1
|
Trends in the bacterial recognition patterns used in surface enhanced Raman spectroscopy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
Cheng ZH, Liu X, Zhang SQ, Yang T, Chen ML, Wang JH. Placeholder Strategy with Upconversion Nanoparticles-Eriochrome Black T Conjugate for a Colorimetric Assay of an Anthrax Biomarker. Anal Chem 2019; 91:12094-12099. [PMID: 31434488 DOI: 10.1021/acs.analchem.9b03342] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The timely warning of the germination of bacterial spores and their prevention are highly important to minimize their potential detrimental effects and for disease control. Thus, a sensitive and selective assay of biomarkers is most desirable. In this work, a nanoprobe is constructed by conjugating lanthanide upconversion nanoparticles (UCNPs) with sodium tripolyphosphate (TPP) and eriochrome black T (EBT). The nanoprobe, UCNPs-TPP/EBT, serves as a platform for the detection of the anthrax biomarker, dipicolinic acid (DPA). In principle, DPA displaces EBT from the UCNPs-TPP/EBT nanoconjugate, resulting in a color change from magenta to blue because of the release of free EBT into the aqueous solution. The binding sites on UCNPs are partly preblocked with TPP as the placeholder molecule, leaving a desired number of binding sites for EBT conjugation. On the basis of this dye displacement reaction, a novel colorimetric assay protocol for DPA is developed, deriving a linear calibration range from 2 to 200 μM with a detection limit of 0.9 μM, which is well below the infectious dose of the spores (60 μM). The assay platform exhibits excellent anti-interference capability when treating a real biological sample matrix. The present method is validated by the analysis of DPA in human serum, and its practical application is further demonstrated by monitoring the DPA release upon spore germination.
Collapse
Affiliation(s)
- Zi-Han Cheng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Xun Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Shang-Qing Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| |
Collapse
|
3
|
Granger JH, Porter MD. The Case for Human Serum as a Highly Preferable Sample Matrix for Detection of Anthrax Toxins. ACS Sens 2018; 3:2303-2310. [PMID: 30350950 DOI: 10.1021/acssensors.8b00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This paper describes preliminary results on the surprising impact of human serum as a sample matrix on the detectability of protective antigen (PA) and lethal factor (LF), two antigenic protein markers of Bacillus anthracis, in a heterogeneous immunometric assay. Two sample matrices were examined: human serum and physiological buffer. Human serum is used as a specimen in the diagnostic testing of potentially infected individuals. Physiological buffers are often applied to the recovery of biomarkers dispersed in suspicious white powders and other suspect specimens and as a serum diluent to combat contributions to the measured test response from nonspecific adsorption. The results of these experiments using a sandwich immunoassay read out by surface-enhanced Raman scattering yielded estimates for the limit of detection (LOD) for both markers when using spiked human serum that were remarkably lower than those of spiked physiological buffer (∼70,000× for PA and ∼25,000× for LF). The difference in LODs is attributed to a degradation in the effectiveness of the capture and/or labeling steps in the immunoassay due to the known propensity for both proteins to denature in buffer. These findings indicate that the use of physiological buffer for serum dilution or recovery from a powdered matrix is counter to the low-level detection of these two antigenic proteins. The potential implications of these results with respect to the ability to detect markers of other pathogenic agents are briefly discussed.
Collapse
|
4
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
5
|
Du S, Yu C, Tang L, Lu L. Applications of SERS in the Detection of Stress-Related Substances. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E757. [PMID: 30257510 PMCID: PMC6215319 DOI: 10.3390/nano8100757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 11/16/2022]
Abstract
A wide variety of biotic and abiotic stresses continually attack plants and animals, which adversely affect their growth, development, reproduction, and yield realization. To survive under stress conditions, highly sophisticated and efficient tolerance mechanisms have been evolved to adapt to stresses, which consist of the variation of effector molecules playing vital roles in physiological regulation. The development of a sensitive, facile, and rapid analytical methods for stress factors and effector molecules detection is significant for gaining deeper insight into the tolerance mechanisms. As a nondestructive analysis technique, surface-enhanced Raman spectroscopy (SERS) has unique advantages regarding its biosensing applications. It not only provides specific fingerprint spectra of the target molecules, conformation, and structure, but also has universal capacity for simultaneous detection and imaging of targets owing to the narrow width of the Raman vibrational bands. Herein, recent progress on biotic and abiotic stresses, tolerance mechanisms and effector molecules is summarized. Moreover, the development and promising future trends of SERS detection for stress-related substances combined with nanomaterials as substrates and SERS tags are discussed. This comprehensive and critical review might shed light on a new perspective for SERS applications.
