1
|
Fan Y, Fan S, Liu L, Guo S, He J, Li X, Lian Z, Guo W, Chen X, Wang Y, Jiang H. Efficient manipulation of Förster resonance energy transfer through host-guest interaction enables tunable white-light emission and devices in heterotopic bisnanohoops. Chem Sci 2023; 14:11121-11130. [PMID: 37860654 PMCID: PMC10583698 DOI: 10.1039/d3sc04358d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
In this study, we synthesized and reported the heterotopic bisnanohoops P5-[8,10]CPPs containing cycloparaphenylenes (CPPs) and a pillar[5]arene unit, which act not only as energy donors but also as a host for binding energy acceptors. We demonstrated that a series of elegant FRET systems could be constructed successfully through self-assembly between donors P5-[8,10]CPPs and acceptors with different emissions via host-guest interaction. These FRET systems further allow us to finely adjust the donors P5-[8,10]CPPs and acceptors (BODIPY-Br and Rh-Br) for achieving multiple color-tunable emissions, particularly white-light emission. More importantly, these host-guest complexes were successfully utilized in the fabrication of white-light fluorescent films and further integrated with a 365 nm LED lamp to create white LED devices. The findings highlight a new application of carbon nanorings in white-light emission materials, beyond the common recognition of π-conjugated molecules.
Collapse
Affiliation(s)
- Yanqing Fan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Shimin Fan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Xiaonan Li
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Zhe Lian
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Weijie Guo
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Ying Wang
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
2
|
Panneerselvam M, Deepan Kumar M, Nisanth P, Jaccob M, Vijay Solomon R. Quantum mechanical study on complexation phenomenon of pillar[5]arene towards neutral dicyanobutane. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2151366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Murugesan Panneerselvam
- Department of Chemistry, Sri Moogambigai College of Arts and Science for Women (SMCAS), Palacode, Dharmapuri, India
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, chennai, India
| | - Madhu Deepan Kumar
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, chennai, India
- Department of Chemistry, K. Ramakrishnan College of Technology, Samayapuram, India
| | - Prasannan Nisanth
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, chennai, India
| | - Madhavan Jaccob
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, chennai, India
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous), (Affiliated to University of Madras) Tambaram East, Chennai, India
| |
Collapse
|
3
|
Kato K, Kurakake Y, Ohtani S, Fa S, Gon M, Tanaka K, Ogoshi T. Discrete Macrocycles with Fixed Chirality and Two Distinct Sides: Dipole‐Dependent Chiroptical Response. Angew Chem Int Ed Engl 2022; 61:e202209222. [DOI: 10.1002/anie.202209222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Yuta Kurakake
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Masayuki Gon
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
- WPI Nano Life Science Institute Kanazawa University Kakuma-machi Kanazawa, 920-1192 Japan
| |
Collapse
|
4
|
Kato K, Kurakake Y, Ohtani S, Fa S, Gon M, Tanaka K, Ogoshi T. Discrete Macrocycles with Fixed Chirality and Two Distinct Sides: Dipole‐Dependent Chiroptical Response. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kenichi Kato
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering KatsuraNishikyo-ku 615-8510 Kyoto JAPAN
| | - Yuta Kurakake
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| | - Shunsuke Ohtani
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| | - Shixin Fa
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| | - Masayuki Gon
- Kyoto University: Kyoto Daigaku Department of Polymer Chemistry, Graduate School of Engineering JAPAN
| | - Kazuo Tanaka
- Kyoto University: Kyoto Daigaku Department of Polymer Chemistry, Graduate School of Engineering JAPAN
| | - Tomoki Ogoshi
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| |
Collapse
|
5
|
Cao J, Wu Y, Li Q, Zhu W, Wang Z, Liu Y, Jie K, Zhu H, Huang F. Separation of pyrrolidine from tetrahydrofuran by using pillar[6]arene-based nonporous adaptive crystals. Chem Sci 2022; 13:7536-7540. [PMID: 35872814 PMCID: PMC9242012 DOI: 10.1039/d2sc02494b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Pyrrolidine, an important feedstock in the chemical industry, is commonly produced via vapor-phase catalytic ammoniation of tetrahydrofuran (THF). Obtaining pyrrolidine with high purity and low energy cost has extremely high economic and environmental values. Here we offer a rapid and energy-saving method for adsorptive separation of pyrrolidine and THF by using nonporous adaptive crystals of per-ethyl pillar[6]arene (EtP6). EtP6 crystals show a superior preference towards pyrrolidine in 50 : 50 (v/v) pyrrolidine/THF mixture vapor, resulting in rapid separation. The purity of pyrrolidine reaches 95% in 15 min of separation, and after 2 h, the purity is found to be 99.9%. Single-crystal structures demonstrate that the selectivity is based on the stability difference of host-guest structures after uptake of THF or pyrrolidine and non-covalent interactions in the crystals. Besides, EtP6 crystals can be recycled efficiently after the separation process owing to reversible transformations between the guest-free and guest-loaded EtP6.
