1
|
Ghosh A, Gautam K, Gupta C, Hazra C, Das L, Chakravorty N, Mishra MM, Nain A, Anbumani S, Lin CJ, Sen R, Dasgupta N, Ranjan S. Single-Step Low-Temperature Synthesis of Carbon Dots for Advanced Multiparametric Bioimaging Probe Applications. ACS APPLIED BIO MATERIALS 2024; 7:7895-7908. [PMID: 38581392 DOI: 10.1021/acsabm.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Carbon dots (CDs) have recently emerged in biomedical and agricultural domains, mainly for their probe applications in developing efficient sensors. However, the existing high-temperature approaches limit the industrial level scaling up to further translate them into different products by mass-scale fabrication of CDs. To address this, we have attempted to lower the synthesis temperature to 140 °C and synthesized different CDs using different organic acids and their combinations in a one-step approach (quantum yield 3.6% to 16.5%; average size 3 to 5 nm). Further, sensing applications of CDs have been explored in three different biological models, mainly Danio rerio (zebrafish) embryos, bacterial strains, and the Lactuca sativa (lettuce) plant. The 72 h exposure of D. rerio embryos to 0.5 and 1 mg/mL concentrations of CDs exhibited significant uptake without mortality, a 100% hatching rate, and nonsignificant alterations in heart rate. Bacterial bioimaging experiments revealed CD compatibility with Gram-positive (Bacillus subtilis) and Gram-negative (Serratia marcescens) strains without bactericidal effects. Furthermore, CDs demonstrated effective conduction and fluorescence within the vascular system of lettuce plants, indicating their potential as in vivo probes for plant tissues. The single-step low-temperature CD synthesis approach with efficient structural and optical properties enables the process as industrially viable to up-scale the technology readiness level. The bioimaging of CDs in different biological models indicates the possibility of developing a CD probe for diverse biosensing roles in diseases, metabolism, microbial contamination sensing, and more.
Collapse
Affiliation(s)
- Anupam Ghosh
- NanoBio Research Lab, School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research (IITR), CRK Campus, Lucknow 226008, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Chandrika Gupta
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Chinmay Hazra
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Lopamudra Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Murali Mohan Mishra
- NanoBio Research Lab, School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Amit Nain
- Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research (IITR), CRK Campus, Lucknow 226008, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Chin-Jung Lin
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ramkrishna Sen
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nandita Dasgupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Nanotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research (IITR), CRK Campus, Lucknow 226008, Uttar Pradesh, India
| | - Shivendu Ranjan
- NanoBio Research Lab, School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
2
|
Bartkowski M, Zhou Y, Nabil Amin Mustafa M, Eustace AJ, Giordani S. CARBON DOTS: Bioimaging and Anticancer Drug Delivery. Chemistry 2024; 30:e202303982. [PMID: 38205882 DOI: 10.1002/chem.202303982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Cancer, responsible for approximately 10 million lives annually, urgently requires innovative treatments, as well as solutions to mitigate the limitations of traditional chemotherapy, such as long-term adverse side effects and multidrug resistance. This review focuses on Carbon Dots (CDs), an emergent class of nanoparticles (NPs) with remarkable physicochemical and biological properties, and their burgeoning applications in bioimaging and as nanocarriers in drug delivery systems for cancer treatment. The review initiates with an overview of NPs as nanocarriers, followed by an in-depth look into the biological barriers that could affect their distribution, from barriers to administration, to intracellular trafficking. It further explores CDs' synthesis, including both bottom-up and top-down approaches, and their notable biocompatibility, supported by a selection of in vitro, in vivo, and ex vivo studies. Special attention is given to CDs' role in bioimaging, highlighting their optical properties. The discussion extends to their emerging significance as drug carriers, particularly in the delivery of doxorubicin and other anticancer agents, underscoring recent advancements and challenges in this field. Finally, we showcase examples of other promising bioapplications of CDs, emergent owing to the NPs flexible design. As research on CDs evolves, we envisage key challenges, as well as the potential of CD-based systems in bioimaging and cancer therapy.
