1
|
Wu L, Lu X, Cai W, Zou Y, Zhang X, Yang J, Zhao G. Spectroscopic Study of a Novel Binaphthyl Amine Fluorescent Probe for Chiral Recognition of D/L-Lysine. Int J Mol Sci 2024; 25:7504. [PMID: 39062746 PMCID: PMC11277325 DOI: 10.3390/ijms25147504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lysine plays a crucial role in promoting development, enhancing immune function, and improving the function of central nervous system tissues. The two configurational isomers of amino acids have significantly different effects. Currently, methods for chiral recognition of lysine have been reported; however, previous detection methods have drawbacks such as expensive equipment and complicated detection processes. Fluorescence analysis, on the other hand, boasts high sensitivity, strong selectivity, and simple operation. In this study, we synthesized four novel Binaphthyl-Amine (BINAM)-based fluorescent probes capable of specifically identifying the L-configuration of lysine among the twenty amino acids that constitute human proteins. The enantiomeric fluorescence enhancement ratio (ef or ΔIL/ΔID) reached up to 15.29, demonstrating high enantioselectivity. In addition, we assessed the probe's recognition capabilities under varying pH levels, reaction times, and metal ion conditions, along with its limit of detection (LOD) and quantum yield. Our results suggest that this probe serves as a highly stable tool for the detection of chiral lysine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610207, China; (L.W.); (X.L.); (W.C.); (Y.Z.); (X.Z.); (J.Y.)
| |
Collapse
|
2
|
Zhang X, Sun W, Wang L, Xie Z, Liu M, Wang J. Selective pyrophosphate detection via metal complexes. IRADIOLOGY 2023; 1:320-339. [PMID: 38737136 PMCID: PMC11087008 DOI: 10.1002/ird3.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 05/14/2024]
Abstract
Pyrophosphate (PPi) anions are crucial in numerous biological and ecological processes involved in energy conversion, enzymatic reactions, and metabolic regulation along with adenosine. They are also significant biological markers for various processes related to diseases. Fluorescent PPi sensors would enable visual and/or biological detection in convenient settings. However, the current availability of commercial sensors has been limited to costly enzymes that are not compatible for imaging. Sensor development has also encountered challenges such as poor selectivity and stability, and limited practical applications. In this review, we analyze the situation of PPi sensing via commercial kits and focus on sensors that use metal complexes. We address their designs, sensing mechanisms, selectivities and detection limits. Finally, we discuss limitations and perspectives for PPi detection and imaging.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Wenwen Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zeping Xie
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, Massachusetts 02114, USA
| | - Mengxia Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Junfeng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, Massachusetts 02114, USA
| |
Collapse
|
3
|
Highly selective and sensitive optical discrimination of pyrophosphate ion by a Zn(ll)-terpyridine complex in aqueous medium at physiological pH. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
López-Alled CM, Park SJ, Lee DJ, Murfin LC, Kociok-Köhn G, Hann JL, Wenk J, James TD, Kim HM, Lewis SE. Azulene-based fluorescent chemosensor for adenosine diphosphate. Chem Commun (Camb) 2021; 57:10608-10611. [PMID: 34570136 DOI: 10.1039/d1cc04122c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AzuFluor® 435-DPA-Zn, an azulene fluorophore bearing two zinc(II)-dipicolylamine receptor motifs, exhibits fluorescence enhancement in the presence of adenosine diphosphate. Selectivity for ADP over ATP, AMP and PPi results from appropriate positioning of the receptor motifs, since an isomeric sensor cannot discriminate between ADP and ATP.
Collapse
Affiliation(s)
- Carlos M López-Alled
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | - Sang Jun Park
- Department of Energy Systems Research, Ajou University, Suwon 443-749, South Korea.
| | - Dong Joon Lee
- Department of Energy Systems Research, Ajou University, Suwon 443-749, South Korea.
| | - Lloyd C Murfin
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Gabriele Kociok-Köhn
- Material and Chemical Characterisation Facility (MC2), University of Bath, Bath, BA2 7AY, UK
| | - Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jannis Wenk
- Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK. .,Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon 443-749, South Korea.
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
5
|
Recent developments in molecular sensor designs for inorganic pyrophosphate detection and biological imaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213744] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Kumar P, Pachisia S, Gupta R. Turn-on detection of assorted phosphates by luminescent chemosensors. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00032b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review illustrates a variety of luminescent chemosensors for the selective detection of assorted phosphates via the “Turn-On” emission mechanism with focus on their design aspects, chemical structures and sensing mechanism.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Sanya Pachisia
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
7
|
Zhang F, Ma C, Jiao Z, Mu S, Zhang Y, Liu X, Zhang H. A NIR Turn-on Fluorescent Sensor For Detection of Chloride Ions in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117729. [PMID: 31740122 DOI: 10.1016/j.saa.2019.117729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
As the most abundant and significant anions in biosystem, chloride ions (Cl-) participate in many important physiological processes. Thus, designing and synthesizing of a simple, sensitive, selective and long wavelength turn-on sensor for the detection and imaging of Cl- in vitro and in vivo is very necessary. Herein, we have developed a simple porphyrin turn-on sensor 5, 10, 15, 20-Tetrakis (4-hydroxyphenyl) porphyrin (THPP) with near infrared emission wavelength (657 nm) for sensing chloride ions with remarkable sensitivity and selectivity. The detection of chloride ions was according to metal displacement assay (MDA) under physiological condition with a detection limit of 7.5 μM, and was applied to image Cl- in vitro and in vivo successfully.
