1
|
Patle RY, Meshram JS. The advanced synthetic modifications and applications of multifunctional PAMAM dendritic composites. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00074h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The profound advances in dendrimer chemistry have led to new horizons in polymer science.
Collapse
Affiliation(s)
- Ramkrishna Y. Patle
- Mahatma Gandhi College of Science Gadchandur, Chandrapur, (M.S.)-442908, India
- PGTD Chemistry, R.T.M. Nagpur University, Nagpur, (M.S.)-440033, India
| | | |
Collapse
|
2
|
Cannon J, Tang S, Yang K, Harrison R, Choi SK. Dual acting oximes designed for therapeutic decontamination of reactive organophosphates via catalytic inactivation and acetylcholinesterase reactivation. RSC Med Chem 2021; 12:1592-1603. [PMID: 34671741 DOI: 10.1039/d1md00194a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 01/24/2023] Open
Abstract
A conventional approach in the therapeutic decontamination of reactive organophosphate (OP) relies on chemical OP degradation by oxime compounds. However, their efficacy is limited due to their lack of activity in the reactivation of acetylcholinesterase (AChE), the primary target of OP. Here, we describe a set of α-nucleophile oxime derivatives which are newly identified for such dual modes of action. Thus, we prepared a 9-member oxime library, each composed of an OP-reactive oxime core linked to an amine-terminated scaffold, which varied through an N-alkyl functionalization. This library was screened by enzyme assays performed with human and electric eel subtypes of OP-inactivated AChE, which led to identifying three oxime leads that displayed significant enhancements in reactivation activity comparable to 2-PAM. They were able to reactivate both enzymes inactivated by three OP types including paraoxon, chlorpyrifos and malaoxon, suggesting their broad spectrum of OP susceptibility. All compounds in the library were able to retain catalytic reactivity in paraoxon inactivation by rates increased up to 5 or 8-fold relative to diacetylmonoxime (DAM) under controlled conditions at pH (8.0, 10.5) and temperature (17, 37 °C). Finally, selected lead compounds displayed superb efficacy in paraoxon decontamination on porcine skin in vitro. In summary, we addressed an unmet need in therapeutic OP decontamination by designing and validating a series of congeneric oximes that display dual modes of action.
Collapse
Affiliation(s)
- Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA .,Department of Internal Medicine, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA .,Department of Internal Medicine, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| | - Kelly Yang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| | - Racquel Harrison
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA .,Department of Internal Medicine, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| |
Collapse
|
3
|
Zboray S, Efimenko K, Jones JL, Genzer J. Functional Gels Containing Hydroxamic Acid Degrade Organophosphates in Aqueous Solutions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Steven Zboray
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Kirill Efimenko
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jacob L. Jones
- Department of Materials Science & Engineering, Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
4
|
Choi SK. Nanomaterial-Enabled Sensors and Therapeutic Platforms for Reactive Organophosphates. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:224. [PMID: 33467113 PMCID: PMC7830340 DOI: 10.3390/nano11010224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 01/15/2023]
Abstract
Unintended exposure to harmful reactive organophosphates (OP), which comprise a group of nerve agents and agricultural pesticides, continues to pose a serious threat to human health and ecosystems due to their toxicity and prolonged stability. This underscores an unmet need for developing technologies that will allow sensitive OP detection, rapid decontamination and effective treatment of OP intoxication. Here, this article aims to review the status and prospect of emerging nanotechnologies and multifunctional nanomaterials that have shown considerable potential in advancing detection methods and treatment modalities. It begins with a brief introduction to OP types and their biochemical basis of toxicity followed by nanomaterial applications in two topical areas of primary interest. One topic relates to nanomaterial-based sensors which are applicable for OP detection and quantitative analysis by electrochemical, fluorescent, luminescent and spectrophotometric methods. The other topic is directed on nanotherapeutic platforms developed as OP remedies, which comprise nanocarriers for antidote drug delivery and nanoscavengers for OP inactivation and decontamination. In summary, this article addresses OP-responsive nanomaterials, their design concepts and growing impact on advancing our capability in the development of OP sensors, decontaminants and therapies.
