1
|
Wang T, Liu Y, Liu B, Yan X, Qiu D, Wei S, Chen D, Jiang D, Zhou J, Ju H, Zhang X. Sensitive detection of FPG based on 8-oxoG modified chimeric peptide-DNA enzyme for oxidative damage evaluation. Talanta 2025; 283:127118. [PMID: 39476800 DOI: 10.1016/j.talanta.2024.127118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 12/11/2024]
Abstract
Formamidopyrimidine DNA glycosylase (FPG) is a crucial DNA repair enzyme that specifically recognizes and excises the damaged base 7,8-dihydro-8-oxoguanine (8-oxoG). The current detection technology for FPG is limited due to the need of integrating the relatively independent identification components and signal amplifiers. Herein, we designed an integrated probe (loaded on magnetic beads), which contained 8-oxoG for FPG recognition and a novel chimeric peptide-DNA mimetic enzyme (CPDzyme) for chemiluminescence (CL) signal amplification. Once the FPG recognized the probe, the CPDzyme was excised from the surface of the magnetic beads. Therefore, the change in CL signal caused by CPDzyme on the surface of the magnetic spheres before and after recognition and cleaning could be quantitatively analyzed for FPG. Thanks to the powerful catalytic ability of CPDzyme and the simplicity of the CL system, this method could detect the activity of FPG in a linear range of 0.2-20 U/mL, with the detection limit as low as 0.06 U/mL. Further, we applied the strategy to the detection of FPG activity in human serum and bacterial samples (before and after UV irradiation), demonstrating its potential for the monitoring of oxidative damage. With excellent sensitivity and standardized operation, this strategy demonstrates superior characteristics to commercial assay kits and is expected to provide a new powerful tool for relevant research.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Bin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinrong Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Guo G, Cui C, Hartanto H, Li J, Chen TH. DNA polymerase mediated CRISPR/Cas12a trans-cleavage for dual-mode quantification of uracil DNA glycosylase activity. Talanta 2025; 283:127089. [PMID: 39467442 DOI: 10.1016/j.talanta.2024.127089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/19/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
Since an unusual expression of uracil-DNA glycosylase (UDG) is often associated with the pathogenesis of numerous disorders, the detection of UDG activity is regarded as a promising application in disease diagnosis. Here, we develop a DNA polymerase-mediated CRISPR/Cas12a trans cleavage strategy, which can achieve dual-mode determination of UDG activity. By introducing a hairpin DNA probe containing a single uracil base, the probe undergoes specific cleavage and elongation under the existence of UDG only, thus activating the trans cleavage of ssDNA regardless of its length and sequence. To accommodate different detection modes, the ssDNA was further modified by fluorophore-quencher pairs or designed for connecting magnetic microparticles (MMPs) and polystyrene microparticles (PMPs). Finally, the UDG activity is quantified by fluorescence signal and microparticle accumulation length on a microfluidic chip visible to the naked eye. This strategy provides a detectable minimum UDG concentration of 0.00047 U/mL for fluorescent mode and 0.0048 U/mL for microfluidic mode. Furthermore, we performed the UDG inhibition test and detected UDG activity in cell lysates, suggesting its potential for inhibitor screening and detection of UDG in biological samples.
Collapse
Affiliation(s)
- Guihuan Guo
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region, China
| | - Chenyu Cui
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region, China; Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, China
| | - Hogi Hartanto
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region, China
| | - Jiaheng Li
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region, China
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region, China; Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Tung Biomedical Sciences Centre, City University of Hong Kong, China.
| |
Collapse
|
3
|
Zhao H, Liu T, Yang F. Photoelectrochemical polarity-switching-mode and split-type biosensor based on SQ-COFs/BiOBr heterostructure for the detection of uracil-DNA glycosylase. Talanta 2023; 262:124694. [PMID: 37244241 DOI: 10.1016/j.talanta.2023.124694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Here, we constructed a split-type and photocurrent polarity switching photoelectrochemical (PEC) biosensor for ultrasensitive detection of Uracil-DNA glycosylase (UDG, abnormal UDG activity is correlated with human immunodeficiency, cancers, bloom syndrome, neurodegenerative diseases and so on) based on SQ-COFs/BiOBr heterostructure, as the photoactive materials, methylene blue (MB) as the signal sensitizer, and catalytic hairpin assembly (CHA) for signal amplification. Specifically, the photocurrent intensity generated by SQ-COFs/BiOBr was about 2 and 6.4 times of that of BiOBr and SQ-COFs alone, which could be responsible for the detection sensitivity for the proposed biosensor. In addition, it is not common to construct heterojunctions between covalent organic skeletons and inorganic nanomaterials. In UDG recognition tube, the plenty of COP probes loaded methylene blue (MB) were obtained by magnetic separation with the help of the simple chain displacement reaction of CHA. MB, as a responsive substance, can efficiently switched the photocurrent polarity of the SQ-COFs/BiOBr electrode from cathode to anode, which reduce the background signal, further improve the sensitivity of the biosensor. Based on the above, the linear detection range of our designed biosensor is 0.001-3 U mL-1, and the detection limit (LODs) is as low as 4.07 × 10-6 U mL-1. Furthermore, the biosensor can still maintain good analytical performance for UDG in real sample, which means that it has broad application prospects in the field of biomedicine.
