materiales, Calle 43 No. 130 x32 y 34, Col. Chuburná de Hidalgo, Mérida, C.P. 97205, Yucatán, México
| | - W Herrera-Kao
- Centro de Investigación Científica de Yucatán, A.C. Unidad de Materiales, Calle 43 No. 130 x32 y 34, Col. Chuburná de Hidalgo, Mérida, C.P. 97205, Yucatán, México
| | - R F Vargas-Coronado
- Centro de Investigación Científica de Yucatán, A.C. Unidad de Materiales, Calle 43 No. 130 x32 y 34, Col. Chuburná de Hidalgo, Mérida, C.P. 97205, Yucatán, México
| | - A May-Pat
- Centro de Investigación Científica de Yucatán, A.C. Unidad de Materiales, Calle 43 No. 130 x32 y 34, Col. Chuburná de Hidalgo, Mérida, C.P. 97205, Yucatán, México
| | - A I Oliva
- Departamento de Física Aplicada, CINVESTAV-IPN, Unidad Mérida, Carretera Antigua a Progreso Km 6, Cordemex, Mérida, C.P. 97310, Yucatán, México
| | - N Rodríguez-Fuentes
- CONACYT-Centro de Investigación Científica de Yucatán, A.C. Unidad de Materiales, Calle 43 No. 130 x32 y 34, Col. Chuburná de Hidalgo, Mérida, C.P. 97205, Yucatán, México
| | - H Vázquez-Torres
- Departamento de Física, Área de Polímeros, Universidad Autónoma Metropolitana-Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, Ciudad de México, C.P. 09340, México
| | - J V Cauich-Rodríguez
- Centro de Investigación Científica de Yucatán, A.C. Unidad de Materiales, Calle 43 No. 130 x32 y 34, Col. Chuburná de Hidalgo, Mérida, C.P. 97205, Yucatán, México
| | - J M Cervantes-Uc
- Centro de Investigación Científica de Yucatán, A.C. Unidad de Materiales, Calle 43 No. 130 x32 y 34, Col. Chuburná de Hidalgo, Mérida, C.P. 97205, Yucatán, México.
| |
Collapse
|
48
|
Kabir A, Ahmed M. Elucidating the Role of Thermal Flexibility of Hydrogels in Protein Refolding. ACS APPLIED BIO MATERIALS 2020; 3:4253-4262. [DOI: 10.1021/acsabm.0c00324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Liao J, Huang H. A fungal chitin derived from Hericium erinaceus residue: Dissolution, gelation and characterization. Int J Biol Macromol 2020; 152:456-464. [DOI: 10.1016/j.ijbiomac.2020.02.309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 01/12/2023]
|
50
|
Brokesh AM, Gaharwar AK. Inorganic Biomaterials for Regenerative Medicine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5319-5344. [PMID: 31989815 DOI: 10.1021/acsami.9b17801] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regenerative medicine leverages the innate potential of the human body to efficiently repair and regenerate damaged tissues using engineered biomaterials. By designing responsive biomaterials with the appropriate biophysical and biochemical characteristics, cellular response can be modulated to direct tissue healing. Recently, inorganic biomaterials have been shown to regulate cellular responses including cell-cell and cell-matrix interactions. Moreover, ions released from these mineral-based biomaterials play a vital role in defining cell identity, as well as driving tissue-specific functions. The intrinsic properties of inorganic biomaterials, such as the release of bioactive ions (e.g., Ca, Mg, Sr, Si, B, Fe, Cu, Zn, Cr, Co, Mo, Mn, Au, Ag, V, Eu, and La), can be leveraged to induce phenotypic changes in cells or modulate the immune microenvironment to direct tissue healing and regeneration. Biophysical characteristics of biomaterials, such as topography, charge, size, electrostatic interactions, and stiffness can be modulated by addition of inorganic micro- and nanoparticles to polymeric networks have also been shown to play an important role in their biological response. In this Review, we discuss the recent emergence of inorganic biomaterials to harness the innate regenerative potential of the body. Specifically, we will discuss various biophysical or biochemical effects of inorganic-based materials in directing cellular response for regenerative medicine applications.
Collapse
Affiliation(s)
- Anna M Brokesh
- Biomedical Engineering, Dwight Look College of Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Akhilesh K Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering , Texas A&M University , College Station , Texas 77843 , United States
- Material Science and Engineering, Dwight Look College of Engineering , Texas A&M University , College Station , Texas 77843 , United States
- Center for Remote Health Technologies and Systems , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|