Collapse
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Morato NM, Holden DT, Cooks RG. High‐Throughput Label‐Free Enzymatic Assays Using Desorption Electrospray‐Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nicolás M. Morato
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Dylan T. Holden
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - R. Graham Cooks
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| |
Collapse
|
6
|
Morato NM, Holden DT, Cooks RG. High‐Throughput Label‐Free Enzymatic Assays Using Desorption Electrospray‐Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2020; 59:20459-20464. [PMID: 32735371 DOI: 10.1002/anie.202009598] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Nicolás M. Morato
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Dylan T. Holden
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - R. Graham Cooks
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| |
Collapse
|
7
|
Wong PT, Tang S, Cannon J, Yang K, Harrison R, Ruge M, O'Konek JJ, Choi SK. Shielded α-Nucleophile Nanoreactor for Topical Decontamination of Reactive Organophosphate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33500-33515. [PMID: 32603588 DOI: 10.1021/acsami.0c08946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we describe a nanoscale reactor strategy with a topical application in the therapeutic decontamination of reactive organophosphates (OPs) as chemical threat agents. It involves functionalization of poly(amidoamine) dendrimer through a combination of its partial PEG shielding and exhaustive conjugation with an OP-reactive α-nucleophile moiety at its peripheral branches. We prepared a 16-member library composed of two α-nucleophile classes (oxime, hydroxamic acid), each varying in its reactor valency (43-176 reactive units per nanoparticle), and linker framework for α-nucleophile tethering. Their mechanism for OP inactivation occurred via nucleophilic catalysis as verified against P-O and P-S bonded OPs including paraoxon-ethyl (POX), malaoxon, and omethoate by 1H NMR spectroscopy. Screening their reactivity for POX inactivation was performed under pH- and temperature-controlled conditions, which resulted in identifying 13 conjugates, each showing shorter POX half-life up to 2 times as compared to a reference Dekon 139 at pH 10.5, 37 °C. Of these, 10 conjugates were further confirmed for greater efficacy in POX decontamination experiments performed in two skin models, porcine skin and an artificial human microtissue. Finally, a few lead conjugates were selected and demonstrated for their biocompatibility in vitro as evident with lack of skin absorption, no inhibition of acetylcholinesterase (AChE), and no cytotoxicity in human neuroblastoma cells. In summary, this study presents a novel nanoreactor library, its screening methods, and identification of potent lead conjugates with potential for therapeutic OP decontamination.
Collapse
|
8
|
Wong PT, Bhattacharjee S, Cannon J, Tang S, Yang K, Bowden S, Varnau V, O'Konek JJ, Choi SK. Reactivity and mechanism of α-nucleophile scaffolds as catalytic organophosphate scavengers. Org Biomol Chem 2019; 17:3951-3963. [PMID: 30942252 DOI: 10.1039/c9ob00503j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and pKa. Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants.
Collapse
Affiliation(s)
- Pamela T Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Moural TW, White DSD, Choy CJ, Kang C, Berkman CE. Crystal Structure of Phosphoserine BlaC from Mycobacterium tuberculosis Inactivated by Bis(Benzoyl) Phosphate. Int J Mol Sci 2019; 20:E3247. [PMID: 31269656 PMCID: PMC6650796 DOI: 10.3390/ijms20133247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis, the pathogen responsible for tuberculosis (TB), is the leading cause of death from infectious disease worldwide. The class A serine β-lactamase BlaC confers Mycobacterium tuberculosis resistance to conventional β-lactam antibiotics. As the primary mechanism of bacterial resistance to β-lactam antibiotics, the expression of a β-lactamase by Mycobacterium tuberculosis results in hydrolysis of the β-lactam ring and deactivation of these antibiotics. In this study, we conducted protein X-ray crystallographic analysis of the inactivation of BlaC, upon exposure to the inhibitor bis(benzoyl) phosphate. Crystal structure data confirms that serine β-lactamase is phosphorylated at the catalytic serine residue (Ser-70) by this phosphate-based inactivator. This new crystallographic evidence suggests a mechanism for phosphorylation of BlaC inhibition by bis(benzoyl) phosphate over acylation. Additionally, we confirmed that bis(benzoyl) phosphate inactivated BlaC in a time-dependent manner.