Collapse
Affiliation(s)
- Fengyuan Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Chen Ma
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhijuan Jiao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yida Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Pal S, Ghosh TK, Ghosh R, Mondal S, Ghosh P. Recent advances in recognition, sensing and extraction of phosphates: 2015 onwards. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213128] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Feng R, Xu Y, Zhao H, Duan X, Sun S. A novel platform self-assembled from squaraine-embedded Zn(ii) complexes for selective monitoring of ATP and its level fluctuation in mitotic cells. Analyst 2018; 141:3219-23. [PMID: 27143565 DOI: 10.1039/c6an00646a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using multiple interactions, a simple self-assembly based on a Zn(ii) coordination compound and squaraine () demonstrated a selective turn-on fluorescence response to ATP in the near infrared (NIR) region. More importantly, the self-assembly has been successfully applied to ATP imaging in the mitochondria of the gastric cancer cell line SGC-7901 and monitoring of level fluctuation of ATP during the mitotic period.
Collapse
Affiliation(s)
- Ruizhi Feng
- College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yongqian Xu
- College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Hongwei Zhao
- College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xuemei Duan
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shiguo Sun
- College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Xia P, Su Z, Sun J, Li D, Huang X. A Couple of Tripodal and Dipodal Fluorescent Sensors for Sequential “On-Off-On” Response to Cu2+
and ATP/ADP Recognition in Aqueous Solution. ChemistrySelect 2017. [DOI: 10.1002/slct.201702447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Peng Xia
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi 435002, P. R. China
| | - Zhenhong Su
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College; Hubei Polytechnic University; Huangshi, Hubei, P. R. China
| | - Jingyu Sun
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi 435002, P. R. China
| | - Duanzhuo Li
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College; Hubei Polytechnic University; Huangshi, Hubei, P. R. China
| | - Xiaohuan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering; Hubei Normal University; Huangshi 435002, P. R. China
| |
Collapse
|
11
|
|
12
|
Wongkongkatep J, Ojida A, Hamachi I. Fluorescence Sensing of Inorganic Phosphate and Pyrophosphate Using Small Molecular Sensors and Their Applications. Top Curr Chem (Cham) 2017; 375:30. [PMID: 28251566 DOI: 10.1007/s41061-017-0120-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023]
Abstract
The aim of this contribution is to provide an introduction and a brief summary of the principle of fluorescence molecular sensors specific to inorganic phosphate (Pi) and inorganic pyrophosphate (PPi) as well as their applications. In our introduction we describe the impact of both Pi and PPi in the living organism and in the environment, followed by a description of the principle of fluorescence molecular sensors and the sensing mechanism in solution. We then focus on exciting research which has emerged in recent years on the development of fluorescent sensors specific to Pi and PPi, categorized by chemical interactions between the sensor and the target molecule, such as hydrogen bonding, coordination chemistry, displacement assay, aggregation induced emission or quenching, and chemical reactions.
Collapse
Affiliation(s)
- Jirarut Wongkongkatep
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400, Thailand
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
13
|
Pramanik S, Bhalla V, Kumar M. Hexaphenylbenzene-based fluorescent aggregates for detection of zinc and pyrophosphate ions in aqueous media: tunable self-assembly behaviour and construction of a logic device. NEW J CHEM 2017. [DOI: 10.1039/c6nj03953g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregates of HPB derivative 7 exhibited “on–on” response towards Zn2+ ions and this in situ prepared 7-Zn2+ ensemble was utilized as a “not quenched” probe for detection of PPi ions in aqueous media.
Collapse
Affiliation(s)
- Subhamay Pramanik
- Department of Chemistry
- UGC Sponsored Centre for Advanced Studies-II
- Guru Nanak Dev University
- Amritsar 143005
- India
| | - Vandana Bhalla
- Department of Chemistry
- UGC Sponsored Centre for Advanced Studies-II
- Guru Nanak Dev University
- Amritsar 143005
- India
| | - Manoj Kumar
- Department of Chemistry
- UGC Sponsored Centre for Advanced Studies-II
- Guru Nanak Dev University
- Amritsar 143005
- India
| |
Collapse
|
14
|
Naskar B, Modak R, Maiti DK, Kumar Mandal S, Kumar Biswas J, Kumar Mondal T, Goswami S. Syntheses and non-covalent interactions of naphthalene-bearing Schiff base complexes of Zn(II), Co(III), Cu(II) and V(IV): Selective detection of Zn(II). Polyhedron 2016. [DOI: 10.1016/j.poly.2016.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Sun J, Yang F, Yang X. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing. NANOSCALE 2015; 7:16372-16380. [PMID: 26391420 DOI: 10.1039/c5nr04826e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au(+) complexes, and then a class of ∼2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ∼1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au(+) complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe(3+) with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe(3+), and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs.
Collapse
Affiliation(s)
- Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | |
Collapse
|
16
|
Xu HR, Li K, Jiao SY, Pan SL, Zeng JR, Yu XQ. Tetraphenylethene-pyridine salts as the first self-assembling chemosensor for pyrophosphate. Analyst 2015; 140:4182-8. [PMID: 25913112 DOI: 10.1039/c5an00484e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We presented a novel approach for pyrophosphate (PPi) sensing. Two tetraphenylethene (TPE)-functionalised pyridine salts (TPM and TPH) were designed and synthesized. Both of them exhibited weak emission in the solution state that originates from intramolecular charge transfer (ICT) from TPE to the pyridine; the addition of PPi into the TPM aqueous solution would enhance the fluorescence intensity, which eliminates the emission quenching effect of the iodide ion by the formation of PPi-sensor nanoparticles. The detection limit of TPM was determined to be as low as 133 nM. Meanwhile, a thin solid film of TPM that could detect PPi rapidly was conveniently prepared.
Collapse
Affiliation(s)
- Hao-Ran Xu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, P. R. of China 610064.
| | | | | | | | | | | |
Collapse
|