Collapse
Affiliation(s)
- Jiajun Cao
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Yitao Wu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Qi Li
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Weijie Zhu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Yang Liu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University Hangzhou 310027 PR China +86-571-8795-3189 +86-571-8795-3189
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 PR China
- Green Catalysis Center and College of Chemistry, Zhengzhou University Zhengzhou 450001 PR China
| |
Collapse
|
6
|
Tominaga M, Kondo S, Hyodo T, Kawahata M, Yamaguchi K. Structure analysis of inclusion crystals of diimide-based macrocycles with halocarbons. CrystEngComm 2022. [DOI: 10.1039/d2ce00118g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inclusion crystals containing several halocarbons were formed by three types of diimide-based macrocycles. Iodomethane was encapsulated within the cavity of the macrocycle through halogen-related interactions.
Collapse
Affiliation(s)
- Masahide Tominaga
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Sana Kondo
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | | | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
7
|
Khamphaijun K, Namnouad P, Docker A, Ruengsuk A, Tantirungrotechai J, Díaz-Torres R, Harding DJ, Bunchuay T. Neutral Isocyanide-Templated Assembly of Pillar[5]arene [2] and [3]Pseudorotaxanes. Chem Commun (Camb) 2022; 58:7253-7256. [DOI: 10.1039/d2cc02255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unprecedented pillar[5]arene–isocyanide pseudorotaxane inclusion complexes are reported. Extensive 1H-NMR experiments reveal remarkably strong binding affinities of alkyl diisocyanide guests (Ka >105 M-1 in CDCl3) by pillar[5]arenes. Characterised by multinuclear 1H...
Collapse
|
8
|
|
9
|
Song Y, Feng G, Sun C, Liang Q, Wu L, Yu X, Lei S, Hu W. Ternary Conductance Switching Realized by a Pillar[5]arene-Functionalized Two-Dimensional Imine Polymer Film. Chemistry 2021; 27:13605-13612. [PMID: 34312929 DOI: 10.1002/chem.202101772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 02/05/2023]
Abstract
Nowadays, most manufacturing memory devices are based on materials with electrical bistability (i. e., "0" and "1") in response to an applied electric field. Memory devices with multilevel states are highly desired so as to produce high-density and efficient memory devices. Herein, we report the first multichannel strategy to realize a ternary-state memristor. We make use of the intrinsic sub-nanometer channel of pillar[5]arene and nanometer channel of a two-dimensional imine polymer to construct an active layer with multilevel channels for ternary memory devices. Low threshold voltage, long retention time, clearly distinguishable resistance states, high ON/OFF ratio (OFF/ON1/ON2=1 : 10 : 103 ), and high ternary yield (75 %) were obtained. In addition, the flexible memory device based on 2DPTPAZ+TAPB can maintain its stable ternary memory performance after being bent 500 times. The device also exhibits excellent thermal stability and can tolerate a temperature as high as 300 °C. It is envisioned that the results of this work will open up possibilities for multistate, flexible resistive memories with good thermal stability and low energy consumption, and broaden the application of pillar[n]arene.
Collapse
Affiliation(s)
- Yaru Song
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Chenfang Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Qiu Liang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Lingli Wu
- Medical College, Northwest Minzu University, Lanzhou, 730000, P. R. China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
10
|
Schmidt M, Esser B. Cavity-promotion by pillar[5]arenes expedites organic photoredox-catalysed reductive dehalogenations. Chem Commun (Camb) 2021; 57:9582-9585. [PMID: 34546245 DOI: 10.1039/d1cc03221f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The efficiency of the photo-induced electron transfer in photoredox catalysis is limited by the diffusional collision of the excited catalyst and the substrate. We herein present cavity-bound photoredox catalysts, which preassociate the substrates, leading to significantly shortened reaction times. A pillar[5]arene serves as the cavity and phenothiazine as a catalyst in the reductive dehalogenation of aliphatic bromides as a proof of concept reaction.
Collapse
Affiliation(s)
- Maximilian Schmidt
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
| | - Birgit Esser
- Institute for Organic Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany. .,Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
11
|
Wu Q, Zhang T, Li X, Tu X, Zhang H, Han J. Construction of pillar[5]arene-based photochromic supramolecular polymeric system with tunable thermal bleaching rate. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Li M, Hua B, Huang F. Pillar[5]arene-based ion-pair recognition for constructing a [2]pseudorotaxane with supramolecular interaction induced LCST behavior. Org Chem Front 2021. [DOI: 10.1039/d1qo00457c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we report a novel [2]pseudorotaxane based on perbromoethylated pillar[5]arene/imidazolium iodide ionic liquid ion-pair recognition and this pseudorotaxane shows supramolecular interaction induced LCST behavior in solution.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Bin Hua
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| |
Collapse
|
13
|
Ruengsuk A, Khamphaijun K, Pananusorn P, Docker A, Tantirungrotechai J, Sukwattanasinitt M, Harding DJ, Bunchuay T. Pertosylated pillar[5]arene: self-template assisted synthesis and supramolecular polymer formation. Chem Commun (Camb) 2020; 56:8739-8742. [PMID: 32633280 DOI: 10.1039/d0cc04005c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile synthesis of decatosylate pillar[5]arene 1 is reported in excellent yield (>70%). The high yield is attributed to a self-template effect of the pendant tosylate arms. The X-ray crystal structure shows the formation of a linear supramolecular polymer, stabilised by intermolecular pillar[5]arene-tosylate inclusion complexes. These polymeric arrays persist in solution and form rod-like microfibril nanostructures evidenced by SEM.
