Chen X, Wu QS, Meng FC, Tang ZH, Chen X, Lin LG, Chen P, Qiang WA, Wang YT, Zhang QW, Lu JJ. Chikusetsusaponin IVa methyl ester induces G1 cell cycle arrest, triggers apoptosis and inhibits migration and invasion in ovarian cancer cells.
PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016;
23:1555-1565. [PMID:
27823619 DOI:
10.1016/j.phymed.2016.09.002]
[Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/20/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND
Panacis Japonici Rhizoma (PJR) is one of the most famous Chinese medical herbs that is known for exhibiting potential anti-cancer effects.
PURPOSE
This study aims to isolate and investigate the anti-cancer potential of saponins from PJR in ovarian cancer cells.
METHODS
The compounds were separated by comprehensive chromatographic methods. By comparison of the 1H- and 13C NMR data, as well as the HR-ESI-MS data, with the corresponding references, the structures of compounds were determined. MTT assay was performed to evaluate cell viability, along with flow cytometry for cell cycle analysis. JC-1 staining, Annexin V-PI double staining as well as Hoechst 33; 342 staining were used for detecting cell apoptosis. Western blot analysis was conducted to determine the relative protein level. Transwell assays were performed to investigate the effect of the saponin on cell migration and invasion and zymography experiments were used to detect the enzymatic activities.
RESULTS
Eleven saponins were isolated from PJR and their anti-proliferative effects were evaluated in human ovarian cancer cells. Chikusetsusaponin IVa methyl ester (1) exhibited the highest anti-proliferative potential among these isolates with the IC50 values at less than 10 µM in both ovarian cancer A2780 and HEY cell lines. Compound 1 induced G1 cell cycle arrest accompanied with an S phase decrease, and down-regulated the expression of cyclin D1, CDK2, and CDK6. Further study showed that compound 1 effectively decreased the cell mitochondrial membrane potential, increased the annexin V positive cells and nuclear chromatin condensation, as well as enhanced the expression of cleaved PARP, Bax and cleaved-caspase 3 while decreasing that of Bcl-2. Moreover, compound 1 suppressed the migration and invasion of HEY and A2780 cells, down-regulated the expression of Cdc42, Rac, RohA, MMP2 and MMP9, and decreased the enzymatic activities of MMP2 and MMP9.
CONCLUSION
These results provide a comprehensive evaluation of compound 1 as a potential agent for the treatment of ovarian cancer.
Collapse