Collapse
Affiliation(s)
- Huijuan Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Tingting Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Ultra-sensitive biosensor based on CRISPR-Cas12a and Endo IV coupled DNA hybridization reaction for uracil DNA glycosylase detection and intracellular imaging. Biosens Bioelectron 2023; 226:115118. [PMID: 36806764 DOI: 10.1016/j.bios.2023.115118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
As an essential biomarker associated with various diseases, Uracil-DNA Glycosylase (UDG) detection is vital for disease diagnosis, treatment selection, and prognosis assessment. In recent years, the signal amplification effect of the CRISPR-Cas12a trans-cleaved single-stranded DNA probe has provided an available strategy for constructing highly sensitive biosensors. However, its superior trans-cleavage activity has become a "double-edged sword" for building biosensors that can amplify the target signal while also amplifying the leakage signal, causing out of control. Therefore, the construction of structurally simple, extremely low-background, highly sensitive CRISPR-Cas12a-based biosensors is an urgent bottleneck problem in the field. Here, we applied CRISPR-Cas12a with a DNA hybridization reaction to develop a simple, rapid, low background, and highly sensitive method for UDG activity detection. It has no PAM restriction and the detection limit is as low as 2.5 × 10-6 U/mL. As far as we know, this method is one of the most sensitive methods for UDG detection. We also used this system to analyze UDG activity in tumor cells (LOD: 1 cell/uL) and to evaluate the ability to screen for UDG inhibitors. Furthermore, we verified the possibility of intracellular UDG activity imaging by transfecting the biosensors to the cells. We believe this novel sensor has good clinical application prospects and will effectively broaden the application space of CRISPR-Cas12a.
Collapse
|
5
|
Ma F, Liu YZ, Liu M, Qiu JG, Zhang CY. Transcriptionally amplified synthesis of fluorogenic RNA aptamers for label-free DNA glycosylase assay. Chem Commun (Camb) 2022; 58:10229-10232. [PMID: 36004508 DOI: 10.1039/d2cc03628b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate for the first time the utilization of fluorogenic RNA aptamers for label-free uracil-DNA glycosylase (UDG) assay. Through rationally engineering the transcription machine with dU substitution, this assay requires only a single probe to simultaneously sense and amplify the UDG signal, achieving a low detection limit of 6.3 × 10-6 U mL-1. Moreover, it can be applied for screening UDG inhibitors and measuring endogenous UDG activity in different cells.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China. .,School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ya-Zhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
6
|
Su Z, Wen Q, Li S, Guo L, Li M, Xiong Y, Li W, Ren J. A G-quadruplex/hemin structure-undamaged method to inhibit peroxidase-mimic DNAzyme activity for biosensing development. Anal Chim Acta 2022; 1221:340143. [DOI: 10.1016/j.aca.2022.340143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/29/2022]
|
7
|
Zhang Q, Li CC, Ma F, Luo X, Zhang CY. Catalytic single-molecule Förster resonance energy transfer biosensor for uracil-DNA glycosylase detection and cellular imaging. Biosens Bioelectron 2022; 213:114447. [PMID: 35679648 DOI: 10.1016/j.bios.2022.114447] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Uracil-DNA glycosylase (UDG) is essential to the maintenance of genomic integrity due to its critical role in base excision repair pathway. However, existing UDG assays suffer from laborious procedures, poor specificity, and limited sensitivity. In this research, we construct a catalytic single-molecule Föster resonance energy transfer (FRET) biosensor for in vitro and in vivo biosensing of UDG activity. Target UDG can remove uracil base from the detection probe and cause the cleavage of detection probe by apurinic/apyrimidinic endonuclease (APE1), which exposes its toehold domain and initiates catalytic assembly of two fluorescently labeled hairpin probes via toehold-meditated strand displacement reaction (SDA) to generate abundant DNA duplexes with amplified FRET signal. In this assay, target UDG signal is amplified via enzyme-free catalytic reaction and the whole reaction may be completed in one step, which greatly simplifies the assay procedure, reduces the assay time, and facilitates the cellular imaging. This biosensor enables specific and sensitive measurement of UDG down to 0.00029 U/mL, and it is suitable for analyzing kinetic parameters, screening inhibitors, and even imaging endogenous UDG in live cells. Importantly, this biosensor can visually quantify various DNA repair enzymes by rationally altering DNA substrates.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Chen-Chen Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
8
|
Sun Y, Zang L, Lu J. Base excision-initiated terminal deoxynucleotide transferase-assisted amplification for simultaneous detection of multiple DNA glycosylases. Anal Bioanal Chem 2022; 414:3319-3327. [DOI: 10.1007/s00216-022-03978-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
|
9
|
Liu T, Li Z, Chen M, Zhao H, Zheng Z, Cui L, Zhang X. Sensitive electrochemical biosensor for Uracil-DNA glycosylase detection based on self-linkable hollow Mn/Ni layered doubled hydroxides as oxidase-like nanozyme for cascade signal amplification. Biosens Bioelectron 2021; 194:113607. [PMID: 34507096 DOI: 10.1016/j.bios.2021.113607] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023]
Abstract
Nanozymes have been widely used in biosensors instead of natural enzymes because of low cost, high stability and ease of storage. However, few works use oxidase-like nanozymes to fabricate electrochemical biosensors. Herein, we proposed a sensitive electrochemical biosensor to detect uracil-DNA glycosylase (UDG) based on the hollow Mn/Ni layered doubled hydroxides (h-Mn/Ni LDHs) as oxidase-like nanozyme. Briefly, the h-Mn/Ni LDHs, which was prepared by a facile hydrothermal method, exhibited excellent oxidase-like activity because the hollow structure provided rich active sites and high specific surface area. Then, the signal probes were constructed by assembling the hairpin DNA (hDNA), single DNA1 and DNA2 on the h-Mn/Ni LDHs, respectively. In the presence of UDG, the uracil bases in the stem of hDNA were specifically excised, generating apyrimidinic (AP) sites and inducing the unwinding of the hDNA. Afterwards, the h-Mn/Ni LDHs@Au-hDNA/DNA1 was connected on the electrode via hybridization between unwinded hDNA and capture DNA (cDNA). Subsequently, the self-linking process allowed the retention of numerous h-Mn/Ni LDHs through simple DNA hybridization to amplify the signal of o-phenylenediamine (o-PD). Unlike many peroxidase-like nanozyme-based electrochemical biosensors, there is no need to add H2O2 during the experimental process, which effectively reduced the background signal as well as improved the stability of the biosensor. As expected, the biosensor exhibited excellent performance with a wide linear range and a low detection limit. This work highlights an appealing opportunity to develop a no H2O2 platform based on h-Mn/Ni LDHs for future application in biological analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Tingting Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhiwen Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, 271016, PR China