Collapse
Affiliation(s)
- Michał Bartkowski
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| | - Yingru Zhou
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | | | | | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
3
|
Chang XL, Chen L, Liu B, Yang ST, Wang H, Cao A, Chen C. Stable isotope labeling of nanomaterials for biosafety evaluation and drug development. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
4
|
Xu W, Zhang J, Yang Z, Zhao M, Long H, Wu Q, Nian F. Tannin-Mn coordination polymer coated carbon quantum dots nanocomposite for fluorescence and magnetic resonance bimodal imaging. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:16. [PMID: 35072786 PMCID: PMC8786750 DOI: 10.1007/s10856-021-06629-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
The MR/FI bimodal imaging has attracted widely studied due to combining the advantages of MRI and FI can bridge gaps in sensitivity and depth between these two modalities. Herein, a novel MR/FI bimodal imaging probe is facile fabricated by coating the Mn-phenolic coordination polymer on the surface of the carbon quantum dots. The structure of the as-prepared nanocomposite probe is carefully validated via SEM, TEM, and XPS. The content of Mn2+ is calculated through the EDS and TGA. The quantum yield (QY) and emission wavelength of the probe are about 7.24% and 490 nm, respectively. The longitudinal r1 value (2.43 mM-1 s-1) with low r2/r1 (4.45) of the probe is obtained. Subsequently, fluorescence and MR imaging are performed. The metabolic pathways in vivo are inferred by studying the bio-distribution of the probe in major organs. Thus, these results indicate that probe would be an excellent dual-modal imaging probe for enhanced MR imaging and fluorescence imaging. MR/FI bimodal imaging probe is built via in-situ coated Mn-phenolic coordination polymer on the surface of the carbon quantum dots. The in vitro and vivo image property of the probe is evaluated.
Collapse
Affiliation(s)
- Weibing Xu
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China.
| | - Jia Zhang
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China
| | - Zhijie Yang
- College of Life Science, Gansu Agricultural University, Lanzhou, 730000, China
| | - Minzhi Zhao
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China
| | - Haitao Long
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China
| | - Qingfeng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Fang Nian
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Wang Y, Li M, Luo T, Jiao M, Jin S, Dou P, Zuo F, Wu C, Han C, Li J, Xu K, Zheng S. Development of FL/MR dual-modal Au nanobipyramids for targeted cancer imaging and photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112190. [PMID: 34225846 DOI: 10.1016/j.msec.2021.112190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/15/2021] [Accepted: 05/13/2021] [Indexed: 01/07/2023]
Abstract
Multifunctional nanodrugs have emerged as an effective platform to integrate multiple imaging and therapeutic functions for tremendous biomedical applications. However, the development of a simple potent theranostic nanoplatform is still an intractable challenge. Herein, a novel theranostic nanoplatform was developed by coupling prepared Au nanobipyramids with Gd2O3, Au nanoclusters and denatured bovine serum albumin (AuNBP-Gd2O3/Au-dBSA) for FL/MR dual-modal imaging guided photothermal therapy. AS1411 aptamers were conjugated to enhance its targetability towards breast cancer. The AS1411-AuNBP-Gd2O3/Au-dBSA suspension could be readily heated above 40 °C at a low concentration (2 mg/L) and NIR density (1 W/cm2). The AS1411-AuNBP-Gd2O3/Au-dBSA revealed a fluorescence quantum yield of 4.2% and higher longitudinal relaxivity rate of 6.75 mM-1 s-1 compared to Gd-DTPA of 4.45 mM-1 s-1. As a result, the AS1411-AuNBP-Gd2O3/Au-dBSA functions as a multimodal nanoprobe of photothermal, fluorescence and MR imaging for specific tumor diagnosis and guidance of therapy, which was validated via in vitro and in vivo tests. Moreover, AS1411-AuNBP-Gd2O3/Au-dBSA nanoparticles indicated excellent photothermal anticancer effect more than 95% in both in vitro and in vivo tests. Besides, the low toxicity of AS1411-AuNBP-Gd2O3/Au-dBSA nanocomposites was further confirmed in vitro and in vivo. Thus, these results demonstrated the AS1411-AuNBP-Gd2O3/Au-dBSA nanocomposites as a rational design of multifunctional nanoplatform to enable multimodal imaging guided photothermal therapy.
