1
|
Yan Y, Ding L, Ding J, Zhou P, Su B. Recent Advances in Electrochemiluminescence Visual Biosensing and Bioimaging. Chembiochem 2024; 25:e202400389. [PMID: 38899794 DOI: 10.1002/cbic.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
Electrochemiluminescence (ECL) is one of the most powerful techniques that meet the needs of analysis and detection in a variety of scenarios, because of its highly analytical sensitivity and excellent spatiotemporal controllability. ECL combined with microscopy (ECLM) offers a promising approach for quantifying and mapping a wide range of analytes. To date, ECLM has been widely used to image biological entities and processes, such as cells, subcellular structures, proteins and membrane transport properties. In this review, we first introduced the mechanisms of several classic ECL systems, then highlighted the progress of visual biosensing and bioimaging by ECLM in the last decade. Finally, the characteristics of ECLM were summarized, as well as some of the current challenges. The future research interests and potential directions for the application of ECLM were also outlooked.
Collapse
Affiliation(s)
- Yajuan Yan
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lurong Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jialian Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Bhaiyya M, Rewatkar P, Pimpalkar A, Jain D, Srivastava SK, Zalke J, Kalambe J, Balpande S, Kale P, Kalantri Y, Kulkarni MB. Deep Learning-Assisted Smartphone-Based Electrochemiluminescence Visual Monitoring Biosensor: A Fully Integrated Portable Platform. MICROMACHINES 2024; 15:1059. [PMID: 39203710 PMCID: PMC11356000 DOI: 10.3390/mi15081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024]
Abstract
A novel, portable deep learning-assisted smartphone-based electrochemiluminescence (ECL) cost-effective (~10$) sensing platform was developed and used for selective detection of lactate. Low-cost, fast prototyping screen printing and wax printing methods with paper-based substrate were used to fabricate miniaturized single-pair electrode ECL platforms. The lab-made 3D-printed portable black box served as a reaction chamber. This portable platform was integrated with a smartphone and a buck-boost converter, eliminating the need for expensive CCD cameras, photomultiplier tubes, and bulky power supplies. This advancement makes this platform ideal for point-of-care testing applications. Foremost, the integration of a deep learning approach served to enhance not just the accuracy of the ECL sensors, but also to expedite the diagnostic procedure. The deep learning models were trained (3600 ECL images) and tested (900 ECL images) using ECL images obtained from experimentation. Herein, for user convenience, an Android application with a graphical user interface was developed. This app performs several tasks, which include capturing real-time images, cropping them, and predicting the concentration of required bioanalytes through deep learning. The device's capability to work in a real environment was tested by performing lactate sensing. The fabricated ECL device shows a good liner range (from 50 µM to 2000 µM) with an acceptable limit of detection value of 5.14 µM. Finally, various rigorous analyses, including stability, reproducibility, and unknown sample analysis, were conducted to check device durability and stability. Therefore, the developed platform becomes versatile and applicable across various domains by harnessing deep learning as a cutting-edge technology and integrating it with a smartphone.
Collapse
Affiliation(s)
- Manish Bhaiyya
- Department Electronics Engineering, Ramdeobaba University, Nagpur 440013, India; (J.Z.); (J.K.)
| | - Prakash Rewatkar
- Department of Mechanical Engineering, Israel Institute of Technology, Technion, Haifa 3200003, Israel;
| | - Amit Pimpalkar
- Department of Computer Science & Engineering, Ramdeobaba University, Nagpur 440013, India;
| | - Dravyansh Jain
- Computer Science & Information Systems, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Sanjeet Kumar Srivastava
- Department of Electrical & Electronics Engineering, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad 500078, India;
| | - Jitendra Zalke
- Department Electronics Engineering, Ramdeobaba University, Nagpur 440013, India; (J.Z.); (J.K.)
| | - Jayu Kalambe
- Department Electronics Engineering, Ramdeobaba University, Nagpur 440013, India; (J.Z.); (J.K.)