| | - Mohan Chen
- Jinan Foreign Language School, Jinan, Shandong Province, 250353, China
| | - Huijuan Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zekun Zheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
10
|
Smartphone-Based Device for Colorimetric Detection of MicroRNA Biomarkers Using Nanoparticle-Based Assay. SENSORS 2021; 21:s21238044. [PMID: 34884049 PMCID: PMC8659705 DOI: 10.3390/s21238044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 01/15/2023]
Abstract
The detection of microRNAs (miRNAs) is emerging as a clinically important tool for the non-invasive detection of a wide variety of diseases ranging from cancers and cardiovascular illnesses to infectious diseases. Over the years, miRNA detection schemes have become accessible to clinicians, but they still require sophisticated and bulky laboratory equipment and trained personnel to operate. The exceptional computing ability and ease of use of modern smartphones coupled with fieldable optical detection technologies can provide a useful and portable alternative to these laboratory systems. Herein, we present the development of a smartphone-based device called Krometriks, which is capable of simple and rapid colorimetric detection of microRNA (miRNAs) using a nanoparticle-based assay. The device consists of a smartphone, a 3D printed accessory, and a custom-built dedicated mobile app. We illustrate the utility of Krometriks for the detection of an important miRNA disease biomarker, miR-21, using a nanoplasmonics-based assay developed by our group. We show that Krometriks can detect miRNA down to nanomolar concentrations with detection results comparable to a laboratory-based benchtop spectrophotometer. With slight changes to the accessory design, Krometriks can be made compatible with different types of smartphone models and specifications. Thus, the Krometriks device offers a practical colorimetric platform that has the potential to provide accessible and affordable miRNA diagnostics for point-of-care and field applications in low-resource settings.
Collapse
|
11
|
Ligasová A, Rosenberg I, Bocková M, Homola J, Koberna K. Anchored linear oligonucleotides: the effective tool for the real-time measurement of uracil DNA glycosylase activity. Open Biol 2021; 11:210136. [PMID: 34665968 PMCID: PMC8526170 DOI: 10.1098/rsob.210136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Base excision repair is one of the important DNA repair mechanisms in cells. The fundamental role in this complex process is played by DNA glycosylases. Here, we present a novel approach for the real-time measurement of uracil DNA glycosylase activity, which employs selected oligonucleotides immobilized on the surface of magnetic nanoparticles and Förster resonance energy transfer. We also show that the approach can be performed by surface plasmon resonance sensor technology. We demonstrate that the immobilization of oligonucleotides provides much more reliable data than the free oligonucleotides including molecular beacons. Moreover, our results show that the method provides the possibility to address the relationship between the efficiency of uracil DNA glycosylase activity and the arrangement of the used oligonucleotide probes. For instance, the introduction of the nick into oligonucleotide containing the target base (uracil) resulted in the substantial decrease of uracil DNA glycosylase activity of both the bacterial glycosylase and glycosylases naturally present in nuclear lysates.
Collapse
Affiliation(s)
- Anna Ligasová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacký University Olomouc, 779 00 Olomouc, Czech Republic
| | - Ivan Rosenberg
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Markéta Bocková
- Institute of Photonics and Electronics, Czech Academy of Sciences, 182 51 Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, 182 51 Prague, Czech Republic
| | - Karel Koberna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacký University Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
12
|
Yang Y, Liu X, Zhang N, Jiang W. The dumbbell probe mediated triple cascade signal amplification strategy for sensitive and specific detection of uracil DNA glycosylase activity. Talanta 2021; 234:122680. [PMID: 34364480 DOI: 10.1016/j.talanta.2021.122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 10/21/2022]
Abstract
Uracil DNA glycosylase (UDG) is a key base excision repair (BER) enzyme and its abnormal expression is nearly relevant to several diseases including cancer. The sensitive detection of UDG activity is beneficial for biomedical studies and clinic diagnosis. In this work, we proposed a dumbbell probe mediated triple cascade signal amplification strategy for sensitive and specific detection of UDG activity. The specially designed dumbbell probe contained two uracil bases, two recognition sites for nicking enzyme and a split sequence of DNAzyme. Unsealed dumbbell probes were first connected into sealed dumbbell probes by T4 DNA ligase, and then the unsealed probes were hydrolyzed by exonuclease to ensure the purity of probes. Under the influence of UDG, two uracil bases were removed to produce two apyrimidinic (AP) sites, which were subsequently cleaved by Endo.IV. The probes after cleavage acted as primers and templates for double nicking sites strand displacement amplification (SDA) to produce a mass of two products. The products of SDA continued to act as primers and templates for rolling circle amplification (RCA) to produce repeats containing complete DNAzyme sequences. The DNAzyme repeatedly cleaved multiple molecular beacons (MB), resulting in remarkable fluorescence enhancement. Benefiting from the triple cascade signal amplification, the sensitivity was improved and the detection limit was 7.2 × 10-5 U mL-1. The method could well distinguish UDG from other interfering enzymes and detect UDG activity in real biological samples, showing good specificity. In addition, this method could be used for screening inhibitors. The above results suggested that the method provided a promising analytical means for UDG related biomedical research and clinic diagnosis.
Collapse
Affiliation(s)
- Yayun Yang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Xiaoting Liu
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China; Department of Oncology, Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, PR China
| | - Nan Zhang
- Department of Oncology, Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 250012, Jinan, PR China.