Collapse
Affiliation(s)
- Araya Ruengsuk
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Korawit Khamphaijun
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Puttipong Pananusorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Andrew Docker
- Department of Chemistry, University of Oxford Chemistry Research Laboratory Mansfield Road, Oxford, OX1 3TA, USA
| | - Jonggol Tantirungrotechai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | | | - David J Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
14
|
Han C, Zhao D, Dong S. Host-Guest Complexations Between Pillar[6]arenes and Neutral Pentaerythritol Derivatives. Chem Asian J 2020; 15:2642-2645. [PMID: 32662186 DOI: 10.1002/asia.202000723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/11/2020] [Indexed: 12/31/2022]
Abstract
It is demonstrated that three kinds of neutral pentaerythritol derivatives possess promising host-guest complexations with pillar[6]arenes both in solution and in the solid state. The inclusion structures were characterized by NMR spectroscopy and X-ray crystallography. The complexation properties in different solvents were also investigated.
Collapse
Affiliation(s)
- Chengyou Han
- Department of Chemistry College of Science, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Dezhi Zhao
- Department of Chemistry College of Science, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, P. R. China
| |
Collapse
|
15
|
Zhou Y, Jie K, Zhao R, Huang F. Supramolecular-Macrocycle-Based Crystalline Organic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904824. [PMID: 31535778 DOI: 10.1002/adma.201904824] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Supramolecular macrocycles are well known as guest receptors in supramolecular chemistry, especially host-guest chemistry. In addition to their wide applications in host-guest chemistry and related areas, macrocycles have also been employed to construct crystalline organic materials (COMs) owing to their particular structures that combine both rigidity and adaptivity. There are two main types of supramolecular-macrocycle-based COMs: those constructed from macrocycles themselves and those prepared from macrocycles with other organic linkers. This review summarizes recent developments in supramolecular-macrocycle-based COMs, which are categorized by various types of macrocycles, including cyclodextrins, calixarenes, resorcinarenes, pyrogalloarenes, cucurbiturils, pillararenes, and others. Effort is made to focus on the structures of supramolecular-macrocycle-based COMs and their structure-function relationships. In addition, the application of supramolecular-macrocycle-based COMs in gas storage or separation, molecular separation, solid-state electrolytes, proton conduction, iodine capture, water or environmental treatment, etc., are also presented. Finally, perspectives and future challenges in the field of supramolecular-macrocycle-based COMs are discussed.
Collapse
Affiliation(s)
- Yujuan Zhou
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Run Zhao
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
16
|
Li E, Jie K, Liu M, Sheng X, Zhu W, Huang F. Vapochromic crystals: understanding vapochromism from the perspective of crystal engineering. Chem Soc Rev 2020; 49:1517-1544. [PMID: 32016241 DOI: 10.1039/c9cs00098d] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vapochromic materials, which undergo colour and/or emission changes upon exposure to certain vapours or gases, have received increasing attention recently because of their wide range of applications in, e.g., chemical sensors, light-emitting diodes, and environmental monitors. Vapochromic crystals, as a specific kind of vapochromic materials, can be investigated from the perspective of crystal engineering to understand the mechanism of vapochromism. Moreover, understanding the vapochromism mechanism will be beneficial to design and prepare task-specific vapochromic crystals as one kind of low-cost 'electronic nose' to detect toxic gases or volatile organic compounds. This review provides important information in a broad scientific context to develop new vapochromic materials, which covers organometallic or coordination complexes and organic crystals, as well as the different mechanisms of the related vapochromic behaviour. In addition, recent examples of supramolecular vapochromic crystals and metal-organic-framework (MOFs) vapochromic crystals are introduced.
Collapse
Affiliation(s)
- Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Wei TB, Qi LH, Zhang QP, Zhang WH, Yao H, Zhang YM, Lin Q. Stimuli-responsive supramolecular polymer network based on bi-pillar[5]arene for efficient adsorption of multiple organic dye contaminants. NEW J CHEM 2020. [DOI: 10.1039/d0nj02524k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel supramolecular polymer network gel has been successfully prepared via bi-pillar[5]arene and a tripodal guest, exhibiting multi-stimuli-responsiveness and efficient adsorption of organic dyes.
Collapse
Affiliation(s)
- Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Li-Hua Qi
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Qin-Peng Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Wen-Huan Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Hong Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - You-Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| |
Collapse
|
18
|
Athare SV, Gejji SP. Regioselectivity in nonsymmetric methyl pentyl Pillar[5]arene bound to non-symmetric axles. J Mol Graph Model 2019; 94:107460. [PMID: 31593920 DOI: 10.1016/j.jmgm.2019.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 11/19/2022]
Abstract
The present work illustrates regioselective binding of nonsymmetric axle BuX (X = F, Cl, Br, CN) and 5-bromovaleronitrile (BVN) to the non-symmetric methyl pentyl pillar[5]arene (MPP5). Theoretical calculations reveal that the guest encapsulation within MPP5 is spontaneous and the conformer showing X weakly bound to pentyl rim of MPP5 is favoured over its other conformer wherein it interacts with methyl rim of the host. The noncovalent interactions namely C-H---π, C-H---X and H-H prevail over C-H⋯O hydrogen bonding in the complexes of MPP5. The manifestations of these to vibrational spectra obtained from the present theory are discussed. The strength of host-guest binding further is shown to correlate well with weakening of the C-X bond through natural bond orbital analyses.
