1
|
Hassan S, Bilal M, Khalid S, Rasool N, Imran M, Shah AA. Cobalt-catalyzed reductive cross-coupling: a review. Mol Divers 2024:10.1007/s11030-024-11017-1. [PMID: 39466351 DOI: 10.1007/s11030-024-11017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Transition-metal-catalyzed reductive cross-coupling is highly efficient for forming C-C bonds. It earns its limelight from its application by coupling unreactive electrophilic substrates to synthesize a variety of carbon-carbon bonds with various hybridizations (sp, sp2, and sp3), late-stage functionalization, and bioactive molecules' synthesis. Reductive cross-coupling is challenging to bring selectivity but promising approach. Cobalt is comparatively more affordable than other highly efficient metals e.g., palladium and nickel but cobalt catalysis is still facing efficacy challenges. Researchers are trying to harness the maximum out of cobalt's catalytic properties. Shortly, with efficiency achieved combined with the affordability of cobalt, it will revolutionize industrial applications. This review gives insight into the core of cobalt-catalyzed reductive cross-coupling reactions with a variety of substrates forming a range of differently hybridized coupled products.
Collapse
Affiliation(s)
- Shamoon Hassan
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), University Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
2
|
Xu L, Wang X, Yang D, Yang X, Wang D. Direct C3-H Alkylation and Alkenylation of Quinolines with Enones. Angew Chem Int Ed Engl 2024:e202416451. [PMID: 39297203 DOI: 10.1002/anie.202416451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Indexed: 11/01/2024]
Abstract
Conversion of quinoline C-H bonds into C-C bonds is essential for obtaining the enormous array of derivatives required for pharmaceutical and agrochemical development. Despite over a century of synthetic efforts, direct alkylation and alkenylation at C3-H positions in a wide array of quinoline precursors remain predominantly challenging and elusive. This report outlines the first successful quinoline C3-H alkylation and alkenylation reactions, exhibiting exceptional regio- and stereoselectivity, all achieved under redox-neutral and transition-metal-free conditions. The method involves a three-step, one-pot or two-pot sequence, including 1,4-dearomative addition, functionalization at C3, and elimination or transalkylation to produce 3-alkylated/alkenylated quinolines. The presence of a carbonyl group in these products allows for further synthetic manipulations, enabling the production of cyanides, amides, amines, and simple alkyl derivatives.
Collapse
Affiliation(s)
- Liqing Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, China
| | - Xu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, China
| | - Dezhi Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, China
| | - Xiaolong Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, China
| | - Dong Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, China
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, No. 777, Hua Rui Street, Shui Mo Gou District, 830046, Urumqi, China
| |
Collapse
|
3
|
Liu YL, He XC, Gao J, Li KR, Chen K, Xiang HY, Yang H. Visible Light-Induced, Nickel-Catalyzed Late-Stage 4-Alkylation of Hantzsch Esters with Alkyl Bromide. J Org Chem 2024; 89:10987-10997. [PMID: 39037887 DOI: 10.1021/acs.joc.4c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Herein, visible light-induced, nickel-catalyzed direct functionalization of the Hantzsch esters (HEs) with readily accessible alkyl bromides has been successfully achieved by taking advantage of HE as the reductant and substrate through an aromatization-dearomatization process. In this strategy, the single electron reduction of alkyl bromides by reactive Ni(I) species is essential for the success of this late-stage transformation. A wide range of 4-alkyl-1,4-dihydropyridines were rapidly assembled in moderate to good yields under mild conditions, rendering this photoinduced approach attractive for synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Yan-Ling Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Rong Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
4
|
Ratnam S, Unone S, Janssen-Müller D. 2,2'-Biquinoline-Based Recyclable Electroauxiliaries for the Generation of Alkyl Radicals via C-C Bond Cleavage. Chemistry 2023; 29:e202301685. [PMID: 37265104 DOI: 10.1002/chem.202301685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/03/2023]
Abstract
Alkyl radical precursors are essential for a wide variety of photocatalytic and 3d-metal-catalyzed C-C bond forming reactions. Neutral organic heterocycles as electroauxiliaries such as 4-alkyl Hantzsch esters have become reliable tools for alkyl radical formation. Here we show that 2,2'-biquinoline-derived alkyl-substituted dihydroquinolines act as competent radical precursors with the ability to form primary, secondary and tertiary alkyl radicals. Hydroalkylation of benzalmalononitriles and N-Boc protected diazenes has been achieved through copper catalysis under mild conditions of 50 °C with good to very good yields of up to 85 %. Furthermore, the dihydroquinolines' reactivity towards a denitrative alkylation of nitroolefins such as β-nitrostyrene was discovered. Most importantly, the released biquinoline can be recycled, which greatly improves the overall atom-economy of these alkyl radical precursors in comparison to previous N-heterocyclic electroauxiliaries.