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China.
| |
Collapse
|
13
|
Jiang C, Wang F, Zhang K, Min T, Chen D, Wen Y. Distance-Based Biosensor for Ultrasensitive Detection of Uracil-DNA Glycosylase Using Membrane Filtration of DNA Hydrogel. ACS Sens 2021; 6:2395-2402. [PMID: 34048234 DOI: 10.1021/acssensors.1c00624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the deoxyribonucleic acid (DNA) repair pathways, DNA repair enzymes have great significance for genomic integrity. As one important initiator of the base-excision repair pathway, the aberrant activity of uracil-DNA glycosylase (UDG) is closely associated with many diseases. Herein, we developed a simple distance-based device for visual detection of UDG activity using a load-free DNA hydrogel. The DNA hydrogel consists of polyacrylamide-DNA chains being bridged by a single-stranded DNA crosslinker containing a responsive uracil base site. UDG can recognize and remove the uracil, resulting in the cleavage effect of the DNA crosslinker strand with the assistance of endonuclease IV (Endo IV). Plugging one end of the capillary tube, the DNA hydrogel acting as a filter membrane separator would control molecules to flow into the tube. The integrity of the DNA hydrogel networks is affected by the excision of UDG. Therefore, taking full advantage of membrane filtration of the DNA hydrogel, the activity of UDG can be quantitatively detected via reading the distance of the red indicator solution in the capillary tube. Without any instruments and complicated procedures, this method realizes high sensitivity and specificity for the detection of UDG as low as 0.02 mU/mL and can even measure UDG in complex cell samples. Additionally, this method is simple, universal, and can be used to screen inhibitors, which shows great potential for point-of-care testing, clinical diagnosis, and drug discovery.
Collapse
Affiliation(s)
- Chao Jiang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Fangfang Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Kexin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Tiantian Min
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Desheng Chen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| |
Collapse
|
14
|
Pirbhai M, Albrecht C, Tirrell C. A multispectral-sensor-based colorimetric reader for biological assays. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:064103. [PMID: 34243509 DOI: 10.1063/5.0040602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Tests that depend on changes in color are commonly used in biosensing. Here, we report on a colorimetric reader for such applications. The device is simple to construct and operate, making it ideal for research laboratories with limited resources or skilled personnel. It consists of a commercial multispectral sensor interfaced with a Raspberry Pi and a touchscreen. Unlike camera-based readers, this instrument requires no calibration of wavelengths by the user or extensive image processing to obtain results. We demonstrate its potential for colorimetric biosensing by applying it to the birefringent enzyme-linked immunosorbent assay. It was able to prevent certain false positives that the assay is susceptible to and lowered its limit of detection for glucose by an order of magnitude.
Collapse
Affiliation(s)
- M Pirbhai
- Department of Physics, St. Lawrence University, 23 Romoda Dr., Canton, New York 13617, USA
| | - C Albrecht
- Department of Physics, University of Oregon, 1585 E 13th Ave., Eugene, Oregon 97403, USA
| | - C Tirrell
- Department of Physics, St. Lawrence University, 23 Romoda Dr., Canton, New York 13617, USA
| |
Collapse
|
15
|
Qi W, Zheng L, Wang S, Huang F, Liu Y, Jiang H, Lin J. A microfluidic biosensor for rapid and automatic detection of Salmonella using metal-organic framework and Raspberry Pi. Biosens Bioelectron 2021; 178:113020. [PMID: 33513537 DOI: 10.1016/j.bios.2021.113020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022]
Abstract
Rapid screening of pathogenic bacteria contaminated foods is crucial to prevent food poisoning. However, available methods for bacterial detection are still not ready for in-field screening because culture is time-consuming; PCR requires complex DNA extraction and ELISA lacks sensitivity. In this study, a microfluidic biosensor was developed for rapid, sensitive and automatic detection of Salmonella using metal-organic framework (MOF) NH2-MIL-101(Fe) with mimic peroxidase activity to amplify biological signal and Raspberry Pi with self-developed App to analyze color image. First, the target bacteria were separated and concentrated with the immune magnetic nanobeads (MNBs), and labeled with the immune MOFs to form MNB-Salmonella-MOF complexes. Then, the complexes were used to catalyze colorless o-phenylenediamine and H2O2 to produce yellow 2,3-diaminophenazine (DAP). Finally, the image of the catalysate was collected under the narrow-band blue light and analyzed using the Raspberry Pi App to determine the bacterial concentration. The experimental results showed that this biosensor was able to detect Salmonella Typhimurium from 1.5 × 101 to 1.5 × 107 CFU/mL in 1 h with the lower detection limit of 14 CFU/mL. The mean recovery for Salmonella in spiked chicken meats was ~112%. This biosensor integrating mixing, separation, labelling and detection onto a single microfluidic chip has demonstrated the merits of automatic operation, fast reaction, less reagent and small size, and is promising for in-field detection of foodborne bacteria.
Collapse
Affiliation(s)
- Wuzhen Qi
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Lingyan Zheng
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Sihan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Fengchun Huang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Yuanjie Liu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
16
|
Chang HL, Su KY, Goodman SD, Yen RS, Cheng WC, Yang YC, Lin LI, Chang SY, Fang WH. Measurement of uracil-DNA glycosylase activity by matrix assisted laser desorption/ionization time-of-flight mass spectrometry technique. DNA Repair (Amst) 2020; 97:103028. [PMID: 33254084 DOI: 10.1016/j.dnarep.2020.103028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/26/2022]
Abstract
Uracil-DNA glycosylase (UDG) is a highly conserved DNA repair enzyme that acts as a key component in the base excision repair pathway to correct hydrolytic deamination of cytosine making it critical to genome integrity in living organisms. We report here a non-labeled, non-radio-isotopic and very specific method to measure UDG activity. Oligodeoxyribonucleotide duplex containing a site-specific G:U mismatch that is hydrolyzed by UDG then subjected to Matrix Assisted Laser Desorption/Ionization time-of-flight mass spectrometry analysis. A protocol was developed to maintain the AP product in DNA without strand break then the cleavage of uracil was identified by the mass change from uracil substrate to AP product. From UDG kinetic analysis, for G:U substrate the Km is 50 nM, Vmax is 0.98 nM/s and Kcat = 9.31 s-1. The method was applied to uracil glycosylase inhibitor measurement with an IC50 value of 7.6 pM. Single-stranded and double-stranded DNAs with uracil at various positions of the substrates were also tested for UDG activity albeit with different efficiencies. The simple, rapid, quantifiable, scalable and versatile method has potential to be the reference method for monofunctional glycosylase measurement, and can also be used as a tool for glycosylase inhibitors screening.