Collapse
Affiliation(s)
- Shuyuan Du
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Chundi Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Lin Tang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Lixia Lu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
6
|
Bai XR, Zeng Y, Zhou XD, Wang XH, Shen AG, Hu JM. Environmentally Safe Mercury(II) Ions Aided Zero-Background and Ultrasensitive SERS Detection of Dipicolinic Acid. Anal Chem 2017; 89:10335-10342. [DOI: 10.1021/acs.analchem.7b02172] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiang-Ru Bai
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yi Zeng
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xiao-Dong Zhou
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xiao-Hua Wang
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ai-Guo Shen
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ji-Ming Hu
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
7
|
Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosens Bioelectron 2017; 94:131-140. [DOI: 10.1016/j.bios.2017.02.032] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
8
|
Farrell ME, Strobbia P, Pellegrino PM, Cullum B. Surface regeneration and signal increase in surface-enhanced Raman scattering substrates. APPLIED OPTICS 2017; 56:B198-B213. [PMID: 28157898 DOI: 10.1364/ao.56.00b198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Regenerated surface-enhanced Raman scattering (SERS) substrates allow users the ability to not only reuse sensing surfaces, but also tailor them to the sensing application needs (wavelength of the available laser, plasmon band matching). In this review, we discuss the development of SERS substrates for response to emerging threats and some of our collaborative efforts to improve on the use of commercially available substrate surfaces. Thus, we are able to extend the use of these substrates to broader Army needs (like emerging threat response).
Collapse
|
9
|
Guicheteau JA, Tripathi A, Emmons ED, Christesen SD, Fountain A. Reassessing SERS enhancement factors: using thermodynamics to drive substrate design. Faraday Discuss 2017; 205:547-560. [DOI: 10.1039/c7fd00141j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule–metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting molecules that are traditionally not easily detected with SERS due to the perceived weak molecule–metal interaction of substrates.
Collapse
Affiliation(s)
- J. A. Guicheteau
- USA RDECOM Edgewood Chemical Biological Center
- Aberdeen Proving Ground
- USA
| | - A. Tripathi
- USA RDECOM Edgewood Chemical Biological Center
- Aberdeen Proving Ground
- USA
| | - E. D. Emmons
- USA RDECOM Edgewood Chemical Biological Center
- Aberdeen Proving Ground
- USA
| | - S. D. Christesen
- USA RDECOM Edgewood Chemical Biological Center
- Aberdeen Proving Ground
- USA
| | | |
Collapse
|
10
|
Cheung M, Lee WWY, Cowcher DP, Goodacre R, Bell SEJ. SERS of meso-droplets supported on superhydrophobic wires allows exquisitely sensitive detection of dipicolinic acid, an anthrax biomarker, considerably below the infective dose. Chem Commun (Camb) 2016; 52:9925-8. [DOI: 10.1039/c6cc03521c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SERS of <1 μL colloid meso-droplets on superhydrophobic supports allowed detection of a total mass of dipicolinic acid equivalent to 18 anthrax spores.
Collapse
Affiliation(s)
- Melody Cheung
- Innovative Molecular Materials Group
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- UK
| | - Wendy W. Y. Lee
- Innovative Molecular Materials Group
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- UK
| | - David P. Cowcher
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Royston Goodacre
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Steven E. J. Bell
- Innovative Molecular Materials Group
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- UK
| |
Collapse
|
11
|
Ryu J, Lee E, Lee K, Jang J. A graphene quantum dots based fluorescent sensor for anthrax biomarker detection and its size dependence. J Mater Chem B 2015; 3:4865-4870. [DOI: 10.1039/c5tb00585j] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Graphene quantum dots (GQDs) with two different diameters were modified via hybridization with a EuIII–macromolecule complex, and their application as dual emission fluorescent sensors for detection of Bacillus anthracis spores was investigated.
Collapse
Affiliation(s)
- Jaehoon Ryu
- School of Chemical and Biological Engineering
- College of Engineering
- Seoul National University (SNU)
- Seoul
- Korea
| | - Eunwoo Lee
- School of Chemical and Biological Engineering
- College of Engineering
- Seoul National University (SNU)
- Seoul
- Korea
| | - Kisu Lee
- School of Chemical and Biological Engineering
- College of Engineering
- Seoul National University (SNU)
- Seoul
- Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering
- College of Engineering
- Seoul National University (SNU)
- Seoul
- Korea
| |
Collapse
|