Collapse
Affiliation(s)
- Sulakshana V Athare
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Shridhar P Gejji
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
19
|
Exploring and Exploiting the Symmetry-Breaking Effect of Cyclodextrins in Mechanomolecules. Symmetry (Basel) 2019. [DOI: 10.3390/sym11101249] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cyclodextrins (CDs) are cone-shaped molecular rings that have been widely employed in supramolecular/host–guest chemistry because of their low cost, high biocompatibility, stability, wide availability in multiple sizes, and their promiscuity for binding a range of molecular guests in water. Consequently, CD-based host–guest complexes are often employed as templates for the synthesis of mechanically bonded molecules (mechanomolecules) such as catenanes, rotaxanes, and polyrotaxanes in particular. The conical shape and cyclodirectionality of the CD “bead” gives rise to a symmetry-breaking effect when it is threaded onto a molecular “string”; even symmetrical guests are rendered asymmetric by the presence of an encircling CD host. This review focuses on the stereochemical implications of this symmetry-breaking effect in mechanomolecules, including orientational isomerism, mechanically planar chirality, and topological chirality, as well as how they support applications in regioselective and stereoselective chemical synthesis, the design of molecular machine prototypes, and the development of advanced materials.
Collapse
|
20
|
Athare SV, Gejji SP. Probing Binding of Ethylated Pillar[5]arene with Pentene and Chlorobutane Positional Isomers. J Phys Chem A 2019; 123:8391-8396. [DOI: 10.1021/acs.jpca.9b05563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Shridhar P. Gejji
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
21
|
Qi LH, Ding JD, Ma XQ, Guan XW, Zhu W, Yao H, Zhang YM, Wei TB, Lin Q. An azine-containing bispillar[5]arene-based multi-stimuli responsive supramolecular pseudopolyrotaxane gel for effective adsorption of rhodamine B. SOFT MATTER 2019; 15:6836-6841. [PMID: 31402364 DOI: 10.1039/c9sm01126a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An azine-containing bispillar[5]arene was designed and synthesized by the reaction of aldehyde functionalized-pillar[5]arene and hydrazine. Then, a novel bispillar[5]arene-based supramolecular pseudopolyrotaxane has been successfully prepared via host-guest interaction. Interestingly, by taking advantage of the host-guest interactions, π-π stacking interactions and hydrogen bonding interactions, the multi-stimuli-responsive gel-sol phase transitions of such a supramolecular pseudopolyrotaxane gel were successfully realized under different stimuli, such as acid, temperature, concentration, and competitive guests. Moreover, this supramolecular system could effectively adsorb dye molecule rhodamine B. It is worth noting that this supramolecular pseudopolyrotaxane gel prepared in cyclohexanol solution (BP5·G·C) could be used as an adsorbent material for adsorbing rhodamine B with adsorption efficiency of 98.4%. Meanwhile, the adsorption efficiency was 97.6% for supramolecular pseudopolyrotaxane gel prepared in DMSO-H2O (v : v, 8 : 2) binary solution (BP5·G·D), also indicating the superior adsorption effect of BP5·G·D toward the dye molecule rhodamine B.
Collapse
Affiliation(s)
- Li-Hua Qi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Demay-Drouhard P, Du K, Samanta K, Wan X, Yang W, Srinivasan R, Sue ACH, Zuilhof H. Functionalization at Will of Rim-Differentiated Pillar[5]arenes. Org Lett 2019; 21:3976-3980. [PMID: 31002251 PMCID: PMC6558637 DOI: 10.1021/acs.orglett.9b01123] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The development of
an efficient synthetic route toward rim-differentiated C5-symmetric pillar[5]arenes (P[5]s), whose two
rims are decorated with different chemical functionalities, opens
up successive transformations of this macrocyclic scaffold. This paper
describes a gram-scale synthesis of a C5-symmetric penta-hydroxy P[5] precursor, and a range of highly efficient
reactions that allow functionalizing either rim at will via, e.g.,
sulfur(VI) fluoride exchange (SuFEx) reactions, esterifications, or
Suzuki–Miyaura coupling. Afterward, BBr3 demethylation
activates another rim for similar functionalizations.