Collapse
Affiliation(s)
- Hui-Lan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Nationwide Children's Hospital and the Department of Pediatrics, the Ohio State University, Columbus, OH, USA
| | - Rong-Syuan Yen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Wern-Cherng Cheng
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Ya-Chien Yang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Woei-Horng Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
17
|
A tri-functional probe mediated exponential amplification strategy for highly sensitive detection of Dnmt1 and UDG activities at single-cell level. Anal Chim Acta 2020; 1103:164-173. [DOI: 10.1016/j.aca.2019.12.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/22/2019] [Accepted: 12/19/2019] [Indexed: 11/18/2022]
|
18
|
Yan Z, Yuan H, Zhao Q, Xing L, Zheng X, Wang W, Zhao Y, Yu Y, Hu L, Yao W. Recent developments of nanoenzyme-based colorimetric sensors for heavy metal detection and the interaction mechanism. Analyst 2020; 145:3173-3187. [DOI: 10.1039/d0an00339e] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This work highlights the application and interaction mechanism of metal nanoparticles, metal oxides, metal sulfides, graphene-based nanomaterials and G-quadruplex, etc. in nanoenzyme-based colorimetric sensors.
Collapse
Affiliation(s)
- Zhengquan Yan
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Hua Yuan
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Qi Zhao
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Lin Xing
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Xiaoyu Zheng
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Weiguo Wang
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Yulei Zhao
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Yang Yu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Lei Hu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- China
| | - Wenli Yao
- Jiangxi Key laboratory of Power Battery and Material
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| |
Collapse
|
19
|
Gao W, Xu J, Lian G, Wang X, Gong X, Zhou D, Chang J. A novel analytical principle using AP site-mediated T7 RNA polymerase transcription regulation for sensing uracil-DNA glycosylase activity. Analyst 2020; 145:4321-4327. [DOI: 10.1039/d0an00509f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
udgactivity could regulateT7 RNApolymerase transcription ability by the heteroduplex substrates with chemical modifications.
Collapse
Affiliation(s)
- Weichen Gao
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin)
- Tianjin 300072
- China
| | - Jin Xu
- Tianjin Hospital
- Tianjin 300211
- China
| | - Guowei Lian
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin)
- Tianjin 300072
- China
| | - Xiaojun Wang
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Xiaoqun Gong
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin)
- Tianjin 300072
- China
| | - Dianming Zhou
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Jin Chang
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin)
- Tianjin 300072
- China
| |
Collapse
|
20
|
Kim Y, Park Y, Lee CY, Park HG. Colorimetric Assay for Uracil DNA Glycosylase Activity Based on Toehold-Mediated Strand Displacement Circuit. Biotechnol J 2019; 15:e1900420. [PMID: 31657505 DOI: 10.1002/biot.201900420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/22/2019] [Indexed: 11/08/2022]
Abstract
Herein, a novel enzyme-free and label-free strategy for colorimetric assay of uracil DNA glycosylase (UDG) activity, which relies on a target-activated toehold-mediated strand displacement (TMSD) circuit is described. The strategy employs a detection duplex probe composed of a uracil-containing strand (US) and a catalyst strand (CS). UDG present in a sample will cleave uracil bases within US and destabilize the detection duplex probe, which then leads to the dissociation of the detection duplex, releasing CS. The free CS promotes the TMSD reaction, consequently liberating a G-quadruplex DNAzyme strand (GS) which is initially caged by a blocker strand (BS). Notably, a fuel strand (FS) is supplemented to recycle the CS to promote another cycle of TMSD reaction. As a consequence, a large number of GSs are activated by UDG activity and a distinct colorimetric signal is produced through the oxidation of ABTS promoted by the peroxidase mimicking activity of the liberated GSs. Based on this design principle, UDG activity down to 0.006 U mL-1 with excellent selectivity is successfully determined. The practical applicability of this assay is also demonstrated by reliably determining UDG activities in human serum.
Collapse
Affiliation(s)
- Youna Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Yeonkyung Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
21
|
Lu Y, Zhao H, Fan GC, Luo X. Coupling photoelectrochemical and electrochemical strategies in one probe electrode: Toward sensitive and reliable dual-signal bioassay for uracil-DNA glycosylase activity. Biosens Bioelectron 2019; 142:111569. [DOI: 10.1016/j.bios.2019.111569] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 02/08/2023]
|
22
|
A nanoneedle-based reactional wettability variation sensor array for on-site detection of metal ions with a smartphone. J Colloid Interface Sci 2019; 547:330-338. [PMID: 30974249 DOI: 10.1016/j.jcis.2019.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022]
Abstract
An enhancement of the reactional wettability variation (RWV) sensing strategy is achieved based on the wettability switch of a nanoneedle surface. The sensor unit is formed by coating hydrophobic azoimidazole compounds, as the responder compounds onto the originally hydrophilic surface of cobalt hydroxide nanoneedles. The complexation reaction between metal ions and azoimidazole ligands etches the hydrophobic coating and switches the surface wettability, making the surface hydrophilic again. This switch is revealed by a decrease in the static contact angle (CA) and an increase in the sliding angle of the surface. The reactivity is tuned by the derivatization and conformational manipulation of the azoimidazole compounds. A sensor array composed of six as-tuned sensor units is constructed to distinguish among the species and concentrations of Fe3+, Ni2+ and La3+ at a low limit of 10-6 M using the chemometric method of principal component analysis (PCA). In addition, a new on-site detection strategy is developed based on PCA of the sliding angle, which can be measured conveniently and swiftly with a smartphone app and a commercially available setup. The application of the general RWV strategy is envisioned to open new possibilities for on-site detection.