| | - Suresh Balpande
- Department of Information Technology and Security, Ramdeobaba University, Nagpur 440013, India;
| | - Pawan Kale
- Fractal Analytics Private Limited, Pune 411045, India
| | | | | |
Collapse
|
3
|
Ino K, Utagawa Y, Shiku H. Microarray-Based Electrochemical Biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:317-338. [PMID: 37306698 DOI: 10.1007/10_2023_229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microarrays are widely utilized in bioanalysis. Electrochemical biosensing techniques are often applied in microarray-based assays because of their simplicity, low cost, and high sensitivity. In such systems, the electrodes and sensing elements are arranged in arrays, and the target analytes are detected electrochemically. These sensors can be utilized for high-throughput bioanalysis and the electrochemical imaging of biosamples, including proteins, oligonucleotides, and cells. In this chapter, we summarize recent progress on these topics. We categorize electrochemical biosensing techniques for array detection into four groups: scanning electrochemical microscopy, electrode arrays, electrochemiluminescence, and bipolar electrodes. For each technique, we summarize the key principles and discuss the advantages, disadvantages, and bioanalysis applications. Finally, we present conclusions and perspectives about future directions in this field.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
| | - Yoshinobu Utagawa
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
4
|
Yu Y, Nie W, Chu K, Wei X, Smith ZJ. Highly Sensitive, Portable Detection System for Multiplex Chemiluminescence Analysis. Anal Chem 2023; 95:14762-14769. [PMID: 37729474 DOI: 10.1021/acs.analchem.3c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chemiluminescence (CL) has emerged as a critical tool for the sensing and quantification of various bioanalytes in virtually all clinical fields. However, the rapid nature of many CL reactions raises challenges for typical low-cost optical sensors such as cameras to achieve accurate and sensitive detection. Meanwhile, classic sensors such as photomultiplier tubes are highly sensitive but lack spatial multiplexing capabilities and are generally not suited for point-of-care applications outside a standard laboratory setting. To address this issue, in this paper, a miniaturized and versatile silicon-photomultiplier-based fiber-integrated CL device (SFCD) was designed for sensitive multiplex CL detection. The SFCD comprises a silicon photomultiplier array coupled to an array of high numerical aperture plastic optical fibers to achieve 16-plex detection. The optical fibers ensure efficient light collection while allowing the fixed detector to be mated with diverse sample geometries (e.g., circular or grid), simply by adjusting the fiber configuration. In a head-to-head comparison with a lens-based camera system featuring a cooled detector, the SFCD achieved a 14-fold improved limit of detection in both direct and enzyme-mediated CL reactions. The SFCD also features improved compactness and lower cost, as well as faster temporal resolution compared with camera-based systems while preserving spatial multiplexing and good environmental robustness. Thus, the SFCD has excellent potential for point-of-care biosensing applications.
Collapse
Affiliation(s)
- Yannan Yu
- Key Laboratory of Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| | - Wei Nie
- Department of Chemistry, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| | - Kaiqin Chu
- Key Laboratory of Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| | - Xi Wei
- Department of Chemistry, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| | - Zachary J Smith
- Key Laboratory of Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 96 JinZhai Road, Hefei 230026, China
| |
Collapse
|
5
|
Ma T, Ren S, Wang Y, Yu H, Li L, Li X, Zhang L, Yu J, Zhang Y. Paper-based bipolar electrode electrochemiluminescence sensors for point-of-care testing. Biosens Bioelectron 2023; 235:115384. [PMID: 37244092 DOI: 10.1016/j.bios.2023.115384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
In the past few years, point-of-care testing (POCT) technology has crossed the boundaries of laboratory determination and entered the stage of practical applications. Herein, the latest advances and principal issues in the design and fabrication of paper-based bipolar electrode electrochemiluminescence (BPE-ECL) sensors, which are widely used in the POCT field, are highlighted. After introducing the attractive physical and chemical properties of cellulose paper, various approaches aimed at enhancing the functions of the paper, and their underlying principles are described. The materials typically employed for fabricating paper-based BPE are also discussed in detail. Subsequently, the universal method of enhancing BPE-ECL signal and improving detection accuracy is put forward, and the ECL detector widely used is introduced. Furthermore, the application of paper-based BPE-ECL sensors in biomedical, food, environmental and other fields are displayed. Finally, future opportunities and the remaining challenges are analyzed. It is expected that more design concepts and working principles for paper-based BPE-ECL sensors will be developed in the near future, paving the way for the development and application of paper-based BPE-ECL sensors in the POCT field and providing certain guarantee for the development of human health.
Collapse
Affiliation(s)
- Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Suyue Ren
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Luqing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
6
|
An Electrochemiluminescence Imaging Sensor for the Analysis of Lactate in Foods Via A Single Gold Microsphere. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
7
|
Huang H, Song D, Zhang W, Fang S, Zhou Q, Zhang H, Liang Z, Li Y. Choline Oxidase-Integrated Copper Metal-Organic Frameworks as Cascade Nanozymes for One-Step Colorimetric Choline Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5228-5236. [PMID: 35411770 DOI: 10.1021/acs.jafc.2c00746] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Choline is an important factor for regulating human health and is widely present in various foods. In this work, a sensor strategy based on a choline oxidase-integrated copper(II) metal-organic framework with peroxidase-like activity is constructed for one-step cascade detection of choline. The one-step cascade strategy can avoid intermediate product transferring in general multi-step reactions, and the multi-enzyme activities can be well exerted under one condition, thus exhibiting excellent catalytic activity and enhanced stability. In the integrated system, choline is catalyzed by ChOx to produce betaine and H2O2, which eventually got converted to hydroxyl radicals by the peroxidase nanozyme, oxidized the chromogenic substrate ABTS, and produced an observable absorption peak at 420 nm. A new choline detection method was thus established and showed a satisfactory linear relationship at 6-300 μM, which has been used for the choline analysis in milk.