Collapse
Affiliation(s)
- Yong Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Mengshuang Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Tao Luo
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Min Jiao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Shang Jin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Peipei Dou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Fengmei Zuo
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Changyu Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China.
| |
Collapse
|
6
|
Tian XT, Yin XB. Carbon Dots, Unconventional Preparation Strategies, and Applications Beyond Photoluminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901803. [PMID: 31240816 DOI: 10.1002/smll.201901803] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Indexed: 05/24/2023]
Abstract
Carbon dots (C-dots) are generally separated into graphene quantum dots (GQDs) and carbon nanodots (CNDs) based on their respective top-down and bottom-up preparation processes. However, GQDs can be prepared by carbonization of small-molecule precursors as revealed with unconventional preparation strategies. Thus, it is their structures rather than their precursors and preparation strategy that govern whether C-dots are GQDs or CNDs. Here, the composites, structure, and electronic properties of C-dots are discussed. C-dots generally consist of a graphite-like core and amorphous oxygen-containing shell. When graphite becomes C-dots, its conduction and valence bands are separated, and the quantum confinement effect appears. Combined with the light-harvesting ability inherited from graphite, electrons in the core of C-dots are transferred from conduction to valence bands, leading to electron-hole pair formation upon light excitation. The photoexcitation activities, such as photovoltaic conversion, photocatalysis, and photodynamic therapy, are influenced by the electronic properties of the core. Different to the semiconductor properties of core, the C-dot shell is electrochemically active, leading to electrochemiluminescence (ECL). The oxygen-containing groups in shell can conjugate to functional species for use in imaging and therapy. The applications of C-dots beyond photoluminescence, including ECL, solar photovoltaics, photocatalysis, and theranostics, are reviewed.
Collapse
Affiliation(s)
- Xue-Tao Tian
- State Key Laboratory of Medicinal Chemical, Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical, Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Addisu KD, Hsu WH, Hailemeskel BZ, Andrgie AT, Chou HY, Yuh CH, Lai JY, Tsai HC. Mixed Lanthanide Oxide Nanoparticles Coated with Alginate-Polydopamine as Multifunctional Nanovehicles for Dual Modality: Targeted Imaging and Chemotherapy. ACS Biomater Sci Eng 2019; 5:5453-5469. [PMID: 33464065 DOI: 10.1021/acsbiomaterials.9b01226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrating anticancer drugs and diagnostic agents in a polymer nanosystem is an emerging and promising strategy for improving cancer treatment. However, the development of multifunctional nanoparticles (NPs) for an "all-in-one" platform characterized by specific targeting, therapeutic efficiency, and imaging feedback remains an unmet clinical need. In this study, pH-responsive mixed-lanthanide-based multifunctional NPs were fabricated based on simple metal-ligand interactions for simultaneous cancer cell imaging and drug delivery. We investigated two new systems of alginate-polydopamine complexed with either terbium/europium or dysprosium/erbium oxide NPs (Tb/Eu@AlgPDA or Dy/Er@AlgPDA NPs). Tb/Eu@AlgPDA NPs were then functionalized with the tumor-targeting ligand folic acid (FA) and loaded with the anticancer drug doxorubicin (DOX) to form FA-Tb/Eu@AlgPDA-DOX NPs. Using such systems, the mussel-inspired property of PDA was introduced to improve tumor targetability and penetration, in addition to active targeting (via FA-folate receptor interactions). Determining the photoluminescence efficiency showed that the Tb/Eu@AlgPDA system was superior to the Dy/Er@AlgPDA system, presenting intense and sharp emission peaks on the fluorescence spectra. In addition, compared to Dy/Er@AlgPDA NPs (82.4%), Tb/Eu@AlgPDA NPs exhibited negligible cytotoxicity with >93.3% HeLa cell viability found in MTT assays at NP concentrations of up to 0.50 mg/mL and high biocompatibility when incubated with zebrafish (Danio rerio) embryos and larvae. The FA-Tb/Eu@AlgPDA-DOX system exhibited a pH-responsive and sustained drug-release pattern. In a spheroid model of HeLa cells, the FA-Tb/Eu@AlgPDA-DOX system showed a better penetration efficiency and spheroid growth-inhibitory effect than free DOX. After incubation with zebrafish embryos, the FA-Tb/Eu@AlgPDA-DOX system also showed improved antitumor efficacies versus the other experimental groups in HeLa tumor cell xenografted zebrafish. Therefore, our results suggested that FA-Tb/Eu@AlgPDA-DOX NPs are promising multifunctional nanocarriers with therapeutic capacity for tumor targeting and penetration.