Collapse
Affiliation(s)
- Paul Demay-Drouhard
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China.,Laboratory of Organic Chemistry , Wageningen University , Stippeneng 4 , 6703 WE Wageningen , The Netherlands
| | - Ke Du
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China
| | - Kushal Samanta
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China.,Laboratory of Organic Chemistry , Wageningen University , Stippeneng 4 , 6703 WE Wageningen , The Netherlands
| | - Xintong Wan
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China
| | - Weiwei Yang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China
| | - Rajavel Srinivasan
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China
| | - Andrew C-H Sue
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology , Tianjin University , 92 Weijin Road, Nankai District , Tianjin , 300072 , People's Republic of China.,Laboratory of Organic Chemistry , Wageningen University , Stippeneng 4 , 6703 WE Wageningen , The Netherlands.,Department of Chemical and Materials Engineering , King Abdulaziz University , 21589 Jeddah , Saudi Arabia
| |
Collapse
|
23
|
Guan XW, Lin Q, Zhang YM, Wei TB, Wang J, Fan YQ, Yao H. Pillar[5]arene-based spongy supramolecular polymer gel and its properties in multi-responsiveness, dye sorption, ultrasensitive detection and separation of Fe 3. SOFT MATTER 2019; 15:3241-3247. [PMID: 30916674 DOI: 10.1039/c8sm02482k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, a novel way to design and construct multi-functional spongy supramolecular polymer gels through an easy to make tripodal guest (TA) and a naphthalimide functionalized-pillar[5]arene host (AP5) has been developed. According to this approach, a novel pillar[5]arene-based supramolecular polymer gel (SHG) was constructed via multi-non-covalent interactions such as host-guest inclusion, C-Hπ, ππ and hydrogen bonds and so on. Interestingly, the SHG exhibits a spongy structure and strong aggregation induced emission (AIE). Furthermore, the SHG also exhibited multi-responsiveness toward outer stimuli such as heating-cooling, pH, competitive agents and mechanical. More importantly, the SHG xerogel shows separation properties for Fe3+, methyl orange, methylene blue and sudan I dyes. The separation rates of SHG xerogel for Fe3+ ions and organic dyes can reach up to 99.8%. Simultaneously, the SHG could ultrasensitively detect Fe3+ (LOD is 0.9 nM). In addition, a thin film based on SHG was also prepared, which was confirmed to be a convenient test kit for detecting Fe3+.
Collapse
Affiliation(s)
- Xiao-Wen Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Chen J, Wang Y, Wang C, Long R, Chen T, Yao Y. Functionalization of inorganic nanomaterials with pillar[n]arenes. Chem Commun (Camb) 2019; 55:6817-6826. [PMID: 31139803 DOI: 10.1039/c9cc03165k] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pillar[n]arenes, which consist of hydroquinone units linked by -CH2- bridges at 2,5-positions, are a relatively new class of synthetic macrocycles since 2008. Their facile preparation and flexible modification properties make them ideal stabilizers for inorganic nanomaterials. Furthermore, their symmetrical and columnar architectures with very rigid and π-rich cavities endow them with rich host-guest properties. This Feature Article provides an overview of the functionalization of inorganic nanomaterials with pillar[n]arenes and their applications. These inorganic nanomaterials are classified into three major classes according to different types of compositions: (1) novel metal nanomaterials; (2) hybrid metal nanomaterials; and (3) porous materials. The applications of these nanomaterials such as catalysis, drug delivery, cancer therapy, and sensing have been comprehensively discussed.
Collapse
Affiliation(s)
- Jiao Chen
- College of Chemistry and Chemical Engineer, Nantong University, Nantong, Jiangsu 226019, P. R. China.
| | | | | | | | | | | |
Collapse
|
25
|
Li KA, Wang Z, Xie CD, Chen T, Qiang H, Liu YA, Jia XS, Hu WB, Wen K. Unidirectional complexation of pillar[4]arene[1]benzoquinoneoxime with alkyl alcohols. Org Biomol Chem 2019; 17:4975-4978. [DOI: 10.1039/c9ob00665f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Unidirectional binding between a pillar[4]arene[1]benzoquinoneoxime host and n-alkyl alcoholic guests was realized with the hydroxy heads of the guests in direct contact with the oxime group of the macrocyclic host.
Collapse
Affiliation(s)
- Kun-Ang Li
- Department of Chemistry
- Shanghai University
- Shanghai 20044
- P.R. China
- Shanghai Advanced Research Institute
| | - Zhuo Wang
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
- Shanghai Advanced Research Institute
| | - Chang-Dong Xie
- Shanghai Advanced Research Institute
- Chinese Academy of Science
- Shanghai 201210
- China
| | - Tao Chen
- Shanghai Advanced Research Institute
- Chinese Academy of Science
- Shanghai 201210
- China
- University of Chinese Academy of Sciences
| | - Hui Qiang
- Department of Chemistry
- Shanghai University
- Shanghai 20044
- P.R. China
- Shanghai Advanced Research Institute
| | - Yahu A. Liu
- Medicinal Chemistry
- ChemBridge Research Laboratories
- San Diego
- USA
| | - Xue-Shun Jia
- Department of Chemistry
- Shanghai University
- Shanghai 20044
- P.R. China
| | - Wei-Bo Hu
- Shanghai Advanced Research Institute
- Chinese Academy of Science
- Shanghai 201210
- China
| | - Ke Wen
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
- Shanghai Advanced Research Institute
| |
Collapse
|
26
|
Shao L, Hua B, Liu J, Huang F. Construction of a [2]pseudorotaxane and a [3]pseudorotaxane based on perbromoethylated pillar[5]arene/pyridinium iodide ion-pair recognition. Chem Commun (Camb) 2019; 55:4527-4530. [DOI: 10.1039/c9cc01984g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the preparation of a [2]pseudorotaxane and a [3]pseudorotaxane based on perbromoethylated pillar[5]arene/pyridinium iodide ion-pair recognition.
