1
|
Qian M, Liu Y, Huo H, Li M, Zhang C, Qi H. Photoluminescence-Electrochemiluminescence Dual-Mode Sensor Arrays for Histidine and Its Metabolite Discrimination and Disease Identification. Anal Chem 2024; 96:446-454. [PMID: 38124437 DOI: 10.1021/acs.analchem.3c04507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Histidine (His) and its metabolite analysis is significant due to their vital roles in the diagnosis of diseases. In practical applications, simple and effective detection and discrimination of these metabolic species are still a great challenge due to their highly similar structures. Herein, photoluminescence (PL)-electrochemiluminescence (ECL) dual-mode sensor arrays consisting of a series of sensing elements were proposed for simultaneous quantitation and accurate discrimination of His and its four key metabolites (including histamine, imidazole-4-acetic acid, N-acetylhistamine, and imidazole propionate). The sensing elements of these sensor arrays were constructed by employing two solvent iridium(III) complexes ([Ir(pbz)2(DMSO)Cl] and [Ir(ppy)2(DMSO)Cl], pbz = 3-(2-pyridyl)benzoic acid, ppy = 2-phenylpyridine) with excellent PL and ECL performances as cross-responsive sensing units. Based on diverse coordination abilities of the two complexes with the imidazole group of the five targets, PL and ECL responses of each sensing unit can be enhanced to various degrees, which generate unique fingerprint patterns for the corresponding targets. Through principal component analysis, the multifarious patterns (two-, three-, and four-element sensor arrays) can be transformed into simple visualization modes, from which His and its four key metabolites can be effectively discriminated against each other. Moreover, the quantitation of an individual metabolic species at different concentrations and the recognition of the mixtures with different ratios were also accurately achieved. Notably, His and its four key metabolites in urine can also be successfully discriminated by the as-fabricated sensor arrays, and the patients with kidney diseases can be identified clearly, providing a promising way for disease diagnosis.
Collapse
Affiliation(s)
- Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yonghao Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Haonan Huo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Meng Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
2
|
Gao R, Liu B, Luo D, Su Y, Su L. Enhanced Immunosensor Using a Handheld pH Meter for the Point‐of‐Care, Sensitive Detection of Prostate Specific Antigen. ELECTROANAL 2021. [DOI: 10.1002/elan.202100285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rong Gao
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| | - Bingqian Liu
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| | - Dajuan Luo
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| | - Yonghuan Su
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| | - Lixia Su
- Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province) College of Pharmacy Guizhou University Guizhou 550025 PR China
| |
Collapse
|
3
|
Husain RA, Barman SR, Chatterjee S, Khan I, Lin ZH. Enhanced biosensing strategies using electrogenerated chemiluminescence: recent progress and future prospects. J Mater Chem B 2020; 8:3192-3212. [DOI: 10.1039/c9tb02578b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of enhancement strategies for highly sensitive ECL-based sensing of bioanalytes enabling early detection of cancer.
Collapse
Affiliation(s)
- Rashaad A. Husain
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Snigdha Roy Barman
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Subhodeep Chatterjee
- Department of Power Mechanical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Imran Khan
- Institute of NanoEngineering and MicroSystems
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Zong-Hong Lin
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
- Department of Power Mechanical Engineering
| |
Collapse
|
4
|
Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J. Nanomaterial-based biosensors for detection of prostate specific antigen. Mikrochim Acta 2017; 184:3049-3067. [PMID: 29109592 PMCID: PMC5669453 DOI: 10.1007/s00604-017-2410-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Screening serum for the presence of prostate specific antigen (PSA) belongs to the most common approach for the detection of prostate cancer. This review (with 156 refs.) addresses recent developments in PSA detection based on the use of various kinds of nanomaterials. It starts with an introduction into the field, the significance of testing for PSA, and on current limitations. A first main section treats electrochemical biosensors for PSA, with subsections on methods based on the use of gold electrodes, graphene or graphene-oxide, carbon nanotubes, hybrid nanoparticles, and other types of nanoparticles. It also covers electrochemical methods based on the enzyme-like activity of PSA, on DNA-, aptamer- and biofuel cell-based methods, and on the detection of PSA via its glycan part. The next main section covers optical biosensors, with subsections on methods making use of surface plasmon resonance (SPR), localized SPR and plasmonic ELISA-like schemes. This is followed by subsections on methods based on the use of fiber optics, fluorescence, chemiluminescence, Raman scattering and SERS, electrochemiluminescence and cantilever-based methods. The most sensitive biosensors are the electrochemical ones, with lowest limits of detection (down to attomolar concentrations), followed by mass cantilever sensing and electrochemilumenescent strategies. Optical biosensors show lower performance, but are still more sensitive compared to standard ELISA. The most commonly applied nanomaterials are metal and carbon-based ones and their hybrid composites used for different amplification strategies. The most attractive sensing schemes are summarized in a Table. The review ends with a section on conclusions and perspectives.