Collapse
Affiliation(s)
- Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Donghui Song
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Wenjing Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Shuaizhen Fang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Qianxi Zhou
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Haoyu Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Zheng Liang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Rahmawati I, Einaga Y, Ivandini TA, Fiorani A. Enzymatic biosensors with electrochemiluminescence transduction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yasuaki Einaga
- Keio University - Yagami Campus: Keio Gijuku Daigaku - Yagami Campus Department of chemistry JAPAN
| | | | - Andrea Fiorani
- Keio University - Yagami Campus: Keio Gijuku Daigaku - Yagami Campus Department of Chemistry 3-14-1 Hiyoshi 223-8522 Yokohama JAPAN
| |
Collapse
|
9
|
Anand U, Chandel AKS, Oleksak P, Mishra A, Krejcar O, Raval IH, Dey A, Kuca K. Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors. Appl Microbiol Biotechnol 2022; 106:2827-2853. [PMID: 35384450 PMCID: PMC8984675 DOI: 10.1007/s00253-022-11901-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022]
Abstract
Abstract The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. Key points • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Ishan H Raval
- Council of Scientific and Industrial Research - Central Salt and Marine Chemicals Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
Abbasi R, Liu J, Suarasan S, Wachsmann-Hogiu S. SE-ECL on CMOS: a miniaturized electrochemiluminescence biosensor. LAB ON A CHIP 2022; 22:994-1005. [PMID: 35137754 DOI: 10.1039/d1lc00905b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biosensors exhibit high potential for the detection of analytes of interest at the point-of-need. Over the past two decades, the combination of novel biosensing systems - such as electrochemiluminescence (ECL) biosensors - and advances in microfluidic techniques has allowed the development of lab-on-a-chip devices with enhanced overall performance and simplified sample handling. However, recording data with conventional platforms requires advanced and complicated instruments, such as sensitive photodetectors coupled to microscopes, to capture the photons from the chemiluminescent reaction. In this work, we integrated microfluidic and luminol/hydrogen peroxide ECL systems on a complementary metal-oxide-semiconductor (CMOS) chip for sample handling and data collection on the same platform. This was achieved by the adaptation of a single electrode as an electrochemical transducer and a CMOS chip as a built-in detector. We demonstrated the application of this platform for the detection of uric acid (UA), a biomarker of gout disease. A linear detection range was observed from 25 to 300 μM, with a detection limit (LOD) as low as 26.09 μM. The device showed high reusability and reproducibility within the linear detection range while maintaining high selectivity for UA detection. The analytical performance has also been evaluated in simulated saliva and urine samples, demonstrating the potential utility in medical diagnosis at the point-of-need. Compared to other ECL imaging platforms, this device showed an eightfold increase in photon collection efficiency. Overall, this approach has promising potential as an inexpensive, portable, and efficient ECL platform for measuring analytes at the point-of-need.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC, Canada.
| | - Juanjuan Liu
- Department of Bioengineering, McGill University, Montreal, QC, Canada.
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurean 42, Cluj-Napoca 400271, Romania
| | | |
Collapse
|
11
|
Bhaiyya M, Pattnaik PK, Goel S. Multiplexed and simultaneous biosensing in a 3D-printed portable six-well smartphone operated electrochemiluminescence standalone point-of-care platform. Mikrochim Acta 2022; 189:79. [DOI: 10.1007/s00604-022-05200-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/24/2022] [Indexed: 01/25/2023]
|
12
|
Bhaiyya M, Kulkarni MB, Pattnaik PK, Goel S. IoT Enabled PMT and Smartphone based Electrochemiluminescence Platform to Detect Choline and Dopamine Using 3D-Printed Closed Bipolar Electrodes. LUMINESCENCE 2021; 37:357-365. [PMID: 34931738 DOI: 10.1002/bio.4179] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 11/07/2022]
Abstract
There is a growing demand to realize low-cost miniaturized point-of-care testing diagnostic devices capable of performing many analytical assays. To fabricate such devices, three-dimensional printing (3DP) based fabrication technique provides a turnkey approach with remarkable precision and accuracy. Herein, 3DP fabrication technique was successfully utilized to fabricate closed bipolar electrode-based Electrochemiluminescence devices using conductive graphene filament. Further, using these ECL devices, Ru (bpy)3 2+ /TPrA and Luminol/H2 O2 based electrochemistry was leveraged to sense dopamine and choline respectively. For ECL signal capturing, two distinct approaches were used, first a smartphone-based miniaturized platform and the second with a photomultiplier tube (PMT) embedded with the Internet of Things technology. Choline sensing led to a linear range 5 μM to 700 μM and 30 μM to 700 μM with limit of detection (LOD) of 1.25 μM (R2 = 0.98, N = 3) and 3.27 μM (R2 = 0.97, N = 3). Further, dopamine sensing was achieved in a linear range of 0.5 μM to 100 μM with LOD = 2 μM (R2 = 0.99, N = 3) and LOD = 0.33 μM (R2 = 0.98, N = 3). Overall, the fabricated devices have the potential to be utilized effectively in real-time applications such as point-of-care testing.