Collapse
Affiliation(s)
- Timothy W Moural
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Cindy J Choy
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Chulhee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Clifford E Berkman
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
10
|
Synthesis, characterization, theoretical calculations and biochemical evaluation of a novel oxime ligand with complexes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Tang S, Wong PT, Cannon J, Yang K, Bowden S, Bhattacharjee S, O'Konek JJ, Choi SK. Hydrophilic scaffolds of oxime as the potent catalytic inactivator of reactive organophosphate. Chem Biol Interact 2018; 297:67-79. [PMID: 30393113 DOI: 10.1016/j.cbi.2018.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/12/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022]
Abstract
Despite its efficacy as a skin decontaminant of reactive organophosphates (OP), Dekon 139-a potassium salt of 2,3-butanedione monooxime (DAM)-is associated with adverse events related to percutaneous absorption largely due to its small size and lipophilicity. In order to address this physicochemical issue, we synthesized and evaluated the activity of a focused library of 14 hydrophilic oxime compounds, each designed with either a DAM or monoisonitrosoacetone (MINA) oxime tethered to a polar or charged scaffold in order to optimize the size, hydrophilicity, and oxime acidity. High-throughput colorimetric assays were performed with paraoxon (POX) as a model OP to determine the kinetics of POX inactivation by these compounds under various pH and temperature conditions. This primary screening led to the identification of 6 lead compounds, predominantly in the MINA series, which displayed superb catalytic activity by reducing the POX half-life (t1/2) by 2-3 fold relative to Dekon 139. Our mechanistic studies show that POX inactivation by the oxime compounds occurred faster at a higher temperature and in a pH-dependent manner in which the negatively charged oximate species is ≥ 10-fold more effective than the neutral oxime species. Lastly, using one of the lead compounds, we demonstrated its promising efficacy for POX decontamination in porcine skin ex vivo, and showed its potent ability to protect acetylcholine esterase (AChE) through POX inactivation. In summary, we report the rational design and chemical biological validation of novel hydrophilic oximes which address an unmet need in therapeutic OP decontamination.
Collapse
Affiliation(s)
- Shengzhuang Tang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Pamela T Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jayme Cannon
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Kelly Yang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sierra Bowden
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Somnath Bhattacharjee
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jessica J O'Konek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Seok Ki Choi
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
12
|
Tamura T, Song Z, Amaike K, Lee S, Yin S, Kiyonaka S, Hamachi I. Affinity-Guided Oxime Chemistry for Selective Protein Acylation in Live Tissue Systems. J Am Chem Soc 2017; 139:14181-14191. [DOI: 10.1021/jacs.7b07339] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomonori Tamura
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Zhining Song
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuma Amaike
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shin Lee
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sifei Yin
- Magdalene College, University of Cambridge, Cambridge CB3 0AG, United Kingdom
| | - Shigeki Kiyonaka
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
13
|
Mukherjee J, Wong PT, Tang S, Gam K, Coulter A, Baker JR, Choi SK. Mechanism of Cooperativity and Nonlinear Release Kinetics in Multivalent Dendrimer–Atropine Complexes. Mol Pharm 2015; 12:4498-508. [DOI: 10.1021/acs.molpharmaceut.5b00684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jhindan Mukherjee
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pamela T. Wong
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shengzhuang Tang
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristina Gam
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexa Coulter
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James R. Baker
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Seok Ki Choi
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Mechanistic insight on the catalytic detoxification of Paraoxon mediated by imidazole: Furnishing optimum scaffolds for scavenging organophosphorus agents. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Wong PT, Tang S, Tang K, Coulter A, Mukherjee J, Gam K, Baker JR, Choi SK. A lipopolysaccharide binding heteromultivalent dendrimer nanoplatform for Gram negative cell targeting. J Mater Chem B 2015; 3:1149-1156. [DOI: 10.1039/c4tb01690d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heteromultivalent design of PAMAM dendrimer by conjugation with polymyxin B (PMB) ligand and excess auxiliary ethanolamine (EA) branches led to lipopolysaccharide (LPS) avidity two orders of magnitude greater than free PMB.
Collapse
Affiliation(s)
- Pamela T. Wong
- Michigan Nanotechnology Institute for Medicine and Biological Sciences
- University of Michigan
- Ann Arbor
- USA
- Department of Internal Medicine
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences
- University of Michigan
- Ann Arbor
- USA
- Department of Internal Medicine
| | - Kenny Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences
- University of Michigan
- Ann Arbor
- USA
| | - Alexa Coulter
- Michigan Nanotechnology Institute for Medicine and Biological Sciences
- University of Michigan
- Ann Arbor
- USA
| | - Jhindan Mukherjee
- Michigan Nanotechnology Institute for Medicine and Biological Sciences
- University of Michigan
- Ann Arbor
- USA
- Department of Internal Medicine
| | - Kristina Gam
- Michigan Nanotechnology Institute for Medicine and Biological Sciences
- University of Michigan
- Ann Arbor
- USA
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences
- University of Michigan
- Ann Arbor
- USA
- Department of Internal Medicine
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences
- University of Michigan
- Ann Arbor
- USA
- Department of Internal Medicine
| |
Collapse
|