Collapse
|
23
|
Dong L, Zhang X, Li Y, E F, Zhang J, Cheng Y. Highly Sensitive Detection of Uracil-DNA Glycosylase Activity Based on Self-Initiating Multiple Rolling Circle Amplification. ACS OMEGA 2019; 4:3881-3886. [PMID: 31459598 PMCID: PMC6648713 DOI: 10.1021/acsomega.8b03376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/08/2019] [Indexed: 06/01/2023]
Abstract
Sensitive detection of uracil-DNA glycosylase (UDG) activity is very important in the study of many fundamental biochemical processes and clinical applications. Here, we develop a novel assay for the detection of UDG activity by using the self-initiating multiple rolling circle amplification (SM-RCA) strategy. We first design a trigger probe modified with NH2 at its 3'-terminal and uracil base in the middle of sequence, which is complementary to a cyclized padlock probe. In the presence of UDG, a uracil base can be excised by UDG to generate an apurinic/apyrimidinic (AP) site. The AP site is recognized and cleaved by endonuclease IV (Endo IV), releasing the primer with 3'-OH. The primer can trigger the rolling circle amplification (RCA) reaction, producing a long and repeated DNA strand embedded some uracil bases. These uracil bases can be cleaved by UDG and Endo IV again, and then, more primers are generated to initiate SM-RCA reaction, producing large amounts of DNA product. Afterward, the DNA product is measured by a specific DNA fluorescence dye for quantitative detection of UDG activity. The linear range of the method is 5 × 10-5 to 1.25 × 10-3 U/mL, and the detection limit is 1.7 × 10-5 U/mL. This method not only utilizes the target UDG itself to trigger RCA but also further induces SM-RCA reaction, providing a simple, sensitive, and cost-effective strategy for the detection of glycosylase and clinical diagnosis.
Collapse
|
24
|
Zhang K, Huang W, Huang Y, Wang K, Zhu X, Xie M. Determination of the activity of uracil-DNA glycosylase by using two-tailed reverse transcription PCR and gold nanoparticle-mediated silver nanocluster fluorescence: a new method for gene therapy-related enzyme detection. Mikrochim Acta 2019; 186:181. [PMID: 30771014 DOI: 10.1007/s00604-019-3307-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/04/2019] [Indexed: 12/28/2022]
Abstract
The authors present a fluorometric method for ultrasensitive determination of the activity of uracil-DNA glycosylase (UDG). It is based on the use of two-tailed reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and an entropy-driven reaction. The assay involves the following steps: (1) UDG-driven uracil excision repair, (2) two-tailed RT-qPCR-mediated amplification, (3) RNA polymerase-aided amplification, and (4) DNA-modified silver nanoclusters (AgNCs) as a transducer to produce a fluorescent signal. UDG enables uracil to be removed from U·A pairs in DNA1 and produces a depurinated/depyrimidinated site that is readily cleaved by endonuclease IV (Endo IV). The cleaved DNA contains the T7 RNA polymerase primer for the T7 RNA polymerase amplification which produces a large number of microRNA sequences. Subsequent two-tailed RT-qPCR leads to the formation of a prolonged DNA termed DNA3. The prolonged part of DNA3 is then hybridized with an added DNA4/DNA5 duplex, where DNA5 is labeled with gold nanoparticles (AuNPs), and DNA 4 is labeled with AgNCs. The AuNPs quench the fluorescence of the AgNCs. The duplex has a toehold to hybridize the prolong part of DNA3. This results in the formation of a DNA5/DNA3 duplex due to strand displacement (by replacing the DNA4 in the DNA4/DNA5 duplex). DNA4 is released and moves away from the AuNPs. This results in restored AgNC fluorescence, best measured at excitation/emission wavelengths of 575/635 nm. The method has a detection limit as low as 0.1 mU mL-1 of UDG activity (3σ criterion) with a range of 0.001-0.01 U mL-1. It was used to measure UDG activity in cell lysates. Conceivably, it may be used to screen for UDG inhibitors such as Ugi. Graphical abstract Schematic presentation of the two-tailed RT-qPCR assay platform for ultrasensitive detection of uracil-DNA glycosylase (UDG). Two-tailed RT-qPCR-mediated amplification and RNA polymerase-aided amplification are utilized for signal amplification. DNA-modified silver nanoclusters (AgNCs) are used as a transducer to produce a fluorescent signal.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China.
| | - Wanting Huang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Yue Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Minhao Xie
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China.
| |
Collapse
|
25
|
Electrochemiluminescent determination of the activity of uracil-DNA glycosylase: Combining nicking enzyme assisted signal amplification and catalyzed hairpin assembly. Mikrochim Acta 2019; 186:179. [DOI: 10.1007/s00604-019-3280-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022]
|
26
|
Chen M, Li W, Ma C, Wu K, He H, Wang K. Fluorometric determination of the activity of uracil-DNA glycosylase by using graphene oxide and exonuclease I assisted signal amplification. Mikrochim Acta 2019; 186:110. [PMID: 30637581 DOI: 10.1007/s00604-019-3247-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
The base-excision repair enzyme uracil-DNA glycosylase (UDG) plays a crucial role in the maintenance of genome integrity. The authors describe a fluorometric method for the detection of the activity of UDG. It is making use of (a) a 3'-FAM-labeled hairpin DNA probe with two uracil deoxyribonucleotides in the self-complementary duplex region of its hairpin structure, (b) exonuclease I (Exo I) that catalyzes the release of FAM from the UDG-induced stretched ssDNA probe, and (c) graphene oxide that quenches the green FAM fluorescence of the intact hairpin DNA probe in the absence of UDG. If Exo I causes the release of FAM from the hairpin DNA probe, the fluorescence peaking at 517 nm is turned off in the absence of UDG but turned on in its presence. The resulting assay has a wide linear range (0.008 to 1 U·mL-1) and a detection limit as low as 0.005 U·mL-1. It has good specificity for UDG over potentially interfering enzymes and gave satisfactory results when applied to biological samples. Conceivably, the method may be used in a wide range of applications such as in diagnosis, drug screening, and in studying the repair of DNA lesions. Graphical abstract Schematic presentation of a fluorometric strategy for detection of the activity of uracil-DNA glycosylase by using on graphene oxide and exonuclease I assisted signal amplification.