Collapse
Affiliation(s)
- Kefyalew Dagnew Addisu
- Faculty of Chemical and Food Engineering, Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia P. O. Box 26
| | | | | | | | | | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350 Miaoli, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101 Section 2, Guangfu Road, Hsinchu 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, No. 1001 Daxue Road, East District, Hsinchu 30010, Taiwan
| | - Juin-Yih Lai
- R&D Center for Membrane Technology, Chung Yuan Christian University, No. 200, Zhongli District, Taoyuan 320, Taiwan
| | | |
Collapse
|
8
|
Xiao L, Sun H. Novel properties and applications of carbon nanodots. NANOSCALE HORIZONS 2018; 3:565-597. [PMID: 32254112 DOI: 10.1039/c8nh00106e] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the most recent decade, carbon dots have drawn intensive attention and triggered substantial investigation. Carbon dots manifest superior merits, including excellent biocompatibility both in vitro and in vivo, resistance to photobleaching, easy surface functionalization and bio-conjugation, outstanding colloidal stability, eco-friendly synthesis, and low cost. All of these endow them with the great potential to replace conventional unsatisfactory fluorescent heavy metal-containing semiconductor quantum dots or organic dyes. Even though the understanding of their photoluminescence mechanism is still controversial, carbon dots have already exhibited many versatile applications. In this article, we summarize and review the recent progress achieved in the field of carbon dots, and provide a comprehensive summary and discussion on their synthesis methods and emission mechanisms. We also present the applications of carbon dots in bioimaging, drug delivery, microfluidics, light emitting diode (LED), sensing, logic gates, and chiral photonics, etc. Some unaddressed issues, challenges, and future prospects of carbon dots are also discussed. We envision that carbon dots will eventually have great commercial utilization and will become a strong competitor to some currently used fluorescent materials. It is our hope that this review will provide insights into both the fundamental research and practical applications of carbon dots.
Collapse
Affiliation(s)
- Lian Xiao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | | |
Collapse
|
9
|
Peng Y, Zhou X, Zheng N, Wang L, Zhou X. Strongly tricolor-emitting carbon dots synthesized by a combined aging–annealing route and their bio-application. RSC Adv 2017. [DOI: 10.1039/c7ra10471e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A novel way has been established to make the FCDs with a very high QY, high stability, low cell cytotoxicity, and outstanding performance as a fluorescence probe.
Collapse
Affiliation(s)
- Ya Peng
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Xinyan Zhou
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Nannan Zheng
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Lingyu Wang
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Xingping Zhou
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| |
Collapse
|
10
|
Gedda G, Yao YY, Chen SH, Ghule AV, Ling YC, Chang JY. Facile synthesis of gold/gadolinium-doped carbon quantum dot nanocomposites for magnetic resonance imaging and photothermal ablation therapy. J Mater Chem B 2017; 5:6282-6291. [DOI: 10.1039/c7tb01139c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Composites of gold nanomaterials and imaging agents show promise in cancer therapy.
Collapse
Affiliation(s)
- Gangaraju Gedda
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- 43, Section 4
- Taipei 10607
- Republic of China
| | - Yueh-Yun Yao
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- 43, Section 4
- Taipei 10607
- Republic of China
| | - Si-Han Chen
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- 43, Section 4
- Taipei 10607
- Republic of China
| | - Anil V. Ghule
- Department of Chemistry
- Shivaji University
- Kolhapur 416004
- India
| | - Yong-Chien Ling
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- 43, Section 4
- Taipei 10607
- Republic of China
| |
Collapse
|
11
|
|
12
|
Xu Y, Chen X, Chai R, Xing C, Li H, Yin XB. A magnetic/fluorometric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection. NANOSCALE 2016; 8:13414-21. [PMID: 27346713 DOI: 10.1039/c6nr03129c] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A novel magnetic/fluorometric bimodal sensor was built from carbon dots (CDs) and MnO2. The resulting sensor was sensitive to glutathione (GSH), leading to apparent enhancement of magnetic resonance (MR) and fluorescence signals along with visual changes. The bimodal detection strategy is based on the decomposition of the CDs-MnO2 through a redox reaction between GSH and MnO2. This process causes the transformation from non-MR-active MnO2 to MR-active Mn(2+), and is accompanied by fluorescence restoration of CDs. Compared with a range of other CDs, the polyethylenimine (PEI) passivated CDs (denoted as pCDs) were suitable for detection due to their positive surface potential. Cross-validation between MR and fluorescence provided detailed information regarding the MnO2 reduction process, and revealed the three distinct stages of the redox process. Thus, the design of a CD-based sensor for the magnetic/fluorometric bimodal detection of GSH was emphasized for the first time. This platform showed a detection limit of 0.6 μM with a linear range of 1-200 μM in the fluorescence mode, while the MR mode exhibited a linear range of 5-200 μM and a GSH detection limit of 2.8 μM with a visible change being observed rapidly at 1 μM in the MR images. Furthermore, the introduction of the MR mode allowed the biothiols to be easily identified. The integration of CD fluorescence with an MR response was demonstrated to be promising for providing detailed information and discriminating power, and therefore extend the application of CDs in sensing and imaging.