Collapse
Affiliation(s)
- Manish Bhaiyya
- MEMS, Microfluidics, and Nanoelectronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Madhusudan B Kulkarni
- MEMS, Microfluidics, and Nanoelectronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Prasant Kumar Pattnaik
- MEMS, Microfluidics, and Nanoelectronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| | - Sanket Goel
- MEMS, Microfluidics, and Nanoelectronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, India
| |
Collapse
|
13
|
Liu G, Wang PL, Gao H. Visualization analysis of lecithin in drugs based on electrochemiluminescent single gold microbeads. J Pharm Anal 2021; 11:515-522. [PMID: 34513128 PMCID: PMC8424370 DOI: 10.1016/j.jpha.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/19/2021] [Accepted: 02/06/2021] [Indexed: 11/24/2022] Open
Abstract
Fast and high-throughput determination of drugs is a key trend in clinical medicine. Single particles have increasingly been adopted in a variety of photoanalytical and electroanalytical applications, and microscopic analysis has been a hot topic in recent years, especially for electrochemiluminescence (ECL). This paper describes a simple ECL method based on single gold microbeads to image lecithin. Lecithin reacts to produce hydrogen peroxide under the successive enzymatic reaction of phospholipase D and choline oxidase. ECL was generated by the electrochemical reaction between a luminol analog and hydrogen peroxide, and ECL signals were imaged by a camera. Despite the heterogeneity of single gold microbeads, their luminescence obeyed statistical regularity. The average luminescence of 30 gold microbeads is correlated with the lecithin concentration, and thus, a visualization method for analyzing lecithin was established. Calibration curves were constructed for ECL intensity and lecithin concentration, achieving detection limits of 0.05 mM lecithin. This ECL imaging platform based on single gold microbeads exhibits outstanding advantages, such as high throughput, versatility and low cost, and holds great potential in disease diagnostics, environmental monitoring and food safety. The ECL imaging strategy reflected the advantage of spatial resolution and high-throughput analysis of lecithin in drugs. Micrometer-scale gold microbeads were easily synthesized by adding H2SO4 in Na3Au(SO3)2 solution. The ECL spots exhibited the heterogeneity of single gold microbeads in ECL reaction. ECL microscopic quantitative analysis for lecithin was established via single gold microbeads with PLD and COD.
Collapse
Affiliation(s)
- Gen Liu
- College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, Anhui, China.,Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, 476000, Henan, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Pei-Long Wang
- College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, Anhui, China
| | - Hui Gao
- College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, Anhui, China
| |
Collapse
|
14
|
Towaranonte B, Gao Y. Application of Charge-Coupled Device (CCD) Cameras in Electrochemiluminescence: A Minireview. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1920971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- B. Towaranonte
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Y. Gao
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Li X, Du Y, Wang H, Ma H, Wu D, Ren X, Wei Q, Xu JJ. Self-Supply of H2O2 and O2 by Hydrolyzing CaO2 to Enhance the Electrochemiluminescence of Luminol Based on a Closed Bipolar Electrode. Anal Chem 2020; 92:12693-12699. [DOI: 10.1021/acs.analchem.0c03170] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaojian Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Gross EM, Porter LR, Stark NR, Lowry ER, Schaffer LV, Maddipati SS, Hoyt DJ, Stombaugh SE, Peila SR, Henry CS. Micromolded Carbon Paste Microelectrodes for Electrogenerated Chemiluminescent Detection on Microfluidic Devices. ChemElectroChem 2020; 7:3244-3252. [DOI: 10.1002/celc.202000366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Erin M. Gross
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Laura R. Porter
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Nicholas R. Stark
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Emily R. Lowry
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Leah V. Schaffer
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Sai Sujana Maddipati
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Dylan J. Hoyt
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Sarah E. Stombaugh
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Sarah R. Peila
- Department of ChemistryCreighton University 2500 California Plaza Omaha NE 68178 USA
| | - Charles S. Henry
- Department of ChemistryColorado State University Fort Collins CO 80523 USA
| |
Collapse
|
17
|
Fereja TH, Du F, Wang C, Snizhko D, Guan Y, Xu G. Electrochemiluminescence Imaging Techniques for Analysis and Visualizing. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00128-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Brown K, Jacquet C, Biscay J, Allan P, Dennany L. Electrochemiluminescent sensors as a screening strategy for psychoactive substances within biological matrices. Analyst 2020; 145:4295-4304. [DOI: 10.1039/d0an00846j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrochemiluminescent sensors for point-of-care devices; a screening strategy for the direct detection of hallucinogens within a variety of biological matrices.