Collapse
Affiliation(s)
- Dominika Damborska
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Erika Dosekova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Alena Holazova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Lenka Lorencova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovakia
| |
Collapse
|
5
|
Liu X, Liu H, Li M, Qi H, Gao Q, Zhang C. Highly Sensitive Electrochemiluminescence Assay for Cardiac Troponin I and Adenosine Triphosphate by using Supersandwich Amplification and Bifunctional Aptamer. ChemElectroChem 2017. [DOI: 10.1002/celc.201600845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xia Liu
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Huiwen Liu
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Min Li
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Honglan Qi
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Qiang Gao
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry; Ministry of Education; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P.R. China
| |
Collapse
|
6
|
Chikhaliwala P, Chandra S. Dendrimers: New tool for enhancement of electrochemiluminescent signal. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Guryanov I, Fiorucci S, Tennikova T. Receptor-ligand interactions: Advanced biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:890-903. [PMID: 27524092 DOI: 10.1016/j.msec.2016.07.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 12/24/2022]
Abstract
Receptor-ligand interactions (RLIs) are at the base of all biological events occurring in living cells. The understanding of interactions between complementary macromolecules in biological systems represents a high-priority research area in bionanotechnology to design the artificial systems mimicking natural processes. This review summarizes and analyzes RLIs in some cutting-edge biomedical fields, in particular, for the preparation of novel stationary phases to separate complex biological mixtures in medical diagnostics, for the design of ultrasensitive biosensors for identification of biomarkers of various diseases at early stages, as well as in the development of innovative biomaterials and approaches for regenerative medicine. All these biotechnological fields are closely related, because their success depends on a proper choice, combination and spatial disposition of the single components of ligand-receptor pairs on the surface of appropriately designed support.
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia.
| | - Stefano Fiorucci
- Department of Clinical and Experimental Medicine, University of Perugia, 06122 Perugia, Italy.
| | - Tatiana Tennikova
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia.
| |
Collapse
|
8
|
Wei B, Zhang J, Wang H, Xia F. A new electrochemical aptasensor based on a dual-signaling strategy and supersandwich assay. Analyst 2016; 141:4313-8. [PMID: 27188283 DOI: 10.1039/c6an00594b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we develop a new electrochemical aptasensor by coupling two amplification strategies, including a dual signaling strategy and a supersandwich assay. In order to fabricate this aptasensor, a thiolated capture probe (CP) was first self-assembled on the gold electrode surface by Au-S bonds. After the addition of methylene blue (MB) modified signal probe 1 (SP1) and ferrocene (Fc) labeled signal probe 2 (SP2), supersandwich structure DNA, including multiple units of SP1 and SP2, was grown from the CP on the electrode surface. In the presence of ATP, the strong interaction between ATP and its aptamer (CP, SP1) leads to the disassembly of the supersandwich structure and thereby, the release of SP1 and SP2 from the gold electrode surface, resulting in a decrease of the MB and Fc signals. Taking "Signal gainMB + Signal gainFc" as the response signal, ATP can be detected sensitively; the detection limit is 2.1 nM, which is lower than that using either a single-signaling strategy or a traditional sandwich assay alone. Moreover, the new aptasensor also exhibits excellent specificity, selectivity, reliability and applicability. We believe that this new strategy will be helpful for fabricating sensitive and selective electrochemical aptasensors of other biomolecules and small molecules.
Collapse
Affiliation(s)
- Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China.
| | | | | | | |
Collapse
|
9
|
Detection of influenza virus by a biosensor based on the method combining electrochemiluminescence on binary SAMs modified Au electrode with an immunoliposome encapsulating Ru (II) complex. Anal Bioanal Chem 2016; 408:5963-71. [DOI: 10.1007/s00216-016-9587-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/25/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
|
10
|
Pihíková D, Belicky Š, Kasák P, Bertok T, Tkac J. Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays. Analyst 2015; 141:1044-51. [PMID: 26647853 DOI: 10.1039/c5an02322j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study presents a proof-of-concept for the development of an impedimetric biosensor for ultra-sensitive glycoprofiling of prostate specific antigen (PSA). The biosensor exhibits three unique characteristics: (1) analysis of PSA with limit of detection (LOD) down to 4 aM; (2) analysis of the glycan part of PSA with LOD down to 4 aM level and; (3) both assays (i.e., PSA quantification and PSA glycoprofiling) can be performed on the same interface due to label-free analysis.
Collapse
Affiliation(s)
- D Pihíková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic.
| | | | | | | | | |
Collapse
|
11
|
Electrochemiluminescent DNA sensor based on controlled Zn-mediated grafting of diazonium precursors. Anal Bioanal Chem 2015; 407:5579-86. [DOI: 10.1007/s00216-015-8765-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 11/27/2022]
|