Collapse
Affiliation(s)
- Mingjian Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Wenkai Li
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha, 410013, China. .,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410081, China.
| | - Kefeng Wu
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410081, China
| |
Collapse
|
27
|
Abstract
Food fraud can be highly lucrative, and high accuracy authentication of various foodstuffs is becoming essential. Olive oil is one of the most investigated food matrices, due to its high price and low production globally, with recent food fraud examples showing little or no high quality olive oil in the tested oils. Here a simple method using a 405 nm LED flashlight and a smartphone is developed for edible oil authentication. Identification is fingerprinted by intrinsic fluorescent compounds in the oils, such as chlorophylls and polyphenols. This study uses the hue parameter of HSV-colorspace to authenticate 24 different edible oils of 9 different types and 15 different brands. For extra virgin olive oil, all nine samples are well separated from the other oil samples. The rest of the samples were also well type-distinguished by the hue parameter, which is complemented by hue-histogram analysis. This opens up opportunities for low-cost and high-throughput smartphone field-testing of edible oils on all levels of the production and supply chain.
Collapse
Affiliation(s)
- Aron Hakonen
- Sensor Visions AB, Legendgatan 116, 422 55 Hisings Backa, Sweden
| | | |
Collapse
|
28
|
Du YC, Cui YX, Li XY, Sun GY, Zhang YP, Tang AN, Kim K, Kong DM. Terminal Deoxynucleotidyl Transferase and T7 Exonuclease-Aided Amplification Strategy for Ultrasensitive Detection of Uracil-DNA Glycosylase. Anal Chem 2018; 90:8629-8634. [PMID: 29911858 DOI: 10.1021/acs.analchem.8b01928] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As one of the key initiators of the base excision repair process, uracil-DNA glycosylase (UDG) plays an important role in maintaining genomic integrity. It has been found that aberrant expression of UDG is associated with a variety of diseases. Thus, accurate and sensitive detection of UDG activity is of critical significance for biomedical research and early clinical diagnosis. Here, we developed a novel fluorescent sensing platform for UDG activity detection based on a terminal deoxynucleotidyl transferase (TdT) and T7 exonuclease (T7 Exo)-aided recycling amplification strategy. In this strategy, only two DNA oligonucleotides (DNA substrate containing one uracil base and Poly dT probe labeled with a fluorophore/quencher pair) are used. UDG catalyzes the removal of uracil base from the enclosed dumbbell-shape DNA substrate to give an apyrimidinic site, at which the substrate oligonucleotide is cleaved by endonuclease IV. The released 3'-end can be elongated by TdT to form a long deoxyadenine-rich (Poly dA) tail, which may be used as a recyclable template to initiate T7 Exo-mediated hybridization-digestion cycles of the Poly dT probe, giving a significantly enhanced fluorescence output. The proposed UDG-sensing strategy showed excellent selectivity and high sensitivity with a detection limit of 1.5 × 10-4 U/mL. The sensing platform was also demonstrated to work well for UDG inhibitor screening and inhibitory activity evaluation, thus holding great potential in UDG-related disease diagnosis and drug discovery. The proposed strategy can be easily used for the detection of other DNA repair-related enzymes by simply changing the recognition site in DNA substrate and might also be extended to the analysis of some DNA/RNA-processing enzymes, including restriction endonuclease, DNA methyltransferase, polynucleotide kinase, and so on.
Collapse
Affiliation(s)
- Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P R China
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China
| | - Xiao-Yu Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China
| | - Guo-Ying Sun
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China
| | - Yu-Peng Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China
| | - Kwangil Kim
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P R China.,Institute of Analysis , Kim Chaek University of Technology , Pyongyang , 999093 , Democratic People's Republic of Korea
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin , 300071 , P R China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P R China
| |
Collapse
|
29
|
Ahn JK, Lee CY, Park KS, Park HG. Abasic Site-Assisted Inhibition of Nicking Endonuclease Activity for the Sensitive Determination of Uracil DNA Glycosylase. Biotechnol J 2017; 13:e1700603. [DOI: 10.1002/biot.201700603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/01/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Jun Ki Ahn
- Department of Chemical and Biomolecular Engineering (BK21 + Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK21 + Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul 05029 Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 + Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| |
Collapse
|
30
|
Zarei M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Wang LJ, Ren M, Zhang Q, Tang B, Zhang CY. Excision Repair-Initiated Enzyme-Assisted Bicyclic Cascade Signal Amplification for Ultrasensitive Detection of Uracil-DNA Glycosylase. Anal Chem 2017; 89:4488-4494. [PMID: 28306242 DOI: 10.1021/acs.analchem.6b04673] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uracil-DNA glycosylase (UDG) is an important base excision repair (BER) enzyme responsible for the repair of uracil-induced DNA lesion and the maintenance of genomic integrity, while the aberrant expression of UDG is associated with a variety of cancers. Thus, the accurate detection of UDG activity is essential to biomedical research and clinical diagnosis. Here, we develop a fluorescent method for ultrasensitive detection of UDG activity using excision repair-initiated enzyme-assisted bicyclic cascade signal amplification. This assay involves (1) UDG-actuated uracil-excision repair, (2) excision repair-initiated nicking enzyme-mediated isothermal exponential amplification, (3) ribonuclease H (RNase H)-induced hydrolysis of signal probes for generating fluorescence signal. The presence of UDG enables the removal of uracil from U·A pairs and generates an apurinic/apyrimidinic (AP) site. Endonuclease IV (Endo IV) subsequently cleaves the AP site, resulting in the break of DNA substrate. The cleaved DNA substrate functions as both a primer and a template to initiate isothermal exponential amplification, producing a large number of triggers. The resultant trigger may selectively hybridize with the signal probe which is modified with FAM and BHQ1, forming a RNA-DNA heterogeneous duplex. The subsequent hydrolysis of RNA-DNA duplex by RNase H leads to the generation of fluorescence signal. This assay exhibits ultrahigh sensitivity with a detection limit of 0.0001 U/mL, and it can even measure UDG activity at the single-cell level. Moreover, this method can be applied for the measurement of kinetic parameters and the screening of inhibitors, thereby providing a powerful tool for DNA repair enzyme-related biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Ming Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Qianyi Zhang
- Nantou High School Shenzhen , Shenzhen, 518052, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| |
Collapse
|
32
|
Wu Y, Wang L, Jiang W. Toehold-mediated strand displacement reaction-dependent fluorescent strategy for sensitive detection of uracil-DNA glycosylase activity. Biosens Bioelectron 2017; 89:984-988. [DOI: 10.1016/j.bios.2016.10.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/09/2016] [Accepted: 10/19/2016] [Indexed: 01/27/2023]
|
33
|
Wu Y, Yan P, Xu X, Jiang W. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities. Analyst 2017; 141:1789-95. [PMID: 26899234 DOI: 10.1039/c5an02483h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.
