1
|
Song Y, Sun M, Ma F, Xu D, Mu G, Jiao Y, Yu P, Tuo Y. Lactiplantibacillus plantarum DLPT4 Protects Against Cyclophosphamide-Induced Immunosuppression in Mice by Regulating Immune Response and Intestinal Flora. Probiotics Antimicrob Proteins 2024; 16:321-333. [PMID: 36715883 DOI: 10.1007/s12602-022-10015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 01/31/2023]
Abstract
In this study, the strain Lactiplantibacillus plantarum DLPT4 was investigated for the immunostimulatory activity in cyclophosphamide (CTX)-induced immunosuppressed BALB/c mice. L. plantarum DLPT4 was administered to BALB/c mice by oral gavage for 30 days, and CTX was injected intraperitoneally from the 25th to the 27th days. Intraperitoneal injection of CTX caused damage to the thymic cortex and intestines, and the immune dysfunction of the BALB/c mice. L. plantarum DLPT4 oral administration exerted immunoregulating effects evidenced by increasing serum immunoglobulin (IgA, IgG, and IgM) levels and reducing the genes expression of pro-inflammatory factors (IL-6, IL-1β, and TNF-α) of the CTX-induced immunosuppressed mice. The results of the metagenome-sequencing analysis showed that oral administration of L. plantarum DLPT4 could regulate the intestinal microbial community of the immunosuppressed mice by changing the ratio of Lactiplantibacillus and Bifidobacterium. Meanwhile, the abundance of carbohydrate enzyme (CAZyme), immune diseases metabolic pathways, and AP-1/MAPK signaling pathways were enriched in the mice administrated with L. plantarum DLPT4. In conclusion, oral administration of L. plantarum DLPT4 ameliorated symptoms of CTX-induced immunosuppressed mice by regulating gut microbiota, influencing the abundance of carbohydrate esterase in the intestinal flora, and enhancing immune metabolic activity. L. plantarum DLPT4 could be a potential probiotic to regulate the immune response.
Collapse
Affiliation(s)
- Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Fenglian Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Dongxue Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Yang Jiao
- College of Life Science and Engineering of Hexi University, Zhangye, 734000, People's Republic of China
| | - Ping Yu
- High Change (Shenyang) Child-Food Products Co, Ltd, Shenyang, 110011, People's Republic of China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
| |
Collapse
|
2
|
Iwata H, Kobayashi S, Itoh M, Itoh S, Mesfin Ketema R, Tamura N, Miyashita C, Yamaguchi T, Yamazaki K, Masuda H, Ait Bamai Y, Saijo Y, Ito Y, Nakayama SF, Kamijima M, Kishi R. The association between prenatal per-and polyfluoroalkyl substance levels and Kawasaki disease among children of up to 4 years of age: A prospective birth cohort of the Japan Environment and Children's study. ENVIRONMENT INTERNATIONAL 2024; 183:108321. [PMID: 38061246 DOI: 10.1016/j.envint.2023.108321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 01/25/2024]
Abstract
Kawasaki disease (KD) is common among pediatric patients and is associated with an increased risk of later cardiovascular complications, though the precise pathophysiology of KD remains unknown. Per- and polyfluoroalkyl substances (PFAS) have gathered notoriety as the causal pathogens of numerous diseases as well as for their immunosuppressive effects. The present epidemiological study aims to assess whether PFAS may affect KD risk. We evaluated research participants included in the ongoing prospective nationwide birth cohort of the Japan Environment and Children's Study (JECS). Among the over 100,000 pregnant women enrolled in the JECS study, 28 types of PFAS were measured in pregnancy in a subset of participants (N = 25,040). The JECS followed their children born between 2011 and 2014 (n total infants = 25,256; n Kawasaki disease infants = 271), up to age four. Among the 28 types of PFAS, those which were detected in >60 % of participants at levels above the method reporting limit (MRL) were eligible for analyses. Multivariable logistic regressions were implemented on the seven eligible PFAS, adjusting for multiple comparison effects. Finally, we conducted Weighted Quantile Sum (WQS) and Bayesian kernel machine regression (BKMR) to assess the effects of the PFAS mixture on KD. Therefore, we ran the BKMR model using kernel mechanical regression equations to examine PFAS exposure and the outcomes of KD. Upon analysis, the adjusted multivariable regression results did not reach statistical significance for the seven eligible substances on KD, while odds ratios were all under 1.0. WQS regression was used to estimate the mixture effect of the seven eligible PFAS, revealing a negative correlation with KD incidence; similarly, BKMR implied an inverse association between the PFAS mixture effect and KD incidence. In conclusion, PFAS exposure was not associated with increased KD incidence.