Collapse
Affiliation(s)
- Shahilan Ratnam
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Shreya Unone
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Daniel Janssen-Müller
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
5
|
Xu L, Shi H. Ruthenium-Catalyzed Activation of Nonpolar C-C Bonds via π-Coordination-Enabled Aromatization. Angew Chem Int Ed Engl 2023; 62:e202307285. [PMID: 37379224 DOI: 10.1002/anie.202307285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Activation of C-C bonds allows editing of molecular skeletons, but methods for selective activation of nonpolar C-C bonds in the absence of a chelation effect or a driving force derived from opening of a strained ring are scarce. Herein, we report a method for ruthenium-catalyzed activation of nonpolar C-C bonds of pro-aromatic compounds by means of π-coordination-enabled aromatization. This method was effective for cleavage of C-C(alkyl) and C-C(aryl) bonds and for ring-opening of spirocyclic compounds, providing an array of benzene-ring-containing products. The isolation of a methyl ruthenium complex intermediate supports a mechanism involving ruthenium-mediated C-C bond cleavage.
Collapse
Affiliation(s)
- Lun Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
6
|
Yu WQ, Xiong BQ, Zhong LJ, Liu Y. Visible-light-promoted radical cascade alkylation/cyclization: access to alkylated indolo/benzoimidazo[2,1- a]isoquinolin-6(5 H)-ones. Org Biomol Chem 2022; 20:9659-9671. [PMID: 36416184 DOI: 10.1039/d2ob01732f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new protocol is herein described for the direct generation of alkylated indolo/benzoimidazo[2,1-a]isoquinolin-6(5H)-one derivatives by using Hantzsch esters as alkylation radical precursors using a photoredox/K2S2O8 system. This oxidative alkylation of active alkenes involves a radical cascade cyclization process and a sequence of Hantzsch ester single electron oxidation, C-C bond cleavage, alkylation, arylation and oxidative deprotonation.
Collapse
Affiliation(s)
- Wen-Qin Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
7
|
Li L, Zhang SQ, Chen Y, Cui X, Zhao G, Tang Z, Li GX. Photoredox Alkylation of Sulfinylamine Enables the Synthesis of Highly Functionalized Sulfinamides and S(VI) Derivatives. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Ling Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-qi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Yue Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Gang Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-xun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Xiong FT, He BH, Liu Y, Zhou Q, Fan JH. Iron-Promoted Oxidative Alkylation/Cyclization of Ynones with 4-Alkyl-1,4-dihydropyridines: Access to 2-Alkylated Indenones. J Org Chem 2022; 87:8599-8610. [PMID: 35704791 DOI: 10.1021/acs.joc.2c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An iron-promoted oxidative tandem alkylation/cyclization of ynones with 4-alkyl-substituted 1,4-dihydropyridines for the efficient synthesis of 2-alkylated indenones is described. The process occurs via oxidative homolysis of a C-C σ-bond in 1,4-dihydropyridines to generate an alkyl radical followed by the addition of C-C triple bonds in ynones and intramolecular cyclization. A wide range of alkyl radicals could be efficiently transferred to generate a series of synthetically useful 2-alkylated indenones with excellent selectivity under mild conditions.