Collapse
Affiliation(s)
- Yang Xu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | | | | | | | | | | |
Collapse
|
13
|
Ren J, Licht S. Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes. Sci Rep 2016; 6:27760. [PMID: 27279594 PMCID: PMC4899781 DOI: 10.1038/srep27760] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/25/2016] [Indexed: 11/09/2022] Open
Abstract
Primary evidence of the direct uptake of atmospheric CO2 and direct transformation into carbon nanotubes, CNTs, is demonstrated through isotopic labeling, and provides a new high yield route to mitigate this greenhouse gas. CO2 is converted directly to CNTs and does not require pre-concentration of the airbone CO2. This C2CNT (CO2 to carbon nanotube) synthesis transforms CO2-gas dissolved in a 750 °C molten Li2CO3, by electrolysis, into O2-gas at a nickel electrode, and at a steel cathode into CNTs or carbon or nanofibers, CNFs. CNTs are synthesized at a 100-fold price reduction compared to conventional chemical vapour deposition, CVD, synthesis. The low cost conversion to a stable, value-added commodity incentivizes CO2 removal to mitigate climate change. The synthesis allows morphology control at the liquid/solid interface that is not available through conventional CVD synthesis at the gas/solid interface. Natural abundance (12)CO2 forms hollow CNTs, while equivalent synthetic conditions with heavier (13)CO2 favours closed core CNFs, as characterized by Raman, SEM and TEM. Production ease is demonstrated by the first synthesis of a pure (13)C multiwalled carbon nanofiber.
Collapse
Affiliation(s)
- Jiawen Ren
- Department of Chemistry, George Washington University, Washington, DC, 20052, USA
| | - Stuart Licht
- Department of Chemistry, George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
14
|
Zheng N, Ding S, Zhou X. Monosodium glutamate derived tricolor fluorescent carbon nanoparticles for cell-imaging application. Colloids Surf B Biointerfaces 2016; 142:123-129. [DOI: 10.1016/j.colsurfb.2016.02.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 12/26/2022]
|
15
|
Wang H, Zhou S. Magnetic and fluorescent carbon-based nanohybrids for multi-modal imaging and magnetic field/NIR light responsive drug carriers. Biomater Sci 2016; 4:1062-73. [DOI: 10.1039/c6bm00262e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This mini-review summarizes the latest developments and addresses the future perspectives of carbon-based magnetic and fluorescent nanohybrids in the biomedical field.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry
- The College of Staten Island
- and The Graduate Center
- The City University of New York
- Staten Island
| | - Shuiqin Zhou
- Department of Chemistry
- The College of Staten Island
- and The Graduate Center
- The City University of New York
- Staten Island
| |
Collapse
|
16
|
Chaumeil MM, Lupo JM, Ronen SM. Magnetic Resonance (MR) Metabolic Imaging in Glioma. Brain Pathol 2015; 25:769-80. [PMID: 26526945 PMCID: PMC8029127 DOI: 10.1111/bpa.12310] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022] Open
Abstract
This review is focused on describing the use of magnetic resonance (MR) spectroscopy for metabolic imaging of brain tumors. We will first review the MR metabolic imaging findings generated from preclinical models, focusing primarily on in vivo studies, and will then describe the use of metabolic imaging in the clinical setting. We will address relatively well-established (1) H MRS approaches, as well as (31) P MRS, (13) C MRS and emerging hyperpolarized (13) C MRS methodologies, and will describe the use of metabolic imaging for understanding the basic biology of glioma as well as for improving the characterization and monitoring of brain tumors in the clinic.
Collapse
Affiliation(s)
| | - Janine M. Lupo
- Department of Radiology and Biomedical ImagingMission Bay Campus
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical ImagingMission Bay Campus
- Brain Tumor Research CenterUniversity of CaliforniaSan FranciscoCA
| |
Collapse
|
17
|
Kang YF, Li YH, Fang YW, Xu Y, Wei XM, Yin XB. Carbon Quantum Dots for Zebrafish Fluorescence Imaging. Sci Rep 2015; 5:11835. [PMID: 26135470 PMCID: PMC4488761 DOI: 10.1038/srep11835] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/30/2015] [Indexed: 12/23/2022] Open
Abstract
Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model.
Collapse
Affiliation(s)
- Yan-Fei Kang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Yu-Hao Li
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang-Wu Fang
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang Xu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Xiao-Mi Wei
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Xue-Bo Yin
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|