Collapse
Affiliation(s)
- Kelly Brown
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| | - Charlotte Jacquet
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| | - Julien Biscay
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| | - Pamela Allan
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| | - Lynn Dennany
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| |
Collapse
|
19
|
Ren R, Guo Z, Jia Z, Yang J, Kasabov NK, Li C. Speckle Noise Removal in Image-based Detection of Refractive Index Changes in Porous Silicon Microarrays. Sci Rep 2019; 9:15001. [PMID: 31628389 PMCID: PMC6802097 DOI: 10.1038/s41598-019-51435-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/30/2019] [Indexed: 11/19/2022] Open
Abstract
Based on porous silicon (PSi) microarray images, we propose a new method called the phagocytosis algorithm (PGY) for removing the influence of speckle noise on image gray values. In a theoretical analysis, speckle noise of different intensities is added to images, and a suitable denoising method is developed to restore the image gray level. This method can be used to reduce the influence of speckle noise on the gray values of PSi microarray images to improve the accuracy of detection and increase detection sensitivity. In experiments, the method is applied to detect refractive index changes in PSi microcavity images, and a good linear relationship between the gray level change and the refractive index change is obtained. In addition, the algorithm is applied to a PSi microarray image, and good results are obtained.
Collapse
Affiliation(s)
- Ruyong Ren
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Zhiqing Guo
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Zhenhong Jia
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.
| | - Jie Yang
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nikola K Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, 1020, New Zealand
| | - Chuanxi Li
- School of Physical Science and Technology, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
20
|
Zhang J, Arbault S, Sojic N, Jiang D. Electrochemiluminescence Imaging for Bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:275-295. [PMID: 30939032 DOI: 10.1146/annurev-anchem-061318-115226] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemiluminescence (ECL) is a widely used analytical technique with the advantages of high sensitivity and low background signal. The recent and rapid development of electrochemical materials, luminophores, and optical elements significantly increases the ECL signals and, thus, ECL imaging with enhanced spatial and temporal resolutions is realized. Currently, ECL imaging is successfully applied to high-throughput bioanalysis and to visualize the distribution of molecules at single cells. Compared with other optical bioassays, no optical excitation is involved in imaging, so the approach avoids a background signal from illumination and increases the detection sensitivity. This review highlights some of the most exciting developments in this field, including the mechanisms, electrode designs, and the applications of ECL imaging in bioanalysis and at single cells and particles.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China;
| | - Stéphane Arbault
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France;
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France;
| | - Dechen Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China;
| |
Collapse
|
21
|
Tang XC, Xiao Y, Li P, Qi LW. Simple, Fast, and Sensitive detection of artemisinin in human serum and Artemisia annua using microsensor array coupled with electrochemiluminescent imaging technique. Talanta 2019; 196:124-130. [DOI: 10.1016/j.talanta.2018.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
|
22
|
Wang D, Liang Y, Su Y, Shang Q, Zhang C. Sensitivity enhancement of cloth-based closed bipolar electrochemiluminescence glucose sensor via electrode decoration with chitosan/multi-walled carbon nanotubes/graphene quantum dots-gold nanoparticles. Biosens Bioelectron 2019; 130:55-64. [PMID: 30731346 DOI: 10.1016/j.bios.2019.01.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 11/28/2022]
Abstract
In this work, a novel facile closed bipolar electrochemiluminescence (C-BP-ECL) sensor has been developed for highly sensitive detection of glucose based on the integration of chitosan (CS), poly(diallyldimethylammonium chloride)-functioned multi-walled carbon nanotubes (PDDA-MWCNTs) and graphene quantum dots-gold nanoparticles (GQDs-AuNPs) on the wax/carbon ink-screen-printed cloth-based device. When CS, PDDA-MWCNTs and GQDs-AuNPs are successively decorated onto the cathode of closed bipolar electrode (C-BPE), the C-BPE anode can emit much stronger C-BP-ECL signals. Moreover, the cathodic decoration of the C-BPE can generate a stronger ECL signal in comparison with its anodic decoration. Under optimized conditions, glucose can be detected in the range of 0.1-5000 μM, and the limit of detection is estimated to be 64 nM, which is about three orders of magnitude lower than that in case of the bare C-BPE cathode (31 μM). It has been shown that the proposed sensor has high detection sensitivity, wide dynamic range, and as well acceptable reproducibility, selectivity and stability. Finally, the applicability and validity of the C-BP-ECL sensor are demonstrated for the detection of glucose in human serum samples. We believe that this novel highly-sensitive sensor will have potential applications in various areas such as clinical diagnosis, food analysis and environmental monitoring.