Collapse
Affiliation(s)
- Fang-Ting Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bin-Hong He
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
9
|
Gao J, Ye ZP, Liu YF, He XC, Guan JP, Liu F, Chen K, Xiang HY, Chen XQ, Yang H. Visible-Light-Promoted Cross-Coupling of O-Aryl Oximes and Nitrostyrenes to Access Cyanoalkylated Alkenes. Org Lett 2022; 24:4640-4644. [PMID: 35729079 DOI: 10.1021/acs.orglett.2c01750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A photoinduced, photocatalyst-free cyanoalkylation of nitrostyenes was explored, affording a series of cyanoalkylated alkenes in moderate to good yields. Mechanistic studies reveal that an electron donor-acceptor complex formed between O-aryl oximes and DIPEA is presumably involved in this process. The excellent functional group compatibility of this newly designed synthetic protocol allows for cyanoalkylation of structurally varied substrates, which offers an eco-friendly pathway for the assembly of cyanoalkylated alkenes.
Collapse
Affiliation(s)
- Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yu-Fei Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan P.R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| |
Collapse
|
10
|
Chen P, Fan JH, Yu WQ, Xiong BQ, Liu Y, Tang KW, Xie J. Alkylation/Ipso-cyclization of Active Alkynes Leading to 3-Alkylated Aza- and Oxa-spiro[4,5]-trienones. J Org Chem 2022; 87:5643-5659. [PMID: 35416658 DOI: 10.1021/acs.joc.1c03118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method for the preparation of 3-alkylated spiro[4.5]trienones via alkylation/ipso-cyclization of activated alkynes with 4-alkyl-DHPs under transition-metal-free conditions is proposed. This alkylation successively undergoes the generation of alkyl radicals, addition of alkyl radicals to the alkynes, and intramolecular ipso-cyclization. The mechanism studies suggest that the alkylation/ipso-cyclization involves a radical process. This ipso-cyclization procedure shows a series of advantages, such as accessibility, mild conditions, high efficiency, greater safety, and an environmentally friendly method.
Collapse
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wen-Qin Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
11
|
Corcé V, Ollivier C, Fensterbank L. Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization. Chem Soc Rev 2022; 51:1470-1510. [PMID: 35113115 DOI: 10.1039/d1cs01084k] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments in the use of boron, silicon, nitrogen and sulfur derivatives in single-electron transfer reactions for the generation of alkyl radicals are described. Photoredox catalyzed, electrochemistry promoted or thermally-induced oxidative and reductive processes are discussed highlighting their synthetic scope and discussing their mechanistic pathways.
Collapse
Affiliation(s)
- Vincent Corcé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| |
Collapse
|
12
|
Yao Z, Zhang X, Luo Z, Pan Y, Zhao H, Li B, Xu L, Shi Q, Fan Q. Na
2
S
2
O
8
‐Mediated Tandem One‐Pot Construction of 3,3‐Disubsituted 3,4‐Dihydroquinoxalin‐2(1
H
)‐ones with 4‐Alkyl‐1,4‐dihydropyridines as Alkyl Radical Sources. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhen Yao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Zhenli Luo
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Yixiao Pan
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Bohan Li
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Qian Shi
- College of Chemistry & Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Qing‐Hua Fan
- Institute of Chemistry Chinese Academy of Sciences
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
13
|
Chen X, Luo X, Wang P. Electrochemical-induced Radical Allylation via the Fragmentation of Alkyl 1,4-Dihydropyridines. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Yu WQ, Fan JH, Chen P, Xiong B, Xie J, Tang K, Liu Y. Transition-Metal-Free Alkylation Strategy: A Facile Access of Alkylated Oxindoles via Alkyl Transfer. Org Biomol Chem 2022; 20:1958-1968. [DOI: 10.1039/d2ob00019a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient transition-metal-free alkylation/cyclization of activated alkenes using Hantzsch ester derivatives as effective alkyl reagents was described. A wide variety of valuable oxindoles were constructed in a single step with...