Collapse
Affiliation(s)
- Li Shao
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Bin Hua
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Jiyong Liu
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
27
|
Shu X, Xu K, Hou D, Li C. Molecular Recognition of Water-soluble Pillar[n
]arenes Towards Biomolecules and Drugs. Isr J Chem 2018. [DOI: 10.1002/ijch.201800115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoyan Shu
- School of Life Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 Sichuan P. R. China
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P. R. China
| | - Kaidi Xu
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P. R. China
| | - Dabin Hou
- School of Life Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 Sichuan P. R. China
| | - Chunju Li
- School of Life Science and Engineering; Southwest University of Science and Technology; Mianyang 621010 Sichuan P. R. China
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P. R. China
| |
Collapse
|
28
|
Song N, Lou XY, Hou W, Wang CY, Wang Y, Yang YW. Pillararene-Based Fluorescent Supramolecular Systems: The Key Role of Chain Length in Gelation. Macromol Rapid Commun 2018; 39:e1800593. [DOI: 10.1002/marc.201800593] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xin-Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Wei Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; Changchun 130012 P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
29
|
Yao Y, Wei X, Cai Y, Kong X, Chen J, Wu J, Shi Y. Hybrid supramolecular materials constructed from pillar[5]arene based host–guest interactions with photo and redox tunable properties. J Colloid Interface Sci 2018; 525:48-53. [DOI: 10.1016/j.jcis.2018.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
30
|
Zhang Q, Li KQ, Yang JH, Qu GR, Ma NN, Guo HM. Experimental and computational investigations on the high binding-selectivity of pyrimidine derivatives by a pillar[5]arene. Supramol Chem 2018. [DOI: 10.1080/10610278.2018.1510123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Qian Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Ke-Qing Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Jun-Hui Yang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Na-Na Ma
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
31
|
Yuan X, Jia Y, Cai Y, Feng W, Li Y, Li X, Yuan L. Unusual binding selectivity with non-selective homoditopic pillar[5]arene oxime: serendipitous discovery of a unique approach to heterobinuclear metalation in solution. Chem Commun (Camb) 2018; 53:2838-2841. [PMID: 28217779 DOI: 10.1039/c7cc00237h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A heterobinuclear complexation strategy on homoditopic pillar[5]arene was developed by using a pillar[5]arene with two rims decorated with benzaldehyde oximes. The unique selective recognition process was found to result from vesicular formation based on a controllable self-assembly, leading to binding of thorium(iv) only onto one rim, with the other rim being unoccupied for subsequent complexation of a second different metal ion.
Collapse
Affiliation(s)
- Xiangyang Yuan
- Institute of Nuclear Science and Technology, Key Laboratory for Radiation Physics and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yiming Jia
- Institute of Nuclear Science and Technology, Key Laboratory for Radiation Physics and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yimin Cai
- Institute of Nuclear Science and Technology, Key Laboratory for Radiation Physics and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Wen Feng
- Institute of Nuclear Science and Technology, Key Laboratory for Radiation Physics and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yiming Li
- Department of Chemistry, University of South Florida, East Fowler Ave, Florida 4202, USA.
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, East Fowler Ave, Florida 4202, USA.
| | - Lihua Yuan
- Institute of Nuclear Science and Technology, Key Laboratory for Radiation Physics and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
32
|
Han C, Zhao D, Li H, Wang H, Huang X, Sun D. Effective Binding of Neutral Dinitriles by Pillar[4]arene[1]quinone both in Solution and in Solid State. ChemistrySelect 2018. [DOI: 10.1002/slct.201702793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chengyou Han
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Dezhi Zhao
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Haiyu Li
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Haibo Wang
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Xu Huang
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| | - Daofeng Sun
- Department of Chemistry, College of Science; China University of Petroleum (East China); No. 66, Changjiang West Road, Huangdao District Qingdao China 266580, Fax: +86 532 8698 3374, Tel: +86 532 8698 1571
| |
Collapse
|
33
|
Zeng X, Deng H, Jia X, Cui L, Li J, Li C, Fang J. Construction of [2]rotaxane-based supramolecular polymers driven by wheel-stopper π⋯π interactions. Chem Commun (Camb) 2018; 54:11634-11637. [DOI: 10.1039/c8cc07188h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new strategy for supramolecular polymerization is designed and presented, which is based on the wheel-stopper charge-transfer interactions of [2]rotaxanes.
Collapse
Affiliation(s)
- Xianqiang Zeng
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Hongmei Deng
- Laboratory for Microstructures, Instrumental Analysis and Research Center of Shanghai University
- Shanghai 200444
- P. R. China
| | - Xueshun Jia
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Lei Cui
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Jian Li
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Chunju Li
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Jianhui Fang
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
34
|
Ding JD, Chen JF, Lin Q, Yao H, Zhang YM, Wei TB. A multi-stimuli responsive metallosupramolecular polypseudorotaxane gel constructed by self-assembly of a pillar[5]arene-based pseudo[3]rotaxane via zinc ion coordination and its application for highly sensitive fluorescence recognition of metal ions. Polym Chem 2018. [DOI: 10.1039/c8py01319e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel pillar[5]arene-based metallosupramolecular polypseudorotaxane gel has been successfully prepared.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|
35
|
Guo M, Wang X, Zhan C, Demay-Drouhard P, Li W, Du K, Olson MA, Zuilhof H, Sue ACH. Rim-Differentiated C 5-Symmetric Tiara-Pillar[5]arenes. J Am Chem Soc 2017; 140:74-77. [PMID: 29220153 PMCID: PMC5765533 DOI: 10.1021/jacs.7b10767] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The synthesis of
“rim-differentiated” C5-symmetric
pillar[5]arenes, whose two rims are decorated
with different chemical functionalities, has remained a challenging
task. This is due to the inherent statistical nature of the cyclization
of 1,4-disubstituted alkoxybenzenes with different substituents, which
leads to four constitutional isomers with only 1/16th being rim-differentiated.