Collapse
Affiliation(s)
- Dan Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yi Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yan Su
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qiuping Shang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
23
|
Yang Y, Zhang Y, Wei L, Li G, Guan M, Tian S. A Highly Sensitive Electrochemiluminescence Choline Biosensor Based on Poly(aniline‐luminol‐hemin) Nanocomposites. ELECTROANAL 2019. [DOI: 10.1002/elan.201800582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yaru Yang
- Engineering Research Center of Electrochemical Technology and ApplicationSchool of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi, Xinjiang 830054, P.R. China
| | - Yanhui Zhang
- Engineering Research Center of Electrochemical Technology and ApplicationSchool of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi, Xinjiang 830054, P.R. China
| | - Lu Wei
- Engineering Research Center of Electrochemical Technology and ApplicationSchool of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi, Xinjiang 830054, P.R. China
| | - Guixin Li
- Engineering Research Center of Electrochemical Technology and ApplicationSchool of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi, Xinjiang 830054, P.R. China
| | - Ming Guan
- Engineering Research Center of Electrochemical Technology and ApplicationSchool of Chemistry and Chemical Engineering, Xinjiang Normal University Urumqi, Xinjiang 830054, P.R. China
| | - Shuge Tian
- Central Laboratory of Xinjiang Medical University Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
24
|
|
25
|
Almeida MIG, Jayawardane BM, Kolev SD, McKelvie ID. Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: A review. Talanta 2018; 177:176-190. [DOI: 10.1016/j.talanta.2017.08.072] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/27/2022]
|
26
|
Zhuo Y, Wang HJ, Lei YM, Zhang P, Liu JL, Chai YQ, Yuan R. Electrochemiluminescence biosensing based on different modes of switching signals. Analyst 2018; 143:3230-3248. [DOI: 10.1039/c8an00276b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electrochemiluminescence (ECL) has attracted much attention in various fields of analysis owing to low background signals, high sensitivity, and excellent controllability.
Collapse
Affiliation(s)
- Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Hai-Jun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yan-Mei Lei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Pu Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Jia-Li Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
27
|
A simple microdroplet chip consisting of silica nanochannel-assisted electrode and paper cover for highly sensitive electrochemiluminescent detection of drugs in human serum. Anal Chim Acta 2017; 983:96-102. [DOI: 10.1016/j.aca.2017.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/14/2017] [Accepted: 06/15/2017] [Indexed: 11/18/2022]
|
28
|
Guo W, Liu Y, Cao Z, Su B. Imaging Analysis Based on Electrogenerated Chemiluminescence. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0013-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Image Processing of Porous Silicon Microarray in Refractive Index Change Detection. SENSORS 2017; 17:s17061335. [PMID: 28594383 PMCID: PMC5492526 DOI: 10.3390/s17061335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 01/09/2023]
Abstract
A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image.
Collapse
|
30
|
Goers L, Ainsworth C, Goey CH, Kontoravdi C, Freemont PS, Polizzi KM. Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production. Biotechnol Bioeng 2017; 114:1290-1300. [PMID: 28112405 PMCID: PMC5412874 DOI: 10.1002/bit.26254] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Many high-value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimize the productivity of these cultures it is important to monitor cellular metabolism, for example the utilization of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole-cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity, and robustness. Importantly, our whole-cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole-cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalize on the wealth of genetic operons for metabolite sensing available in nature for the development of other whole-cell biosensors. Biotechnol. Bioeng. 2017;114: 1290-1300. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa Goers
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
- Centre for Synthetic Biology and InnovationImperial College LondonLondonUK
| | - Catherine Ainsworth
- Centre for Synthetic Biology and InnovationImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
| | - Cher Hui Goey
- Department of Chemical EngineeringImperial College LondonLondonUK
| | - Cleo Kontoravdi
- Centre for Synthetic Biology and InnovationImperial College LondonLondonUK
- Department of Chemical EngineeringImperial College LondonLondonUK
| | - Paul S. Freemont
- Centre for Synthetic Biology and InnovationImperial College LondonLondonUK
- Department of MedicineImperial College LondonLondonUK
| | - Karen M. Polizzi
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
- Centre for Synthetic Biology and InnovationImperial College LondonLondonUK
| |
Collapse
|
31
|
Pohanka M. Small camera as a handheld colorimetric tool in the analytical chemistry. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0166-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Li C, Jia Z, Li P, Wen H, Lv G, Huang X. Parallel Detection of Refractive Index Changes in a Porous Silicon Microarray Based on Digital Images. SENSORS 2017; 17:s17040750. [PMID: 28368332 PMCID: PMC5421710 DOI: 10.3390/s17040750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022]
Abstract
A new technique for the refractive index change with high-sensitivity measurements was proposed by the digital image of porous silicon (PSi) microarray utilization in this paper. Under the irradiation of a He-Ne laser, the surface images of the PSi array cells with the microcavity structure were obtained by the digital imaging equipment, whereas the refractive index change of each array cells was detected by calculating the average gray value of the image and the refractive index change measurement sensitivity was 10-4. This technique could be utilized in the label-free and parallel detection of refraction index changes induced by a biological reaction in the microarray or the chip.