Collapse
|
15
|
Zhang D, Tang ZL, Ouyang XH, Song RJ, Li JH. Copper-catalyzed oxidative decarboxylative alkylation of cinnamic acids with 4-alkyl-1,4-dihydropyridines. Chem Commun (Camb) 2020; 56:14055-14058. [PMID: 33103675 DOI: 10.1039/d0cc06401g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have developed a new oxidative decarboxylation of cinnamic acids with 4-alkyl-1,4-dihydropyridines to construct C(sp3)-C(sp2) bonds in the presence of copper catalyst and dicumyl peroxide (DCP). A variety of internal alkenes have been obtained with mild conditions, broad substrate scope and excellent functional group tolerance. This method has significant potential for application by using inexpensive and stable cinnamic acids instead of alkenyl halides and nitro-olefins.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Zi-Liang Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
|
17
|
Uchikura T, Toda M, Mouri T, Fujii T, Moriyama K, Ibáñez I, Akiyama T. Radical Hydroalkylation and Hydroacylation of Alkenes by the Use of Benzothiazoline under Thermal Conditions. J Org Chem 2020; 85:12715-12723. [PMID: 32900192 DOI: 10.1021/acs.joc.0c01872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydroalkylation and hydroacylation of electron-deficient alkenes proceeded smoothly by using benzothiazoline derivatives as radical-transfer reagents under thermal conditions without light irradiation or any additive. Both benzyl and benzoyl moieties were transferred efficiently.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Mitsuhiro Toda
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Toshiki Mouri
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Tatsuya Fujii
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Kaworuko Moriyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Ignacio Ibáñez
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
18
|
Palladium-catalyzed reaction of γ-silylated allyl acetates proceeding through 1,2-shift of a substituent on silicon. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Wang Q, Duan J, Tang P, Chen G, He G. Synthesis of non-classical heteroaryl C-glycosides via Minisci-type alkylation of N-heteroarenes with 4-glycosyl-dihydropyridines. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9813-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Denitrative Cross-Couplings of Nitrostyrenes. Molecules 2020; 25:molecules25153390. [PMID: 32726964 PMCID: PMC7435674 DOI: 10.3390/molecules25153390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022] Open
Abstract
Interestingly, β-nitrostyrenes, typically bench stable compounds, are highly promising cross-coupling partners, due to their excellent availability and well understood reactivity. In this review, we report on the discovery and advancements, in the field of stereoselective, denitrative cross-couplings of β-nitrostyrenes with miscellaneous organic reagents. The rapidly expanding field offers alternative access to a broad range of functionalized alkenes, including β-alkylated styrenes, chalcones, stilbenes, cinnamic acids, and conjugated sulfones and phosphonates. The most important mechanistic pathways are briefly discussed, to familiarize readers with the elementary reactions occurring during the coupling.
Collapse
|
21
|
Yu XY, Chen JR, Xiao WJ. Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chem Rev 2020; 121:506-561. [DOI: 10.1021/acs.chemrev.0c00030] [Citation(s) in RCA: 360] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao-Ye Yu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
22
|
Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongyuan Gao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Lei Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
23
|
Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020; 59:10859-10863. [DOI: 10.1002/anie.202001571] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yongyuan Gao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Lei Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
24
|
Zhang S, Li Y, Wang J, Hao X, Jin K, Zhang R, Duan C. A photocatalyst-free photo-induced denitroalkylation of β-nitrostyrenes with 4-alkyl substituted Hantzsch esters at room temperature. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Angnes RA, Potnis C, Liang S, Correia CRD, Hammond GB. Photoredox-Catalyzed Synthesis of Alkylaryldiazenes: Formal Deformylative C-N Bond Formation with Alkyl Radicals. J Org Chem 2020; 85:4153-4164. [PMID: 32056435 DOI: 10.1021/acs.joc.9b03341] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diazenes are valuable compounds that have found broad applicability because of their optical and biological properties. We report the synthesis of alkylaryldiazenes via formal, photoredox-catalyzed, deformylative C-N bond formation. The procedure employs dihydropyridines for the generation of alkyl radicals, which are then trapped by diazonium salts and reduced to the corresponding diazenes. Control experiments were performed to confirm the involvement of radicals in the mechanism. The reaction can be carried out at room temperature and employs readily available reagents; the mild conditions allowed the use of highly functionalized substrates. There was no observed tautomerization of the diazenes to the corresponding arylhydrazones.