Herein, we report a “preoriented” synthetic protocol
based on FeCl3-catalyzed cyclization of asymmetrically
substituted 2,5-dialkoxybenzyl alcohols. This yields an unprecedented
55% selectivity of the C5-symmetric tiara-like
pillar[5]arene isomer among four constitutional isomers. Based on
this new method, a series of functionalizable tiara-pillar[5]arene
derivatives with C5-symmetry was successfully
synthesized, isolated, and fully characterized in the solid state.
Collapse
Affiliation(s)
- Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University , 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Xuemei Wang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University , 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Caihong Zhan
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University , 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Paul Demay-Drouhard
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University , 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Wenjiao Li
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University , 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Ke Du
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University , 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Mark A Olson
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University , 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University , 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China.,Laboratory of Organic Chemistry, Wageningen University , Stippeneng 4, 6703 WE Wageningen, The Netherlands.,Department of Chemical and Materials Engineering, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Andrew C-H Sue
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University , 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| |
Collapse
|
36
|
Zhao W, Chu J, Xie F, Duan Q, He L, Zhang S. Preparation and evaluation of pillararene bonded silica gel stationary phases for high performance liquid chromatography. J Chromatogr A 2017; 1485:44-51. [DOI: 10.1016/j.chroma.2016.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 12/03/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
|
37
|
Ding J, Chen J, Mao W, Huang J, Ma D. A new synthetic method for non-symmetric pillar[5]arenes with simple isolation and improved yield. Org Biomol Chem 2017; 15:7894-7897. [DOI: 10.1039/c7ob02013a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a new synthetic method for non-symmetric pillar[n]arenes, which has improved yield and simple isolation.
Collapse
Affiliation(s)
- Jiaming Ding
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Jiafu Chen
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Weipeng Mao
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Junrou Huang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Da Ma
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
38
|
Wei TB, Chen JF, Cheng XB, Li H, Han BB, Yao H, Zhang YM, Lin Q. Construction of stimuli-responsive supramolecular gel via bispillar[5]arene-based multiple interactions. Polym Chem 2017. [DOI: 10.1039/c7py00335h] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A linear supramolecular polymer has been constructed from host–guest recognition. Furthermore, the linear supramolecular polymer could self-assemble to form a supramolecular gel at high concentration, which exhibited external stimuli-responsiveness.
Collapse
Affiliation(s)
- Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Xiao-Bin Cheng
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hui Li
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Bing-Bing Han
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
39
|
Yang C, Shi H, Li S, Li Q. Hindrance of photodimerization of coumarin derivative induced by pillar[5]arene-based molecular recognition in water. RSC Adv 2017. [DOI: 10.1039/c6ra26741f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An easy and simple method for the impediment of the photodimerization of coumarin derivative induced by pillar[5]arene-based molecular recognition was provided. Moreover, we successfully use this system in supra-amphiphile self-assembly in water.
Collapse
Affiliation(s)
- Chunwen Yang
- College of Chemical Engineering
- Lanzhou University of Arts and Science
- Lanzhou
- P. R. China
| | - Haixiong Shi
- College of Chemical Engineering
- Lanzhou University of Arts and Science
- Lanzhou
- P. R. China
| | - Shanshan Li
- College of Chemical Engineering
- Lanzhou University of Arts and Science
- Lanzhou
- P. R. China
| | - Qiao Li
- College of Chemical Engineering
- Lanzhou University of Arts and Science
- Lanzhou
- P. R. China
| |
Collapse
|
40
|
Saba H, An J, Yang Y, Xue M, Liu Y. Voltammetric Behavior of 1,4-Dimethoxypillar[m]arene[n]quinones. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
Ogoshi T, Yamagishi TA, Nakamoto Y. Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. Chem Rev 2016; 116:7937-8002. [PMID: 27337002 DOI: 10.1021/acs.chemrev.5b00765] [Citation(s) in RCA: 928] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In 2008, we reported a new class of pillar-shaped macrocyclic hosts, known as "pillar[n]arenes". Today, pillar[n]arenes are recognized as key players in supramolecular chemistry because of their facile synthesis, unique pillar shape, versatile functionality, interesting host-guest properties, and original supramolecular assembly characteristics, which have resulted in numerous electrochemical and biomedical material applications. In this Review, we have provided historical background to macrocyclic chemistry, followed by a detailed discussion of the fundamental properties of pillar[n]arenes, including their synthesis, structure, and host-guest properties. Furthermore, we have discussed the applications of pillar[n]arenes to materials science, as well as their applications in supramolecular chemistry, in terms of their fundamental properties. Finally, we have described the future perspectives of pillar[n]arene chemistry. We hope that this Review will provide a useful reference for researchers working in the field and inspire discoveries concerning pillar[n]arene chemistry.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan.,Japan Science and Technology Agency, PRESTO , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshiaki Nakamoto
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
42
|
Hong M, Zhang YM, Liu YC, Liu Y. Supramolecular Polymerization of a Pillar[5]arene Induced by a Symmetric Biaryl Sulfonate with Dual Binding Sites. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201500448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Meiling Hong
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Ying-Ming Zhang
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Yan-Cen Liu
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
| | - Yu Liu
- Department of Chemistry; State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 P. R. China
| |
Collapse
|
43
|
Wang Y, Ping G, Li C. Efficient complexation between pillar[5]arenes and neutral guests: from host–guest chemistry to functional materials. Chem Commun (Camb) 2016; 52:9858-72. [DOI: 10.1039/c6cc03999e] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This feature article covers the molecular recognition of pillar[5]arenes and neutral guests, and its application in making supramolecular structures, polymers and functional materials.