Collapse
Affiliation(s)
- Chuanxi Li
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Zhenhong Jia
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
| | - Peng Li
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Hao Wen
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
| | - Guodong Lv
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
| | - Xiaohui Huang
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
33
|
Electrochemiluminescence bipolar electrode array for the multiplexed detection of glucose, lactate and choline based on a versatile enzymatic approach. Talanta 2017; 165:577-583. [PMID: 28153301 DOI: 10.1016/j.talanta.2017.01.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 02/05/2023]
Abstract
A simple, efficient and versatile biosensing platform capable of the multiplexed detection for glucose, lactate and choline was developed by the integration of bipolar electrochemistry and electrochemiluminescence (ECL) imaging. The sensing bipolar electrodes (BPEs) were simply modified via a one-step method adaptable to different enzymes. The biorecognition event happening between the substrate and the corresponding enzyme could be directly reported by the ECL emitted on the same pole from luminol and in situ generated H2O2. Under optimized conditions, the BPEs array was successfully applied for the determination of glucose, lactate and choline in the ranges of 0.01-1mM, 0.01-1mM and 0.02-5mM, with the LOD of 7.57μM, 8.25μM and 43.19μM, respectively. Owing to the improved stability of in situ generated H2O2, a whole series of analytes testing could be completed in the same BPE biochip. Subsequently, an array chip consisting of nine BPEs enabled the concomitant detection of glucose, lactate and choline, demonstrating the capability for multifunctional detection of biomolecules. This versatile analytical system could be easily extended to sensitive screening in a miniaturized device and point of care testing.
Collapse
|
34
|
Yao Y, Li H, Wang D, Liu C, Zhang C. An electrochemiluminescence cloth-based biosensor with smartphone-based imaging for detection of lactate in saliva. Analyst 2017; 142:3715-3724. [DOI: 10.1039/c7an01008g] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An electrochemiluminescence cloth-based biosensor with smartphone-based imaging is firstly proposed, and is applied for facile detection of lactate in saliva.
Collapse
Affiliation(s)
- Yong Yao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| | - Huijie Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| | - Dan Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| | - Cuiling Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| |
Collapse
|
35
|
Kumar P, Singh S, Gupta BK. Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. NANOSCALE 2016; 8:14297-340. [PMID: 27424665 DOI: 10.1039/c5nr06965c] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Counterfeiting of valuable documents, currency and branded products is a challenging problem that has serious economic, security and health ramifications for governments, businesses and consumers all over the world. It is estimated that counterfeiting represents a multi-billion dollar underground economy with counterfeit products being produced on a large scale every year. Counterfeiting is an increasingly high-tech crime and calls for high-tech solutions to prevent and deter the acts of counterfeiting. The present review briefly outlines and addresses the key challenges in this area, including the above mentioned concerns for anti-counterfeiting applications. This article describes a unique combination of all possible kinds of security ink formulations based on lanthanide doped luminescent nanomaterials, quantum dots (semiconductor and carbon based), metal organic frameworks as well as plasmonic nanomaterials for their possible use in anti-counterfeiting applications. Moreover, in this review, we have briefly discussed and described the historical background of luminescent nanomaterials, basic concepts and detailed synthesis methods along with their characterization. Furthermore, we have also discussed the methods adopted for the fabrication and design of luminescent security inks, various security printing techniques and their anti-counterfeiting applications.
Collapse
Affiliation(s)
- Pawan Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR - National Physical Laboratory Campus, Dr K S Krishnan Road, New Delhi 110012, India and Luminescent Materials and Devices Group, Materials Physics and Engineering Division, CSIR - National Physical Laboratory, Dr K S Krishnan Road, New Delhi, 110012, India.
| | - Satbir Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR - National Physical Laboratory Campus, Dr K S Krishnan Road, New Delhi 110012, India and Luminescent Materials and Devices Group, Materials Physics and Engineering Division, CSIR - National Physical Laboratory, Dr K S Krishnan Road, New Delhi, 110012, India.
| | - Bipin Kumar Gupta
- Luminescent Materials and Devices Group, Materials Physics and Engineering Division, CSIR - National Physical Laboratory, Dr K S Krishnan Road, New Delhi, 110012, India.
| |
Collapse
|
36
|
Functionalization of indium tin oxide electrode with both of dendrimer-encapsulated Pt nanoparticles and chemically converted graphenes for enhanced electrochemiluminescence of luminol/H2O2. Anal Bioanal Chem 2016; 408:7165-72. [DOI: 10.1007/s00216-016-9680-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/13/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
|
37
|
Derkus B. Applying the miniaturization technologies for biosensor design. Biosens Bioelectron 2016; 79:901-13. [DOI: 10.1016/j.bios.2016.01.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/11/2022]
|
38
|
Roda A, Mirasoli M, Michelini E, Di Fusco M, Zangheri M, Cevenini L, Roda B, Simoni P. Progress in chemical luminescence-based biosensors: A critical review. Biosens Bioelectron 2016; 76:164-79. [DOI: 10.1016/j.bios.2015.06.017] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 12/12/2022]
|
39
|
Chen H, Lu Q, Liao J, Yuan R, Chen S. Anodic electrogenerated chemiluminescence behavior and the choline biosensing application of blue emitting conjugated polymer dots. Chem Commun (Camb) 2016; 52:7276-9. [DOI: 10.1039/c6cc02182d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The anodic electrochemiluminescence (ECL) behavior of poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) dots was studied and applied in oxidoreductase-based ECL biosensing using Chox as the model enzyme.