Collapse
Affiliation(s)
- Ricardo A Angnes
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States.,Chemistry Institute, University of Campinas, C.P. 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Chinmay Potnis
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Shengzong Liang
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Carlos Roque D Correia
- Chemistry Institute, University of Campinas, C.P. 6154, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
26
|
Huang J, Ding F, Rojsitthisak P, He FS, Wu J. Recent advances in nitro-involved radical reactions. Org Chem Front 2020. [DOI: 10.1039/d0qo00563k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Significant progress in the chemistry of nitro radicals has been witnessed in the past decades, providing efficient and rapid access to nitro-containing compounds. This review describes recent advances in nitro-involved radical reactions, and summarizes various transformations.
Collapse
Affiliation(s)
- Jiapian Huang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Feng Ding
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry
- Faculty of Pharmaceutical Sciences
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
27
|
Wang J, Pang YB, Tao N, Zeng RS, Zhao Y. Mn-Enabled Radical-Based Alkyl-Alkyl Cross-Coupling Reaction from 4-Alkyl-1,4-dihydropyridines. J Org Chem 2019; 84:15315-15322. [PMID: 31671948 DOI: 10.1021/acs.joc.9b02323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Highly efficient alkylation of β-chloro ketones and their derivatives was achieved by means of domino dehydrochlorination/Mn-enabled radical-based alkyl-alkyl cross-coupling reaction. In situ-generated α,β-unsaturated ketones and their analogues were identified as the reaction intermediates. Known bioactive compounds, such as melperone and azaperone, could be easily prepared from β-chloropropiophenone in two steps.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yu-Bo Pang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Na Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Run-Sheng Zeng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
28
|
Liang S, Angnes RA, Potnis CS, Hammond GB. Photoredox catalyzed C(sp3) C(sp) coupling of dihydropyridines and alkynylbenziodoxolones. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Xie S, Li D, Huang H, Zhang F, Chen Y. Intermolecular Radical Addition to Ketoacids Enabled by Boron Activation. J Am Chem Soc 2019; 141:16237-16242. [DOI: 10.1021/jacs.9b09099] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shasha Xie
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Defang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Hanchu Huang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Fuyuan Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
30
|
Nakajima K, Zhang Y, Nishibayashi Y. Alkylation Reactions of Azodicarboxylate Esters with 4-Alkyl-1,4-Dihydropyridines under Catalyst-Free Conditions. Org Lett 2019; 21:4642-4645. [PMID: 31145630 DOI: 10.1021/acs.orglett.9b01537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Introduction of alkyl groups on azodicarboxylate esters is an important method to prepare alkyl amine derivatives. Herein, we report reactions of 4-alkyl-1,4-dihydropyridines as alkylation reagents with di- tert-butyl azodicarboxylate to prepare alkyl amine derivatives under heating conditions. The alkylation reactions via C-C bond cleavage of the dihydropyridines are achieved in the absence of catalysts and additives.
Collapse
Affiliation(s)
- Kazunari Nakajima
- Frontier Research Center for Energy and Resources, School of Engineering , The University of Tokyo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Yulin Zhang
- Department of Systems Innovation, School of Engineering , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation, School of Engineering , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| |
Collapse
|
31
|
Ye S, Li X, Xie W, Wu J. Photoinduced Sulfonylation Reactions through the Insertion of Sulfur Dioxide. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900396] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shengqing Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies; Taizhou University; 1139 Shifu Avenue 318000 Taizhou China
| | - Xiaofang Li
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; 411201 Xiangtan China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; 411201 Xiangtan China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies; Taizhou University; 1139 Shifu Avenue 318000 Taizhou China
- Department of Chemistry; Fudan University; 2005 Songhu Road 200438 Shanghai China
| |
Collapse
|
32
|
Wu QY, Min QQ, Ao GZ, Liu F. Radical alkylation of para-quinone methides with 4-substituted Hantzsch esters/nitriles via organic photoredox catalysis. Org Biomol Chem 2019; 16:6391-6394. [PMID: 30141823 DOI: 10.1039/c8ob01641k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel photocatalytic protocol is herein described for the preparation of functionalized phenols via radical alkylation of para-quinone methides under transition-metal-free conditions. The reaction is external oxidant free and performed at ambient temperature upon visible light irradiation, allowing the access to various desired products in satisfactory yields. The readily available 4-alkyl-1,4-dihydropyridines serve as the effective alkyl radical precursors.