Collapse
Affiliation(s)
- Yushu Wu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, school of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P.R. China.
| | - Ping Yan
- Jinan Maternity and Child Care Hospital, 250001 Jinan, P.R. China.
| | - Xiaowen Xu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, school of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P.R. China.
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, school of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P.R. China.
| |
Collapse
|
34
|
Xu X, Wang L, Wu Y, Jiang W. Uracil removal-inhibited ligase reaction in combination with catalytic hairpin assembly for the sensitive and specific detection of uracil-DNA glycosylase activity. Analyst 2017; 142:4655-4660. [DOI: 10.1039/c7an01666b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Uracil removal-inhibited ligase reaction in combination with a catalytic hairpin assembly sensing strategy is demonstrated for UDG activity detection.
Collapse
Affiliation(s)
- Xiaowen Xu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P.R. China
| | - Lei Wang
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
- P.R. China
| | - Yushu Wu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P.R. China
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P.R. China
| |
Collapse
|
35
|
Du YC, Zhu LN, Kong DM. Label-free thioflavin T/G-quadruplex-based real-time strand displacement amplification for biosensing applications. Biosens Bioelectron 2016; 86:811-817. [DOI: 10.1016/j.bios.2016.07.083] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/23/2016] [Accepted: 07/23/2016] [Indexed: 12/31/2022]
|
36
|
Ma C, Wu K, Liu H, Xia K, Wang K, Wang J. Label-free fluorescence turn-on detection of uracil DNA glycosylase activity based on G-quadruplex formation. Talanta 2016; 160:449-453. [DOI: 10.1016/j.talanta.2016.07.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 10/21/2022]
|
37
|
Liu W, Lin M, Yang X, Wu B, Chen N, Wang Q, Wang K, Qin S. Investigation of newly identified G-quadruplexes and their application to DNA detection. Analyst 2016; 141:4463-9. [PMID: 27215424 DOI: 10.1039/c6an00987e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-quadruplexes are guanine-rich nucleic acid sequences that can act as universal signal-transducers and generate colorimetric, fluorescence, and chemiluminescence signals when complexed with different ligands. Due to their merits including easy modification and low cost, it is of great importance to explore new G-quadruplexes with improved performance. Herein the properties of newly identified G-quadruplexes 9th-3-35 and 10th-2-40 were investigated in detail with UV-vis spectra, circular dichroism (CD) spectra and fluorescence spectra. The results indicated that 9th-3-35 and 10th-2-40 exhibited excellent peroxidase-like activity, as well as fluorescence enhancement of thioflavin T (ThT). Furthermore, the application of G-quadruplexes to DNA detection was performed on account of the ThT fluorescence enhancement, and the limit of detection was as low as 8 pM. This study implied that 9th-3-35 and 10th-2-40 are competitive candidates as signal-transducers in the design of bioassays.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Rasooly R, Bruck HA, Balsam J, Prickril B, Ossandon M, Rasooly A. Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health. Diagnostics (Basel) 2016; 6:E19. [PMID: 27196933 PMCID: PMC4931414 DOI: 10.3390/diagnostics6020019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/19/2016] [Accepted: 05/06/2016] [Indexed: 12/20/2022] Open
Abstract
Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings.
Collapse
Affiliation(s)
- Reuven Rasooly
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94706, USA.
| | - Hugh Alan Bruck
- Department of Mechanical Engineering, University of Maryland College Park (UMCP), College Park, MD 20742, USA.
| | - Joshua Balsam
- Division of Chemistry and Toxicology Devices, Office of In Vitro Diagnostics and Radiological Health, FDA, Silver Spring, MD 20993, USA.
| | - Ben Prickril
- National Cancer Institute, Rockville, MD 208503, USA.
| | | | | |
Collapse
|
39
|
Petryayeva E, Algar WR. A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence. Anal Bioanal Chem 2016; 408:2913-25. [DOI: 10.1007/s00216-015-9300-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
|
40
|
Xu W, Fu K, Ma C, Bohn PW. Closed bipolar electrode-enabled dual-cell electrochromic detectors for chemical sensing. Analyst 2016; 141:6018-6024. [DOI: 10.1039/c6an01415a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Battery operation of a closed-BPE dual cell with colorimetric readout by smartphone camera yields a simple, inexpensive, field-deployable electrochemical sensor.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Kaiyu Fu
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Chaoxiong Ma
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Paul W. Bohn
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
- Department of Chemical and Biomolecular Engineering
| |
Collapse
|
41
|
Ma Y, Zhao J, Li X, Zhang L, Zhao S. A label free fluorescent assay for uracil-DNA glycosylase activity based on the signal amplification of exonuclease I. RSC Adv 2015. [DOI: 10.1039/c5ra12958c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A label free fluorescent assay for uracil-DNA glycosylase activity was developed based on the signal amplification of exonuclease I.
Collapse
Affiliation(s)
- Yefei Ma
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Jingjin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Xuejun Li
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Liangliang Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|