Collapse
Affiliation(s)
- Hongmei Chen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Qiyi Lu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Jiayao Liao
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Shihong Chen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
40
|
Qi L, Xia Y, Qi W, Gao W, Wu F, Xu G. Increasing Electrochemiluminescence Intensity of a Wireless Electrode Array Chip by Thousands of Times Using a Diode for Sensitive Visual Detection by a Digital Camera. Anal Chem 2015; 88:1123-7. [DOI: 10.1021/acs.analchem.5b04304] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liming Qi
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, P.R. China
- University of the Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, P.R. China
| | - Yong Xia
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, P.R. China
| | - Wenjing Qi
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, P.R. China
- University of the Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, P.R. China
| | - Wenyue Gao
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, P.R. China
- University of the Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, P.R. China
| | - Fengxia Wu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, P.R. China
- University of the Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, P.R. China
| | - Guobao Xu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, P.R. China
| |
Collapse
|
41
|
Two orders-of-magnitude enhancement in the electrochemiluminescence of Ru(bpy)32+ by vertically ordered silica mesochannels. Anal Chim Acta 2015; 886:48-55. [DOI: 10.1016/j.aca.2015.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/14/2015] [Accepted: 06/18/2015] [Indexed: 01/09/2023]
|
42
|
Lee SB, Kwon J, Kim J. Enhanced Electrochemiluminescence of Luminol on Indium Tin Oxide Modified with Dendrimer-Encapsulated Au Nanoparticles. ELECTROANAL 2015. [DOI: 10.1002/elan.201500154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Spehar-Délèze AM, Gransee R, Martinez-Montequin S, Bejarano-Nosas D, Dulay S, Julich S, Tomaso H, O’Sullivan CK. Electrochemiluminescence DNA sensor array for multiplex detection of biowarfare agents. Anal Bioanal Chem 2015; 407:6657-67. [DOI: 10.1007/s00216-015-8831-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/15/2022]
|
44
|
Zscharnack K, Kreisig T, Prasse AA, Zuchner T. A homogeneous assay principle for universal substrate quantification via hydrogen peroxide producing enzymes. Anal Chim Acta 2015; 854:145-52. [PMID: 25479878 DOI: 10.1016/j.aca.2014.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/27/2014] [Accepted: 11/07/2014] [Indexed: 11/24/2022]
Abstract
H2O2 is a widely occurring molecule which is also a byproduct of a number of enzymatic reactions. It can therefore be used to quantify the corresponding enzymatic substrates. In this study, the time-resolved fluorescence emission of a previously described complex consisting of phthalic acid and terbium (III) ions (PATb) is used for H2O2 detection. In detail, glucose oxidase and choline oxidase convert glucose and choline, respectively, to generate H2O2 which acts as a quencher for the PATb complex. The response time of the PATb complex toward H2O2 is immediate and the assay time only depends on the conversion rate of the enzymes involved. The PATb assay quantifies glucose in a linear range of 0.02-10 mmol L(-1), and choline from 1.56 to 100 μmol L(-1) with a detection limit of 20 μmol L(-1) for glucose and 1.56 μmol L(-1) for choline. Both biomolecules glucose and choline could be detected without pretreatment with good precision and reproducibility in human serum samples and infant formula, respectively. Furthermore, it is shown that the detected glucose concentrations by the PATb system agree with the results of a commercially available assay. In principle, the PATb system is a universal and versatile tool for the quantification of any substrate and enzyme reaction where H2O2 is involved.
Collapse
Affiliation(s)
- Kristin Zscharnack
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Thomas Kreisig
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Agneta A Prasse
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Thole Zuchner
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.
| |
Collapse
|
45
|
Zhang L, Cao X, Wang L, Zhao X, Zhang S, Wang P. Printed microwells with highly stable thin-film enzyme coatings for point-of-care multiplex bioassay of blood samples. Analyst 2015; 140:4105-13. [DOI: 10.1039/c5an00054h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A paper-based colorimetric biosensor suitable for point-of-care bioassay of blood samples is developed using highly stable enzyme thin-film coatings confined within inkjet printed polymeric microwells.
Collapse
Affiliation(s)
- Liting Zhang
- Biomedical Nanotechnology Center
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xiaodan Cao
- Biomedical Nanotechnology Center
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Lu Wang
- Department of Bioproducts and Biosystems Engineering
- University of Minnesota
- Minnesota 55108
- USA
| | - Xueyan Zhao
- Department of Bioproducts and Biosystems Engineering
- University of Minnesota
- Minnesota 55108
- USA
| | - Songping Zhang
- National Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering
- University of Minnesota
- Minnesota 55108
- USA
| |
Collapse
|