Collapse
Affiliation(s)
- Qing-Yan Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China.
| | | | | | | |
Collapse
|
33
|
Song ZY, Zhang CL, Ye S. Visible light promoted coupling of alkynyl bromides and Hantzsch esters for the synthesis of internal alkynes. Org Biomol Chem 2019; 17:181-185. [PMID: 30534692 DOI: 10.1039/c8ob02912a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A metal-free visible light promoted C(sp3)-C(sp) coupling reaction of alkynyl bromides and Hantzsch esters was developed, giving internal alkynes with primary, secondary, tertiary alkyl or other functional groups in good to high yields.
Collapse
Affiliation(s)
- Zhi-Yong Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | |
Collapse
|
34
|
Uchikura T, Moriyama K, Toda M, Mouri T, Ibáñez I, Akiyama T. Benzothiazolines as radical transfer reagents: hydroalkylation and hydroacylation of alkenes by radical generation under photoirradiation conditions. Chem Commun (Camb) 2019; 55:11171-11174. [DOI: 10.1039/c9cc05336k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel radical transfer reagents under photoirradiation conditions were developed by the use of benzothiazoline derivatives.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| | - Kaworuko Moriyama
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| | - Mitsuhiro Toda
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| | - Toshiki Mouri
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| | - Ignacio Ibáñez
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| | - Takahiko Akiyama
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| |
Collapse
|
35
|
Sivaguru P, Wang Z, Zanoni G, Bi X. Cleavage of carbon–carbon bonds by radical reactions. Chem Soc Rev 2019; 48:2615-2656. [DOI: 10.1039/c8cs00386f] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review provides insights into the in situ generated radicals triggered carbon–carbon bond cleavage reactions.
Collapse
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
36
|
Wang X, Yang M, Xie W, Fan X, Wu J. Photoredox-catalyzed hydrosulfonylation reaction of electron-deficient alkenes with substituted Hantzsch esters and sulfur dioxide. Chem Commun (Camb) 2019; 55:6010-6013. [DOI: 10.1039/c9cc03004b] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A sulfonylation reaction of 4-substituted Hantzsch esters, DABCO·(SO2)2, and electron-deficient alkenes at room temperature in the presence of photoredox catalysis under visible light irradiation is described.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Min Yang
- Gannan Medical University Collaborative Innovation Center for Gannan Oil-tea Camellia Industrial Development
- Ganzhou 341000
- China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Xiaona Fan
- Gannan Medical University Collaborative Innovation Center for Gannan Oil-tea Camellia Industrial Development
- Ganzhou 341000
- China
| | - Jie Wu
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
37
|
Wang PZ, Chen JR, Xiao WJ. Hantzsch esters: an emerging versatile class of reagents in photoredox catalyzed organic synthesis. Org Biomol Chem 2019; 17:6936-6951. [DOI: 10.1039/c9ob01289c] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This minireview highlights the recent advances in the chemistry of Hantzsch esters in photoredox catalyzed organic synthesis, with particular emphasis placed on reaction mechanisms.