Collapse
Affiliation(s)
- Hiroyoshi Iwata
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan; Division of Epidemiological Research for Chemical Disorders, Research Center for Chemical Information and Management, National Institute of Occupational Safety and Health, 6-21-1, Nagao, Tama-ku, Kawasaki 214-8585, Japan
| | - Mariko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan; Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| | - Naomi Tamura
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Takeshi Yamaguchi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyuki Masuda
- Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmaceutical Sciences, University of Antwerp, University Square 1, 2610 Wilrijk, Belgium
| | - Yasuaki Saijo
- Division of Public Health and Epidemiology, Department of Social Medicine, Asahikawa Medical University, 1-1-1 Midorigaoka-higashi-2-jo, Asahikawa 078-8510, Japan
| | - Yoshiya Ito
- Faculty of Nursing, Japanese Red Cross Hokkaido College of Nursing, 664-1 Akebono-cho, Kitami 090-0011, Japan
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
3
|
Baek K, Sakong J, Park C. Association of serum polyfluoroalkyl substances (PFAS) with anemia and erythrocytosis in Korean adults: Data from Korean National Environmental Health Survey cycle 4 (2018–2020). Int J Hyg Environ Health 2023. [DOI: 10.1016/j.ijheh.2023.114136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Liang L, Pan Y, Bin L, Liu Y, Huang W, Li R, Lai KP. Immunotoxicity mechanisms of perfluorinated compounds PFOA and PFOS. CHEMOSPHERE 2022; 291:132892. [PMID: 34780734 DOI: 10.1016/j.chemosphere.2021.132892] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 05/14/2023]
Abstract
Perfluorinated and polyfluorinated compounds (PFASs) are a class of synthetic chemical substances that are widely used in human production and life, such as fire-fighting foams, textiles and clothing, surfactants, and surface protective agents. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are the most abundant and common perfluorinated compounds in biota and humans. Currently, PFOA and PFOS have been listed in the Stockholm Convention on Persistent Organic Pollutants, and their production has been halted in many countries. However, because the high-energy carbon-fluorine bond can make it resistant to hydrolysis, photolysis, microbial degradation, and vertebrate metabolism, PFOA and PFOS show environmental persistence and bioaccumulation and hence, are of great concern to humans and wildlife. PFOA and PFOS have toxic effects on the immune system of the body. This article reviewed the effects of PFOA and PFOS on immune organs such as the spleen, bone marrow, and thymus of mice and zebrafish, and the effects on non-specific immune functions such as the skin barrier, intestinal mucosal barrier, and humoral immunity. We also reviewed the influence of specific immune functions based on cellular immunity, and further summarized the possible immune toxicity mechanisms such as AIM2 inflammasome activation, gene dysregulation, and signal pathway disorders caused by PFOA and PFOS. The aim of this review was to provide a reference for further understanding of the immunotoxicity and the responsible mechanism of PFOA and PFOS.
Collapse
Affiliation(s)
- Luyun Liang
- School of Lingui Clinical Medicine, Guilin Medical University, Guilin, PR China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Yongling Pan
- School of Lingui Clinical Medicine, Guilin Medical University, Guilin, PR China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Lihua Bin
- School of Lingui Clinical Medicine, Guilin Medical University, Guilin, PR China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Yu Liu
- School of Lingui Clinical Medicine, Guilin Medical University, Guilin, PR China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Wenjun Huang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Rong Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China.
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China.
| |
Collapse
|
5
|
Sabuz Vidal O, Deepika D, Schuhmacher M, Kumar V. EDC-induced mechanisms of immunotoxicity: a systematic review. Crit Rev Toxicol 2022; 51:634-652. [PMID: 35015608 DOI: 10.1080/10408444.2021.2009438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) refer to a group of chemicals that cause adverse effects in human health, impairing hormone production and regulation, resulting in alteration of homeostasis, reproductive, and developmental, and immune system impairments. The immunotoxicity of EDCs involves many mechanisms altering gene expression that depend on the activation of nuclear receptors such as the aryl hydrocarbon receptor (AHR), the estrogen receptor (ER), and the peroxisome proliferator-activated receptor (PPAR), which also results in skin and intestinal disorders, microbiota alterations and inflammatory diseases. This systematic review aims to review different mechanisms of immunotoxicity and immunomodulation of T cells, focusing on T regulatory (Treg) and Th17 subsets, B cells, and dendritic cells (DCs) caused by specific EDCs such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), bisphenols (BPs) and polyfluoroalkyl substances (PFASs). To achieve this objective, a systematic study was conducted searching various databases including PubMed and Scopus to find in-vitro, in-vivo, and biomonitoring studies that examine EDC-dependent mechanisms of immunotoxicity. While doing the systematic review, we found species- and cell-specific outcomes and a translational gap between in-vitro and in-vivo experiments. Finally, an adverse outcome pathway (AOP) framework is proposed, which explains mechanistically toxicity endpoints emerging from different EDCs having similar key events and can help to improve our understanding of EDCs mechanisms of immunotoxicity. In conclusion, this review provides insights into the mechanisms of immunotoxicity mediated by EDCs and will help to improve human health risk assessment.
Collapse
Affiliation(s)
- Oscar Sabuz Vidal
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Deepika Deepika
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain.,IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|
6
|
Guo H, Zhang H, Sheng N, Wang J, Chen J, Dai J. Perfluorooctanoic acid (PFOA) exposure induces splenic atrophy via overactivation of macrophages in male mice. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124862. [PMID: 33360190 DOI: 10.1016/j.jhazmat.2020.124862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/27/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic and widely used chemical, has aroused wide public concern due to its persistence, bioaccumulation, and potential toxicity. To investigate splenic atrophy induced by PFOA, male mice were exposed to 0, 0.4, 2, or 10 mg/kg/d PFOA for 28 d. Results demonstrated that spleen weight and relative spleen weight (RSW) decreased in the 2 and 10 mg/kg/d PFOA exposure groups. Iron levels in the spleen and serum were also reduced in all PFOA exposure groups. Weighted gene co-expression network analysis (WGCNA) of 7 043 genes highlighted enrichment in cell cycle, autoimmunity, and anemia in the spleen. In addition, changes in the levels of hemoglobin, platelets, bilirubin, and heme oxygenase-1 were consistent with anemia. The ratio of total macrophages to M1 macrophages in the spleen, phagocytic ability of macrophages, and levels of cytokines such as TNF-α, IL-1β, and IL-6 all increased, thus suggesting the occurrence of autoimmune disorder. Therefore, we concluded that overactivation of macrophages may be an important reason for splenic atrophy induced by PFOA exposure.
Collapse
Affiliation(s)
- Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinghua Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiamiao Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|