Collapse
Affiliation(s)
- Yiliang Wang
- Department of Chemistry
- Shanghai University
- Shanghai
- P. R. China
| | - Guchuan Ping
- Department of Chemistry
- Shanghai University
- Shanghai
- P. R. China
| | - Chunju Li
- Department of Chemistry
- Shanghai University
- Shanghai
- P. R. China
| |
Collapse
|
44
|
Xue M, Xu X, An J, Wang J, Yang Y, Liu Y. Pillar[5]arene derivatives containing two dinitrophenyl rings: syntheses, conformations and the tubular self assembly in the solid state. RSC Adv 2016. [DOI: 10.1039/c5ra28117b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pillar[5]arene derivatives with two dinitrophenyl rings were synthesized in 90% and 99% yields, respectively. The di(2,4-dinitro-5-fluoro-phenyl)-modified pillar[5]arene self assembled into column in the solid state.
Collapse
Affiliation(s)
- Min Xue
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Xiaoyan Xu
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Jianggen An
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Jie Wang
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Yong Yang
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Yongsong Liu
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| |
Collapse
|
45
|
Wang K, Cui JH, Xing SY, Dou HX. Molecular binding behavior of water-soluble calix[4]arenes with asymmetric 4,4′-bipyridinium guests in aqueous solution: regioselective recognition or not? Org Biomol Chem 2016; 14:10804-10811. [DOI: 10.1039/c6ob02105k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique regioselective recognition of N-methyl-N′-(naphthalen-2-ylmethyl)-4,4′-bipyridinium bromide iodide using a p-sulfonatocalix[4]arene was found.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
| | - Jian-Hua Cui
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
| | - Si-Yang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
| | - Hong-Xi Dou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Ministry of Education
- College of Chemistry
- Tianjin Normal University
| |
Collapse
|
46
|
Wang H, Xing H, Ji X. A multiple-responsive water-soluble [3]pseudorotaxane constructed by pillar[5]arene-based molecular recognition and disulfide bond connection. RSC Adv 2016. [DOI: 10.1039/c5ra22811e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A multiple-responsive water-soluble [3]pseudorotaxane was constructed by water-soluble pillar[5]arene-based molecular recognition and disulfide bond connection.
Collapse
Affiliation(s)
- Hu Wang
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P. R. China
| | - Hao Xing
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P. R. China
| | - Xiaofan Ji
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P. R. China
| |
Collapse
|
47
|
Xing H, Shi B. Supramolecular main-chain polycatenanes formed by orthogonal metal ion coordination and pillar[5]arene-based host–guest interaction. Polym Chem 2016. [DOI: 10.1039/c6py01617k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel supramolecular main-chain polycatenane was constructed by coordination-driven self-assembly, host–guest interaction and supramolecular polymerization.
Collapse
Affiliation(s)
- Hao Xing
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Bingbing Shi
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
48
|
Xia D, Wei P, Shi B, Huang F. A pillar[6]arene-based [2]pseudorotaxane in solution and in the solid state and its photo-responsive self-assembly behavior in solution. Chem Commun (Camb) 2015; 52:513-6. [PMID: 26530453 DOI: 10.1039/c5cc08038j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pillar[6]arene-based [2]pseudorotaxane was constructed in solution and studied in the solid state, and its photo-responsive self-assembly behavior in solution was investigated.
Collapse
Affiliation(s)
- Danyu Xia
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | |
Collapse
|
49
|
Li Q, Han K, Li J, Jia X, Li C. Synthesis of dendrimer-functionalized pillar[5]arenes and their self-assembly to dimeric and trimeric complexes. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.04.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Li C. Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates. Chem Commun (Camb) 2015; 50:12420-33. [PMID: 25033095 DOI: 10.1039/c4cc03170a] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pillar[n]arenes (P[n]As) and their derivatives, consisting of (substituted) hydroquinone units linked by methylene bridges at para-positions, are new type of cyclophane hosts developed in 2008. Their intrinsic characteristics and properties, such as facile preparation and flexible modification, symmetrical and columnar architectures, very rigid and π-rich cavities, as well as intriguing and peculiar guest complexation capability, make them ideal building blocks for the fabrication of polymeric supramolecules. This Feature Article provides an overview of the construction of pillararene-based supramolecular polymers and covers recent research endeavors of the marriage between pillararene-based host-guest pairs and polymeric aggregates. These polymers are classified into two major classes according to the different types of guest species: (1) supramolecular polymers relying on pillararene-based cationic guest recognition; (2) supramolecular polymers relying on pillararene-based neutral guest recognition. The host-guest motifs, building strategies, topological architectures, stimuli-responsiveness and functionalities are comprehensively discussed.
Collapse
Affiliation(s)
- Chunju Li
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|