Collapse
Affiliation(s)
- Peng-Zi Wang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Jia-Rong Chen
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| |
Collapse
|
38
|
Wang X, Li H, Qiu G, Wu J. Substituted Hantzsch esters as radical reservoirs with the insertion of sulfur dioxide under photoredox catalysis. Chem Commun (Camb) 2019; 55:2062-2065. [DOI: 10.1039/c8cc10246e] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-component reaction between 4-substituted Hantzsch esters, DABCO·(SO2)2, and vinyl azides in the presence of photoredox catalysts under visible light irradiation is developed. A range of (Z)-2-(alkylsulfonyl)-1-arylethen-1-amines is obtained in moderate to good yields with good regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Chemistry
- Fudan University
- 2005 Songhu Road
- Shanghai 200438
- China
| | - Haozhe Li
- Department of Chemistry
- Fudan University
- 2005 Songhu Road
- Shanghai 200438
- China
| | - Guanyinsheng Qiu
- Department of Chemistry
- Fudan University
- 2005 Songhu Road
- Shanghai 200438
- China
| | - Jie Wu
- Department of Chemistry
- Fudan University
- 2005 Songhu Road
- Shanghai 200438
- China
| |
Collapse
|
39
|
Nakajima K, Guo X, Nishibayashi Y. Cross-Coupling Reactions of Alkenyl Halides with 4-Benzyl-1,4- Dihydropyridines Associated with E
to Z
Isomerization under Nickel and Photoredox Catalysis. Chem Asian J 2018; 13:3653-3657. [DOI: 10.1002/asia.201801542] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Kazunari Nakajima
- Frontier Research Center for Energy and Resources; School of Engineering; The University of Tokyo; Bunkyo-ku Tokyo 113-8656 Japan
| | - Xifeng Guo
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
40
|
Liu X, Liu R, Dai J, Cheng X, Li G. Application of Hantzsch Ester and Meyer Nitrile in Radical Alkynylation Reactions. Org Lett 2018; 20:6906-6909. [DOI: 10.1021/acs.orglett.8b03050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xu Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruoyu Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Dai
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guigen Li
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
41
|
Guan W, Liao J, Watson MP. Vinylation of Benzylic Amines via C-N Bond Functionalization of Benzylic Pyridinium Salts. SYNTHESIS-STUTTGART 2018; 50:3231-3237. [PMID: 30174353 PMCID: PMC6112771 DOI: 10.1055/s-0037-1610084] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cross-couplings of benzylic pyridinium salts and vinylboronic acids or esters have been developed. Via these benzylic pyridinium intermediates, benzylic amines can be engaged in these cross-couplings via C-N bond functionalization. This method boasts mild reaction conditions and excellent tolerance for heteroaryl substituents and a range of functional groups.
Collapse
Affiliation(s)
- Weiye Guan
- Department of Chemistry and Biochemistry, University of Delaware, 19716, USA
| | - Jennie Liao
- Department of Chemistry and Biochemistry, University of Delaware, 19716, USA
| | - Mary P Watson
- Department of Chemistry and Biochemistry, University of Delaware, 19716, USA
| |
Collapse
|
42
|
Gu F, Huang W, Liu X, Chen W, Cheng X. Substituted Hantzsch Esters as Versatile Radical Reservoirs in Photoredox Reactions. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701348] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangjun Gu
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 People's Republic of China
| | - Wenhao Huang
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 People's Republic of China
| | - Xu Liu
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 People's Republic of China
| | - Wenxin Chen
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 People's Republic of China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 People's Republic of China
- State Key Laboratory of Elemento-organic Chemistry; Nankai University; Tianjin People's Republic of China
| |
Collapse
|
43
|
Gutiérrez-Bonet Á, Remeur C, Matsui JK, Molander GA. Late-Stage C-H Alkylation of Heterocycles and 1,4-Quinones via Oxidative Homolysis of 1,4-Dihydropyridines. J Am Chem Soc 2017; 139:12251-12258. [PMID: 28832137 PMCID: PMC5599171 DOI: 10.1021/jacs.7b05899] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Under oxidative conditions, 1,4-dihydropyridines (DHPs) undergo a homolytic cleavage, forming exclusively a Csp3-centered radical that can engage in the C-H alkylation of heterocyclic bases and 1,4-quinones. DHPs are readily prepared from aldehydes, and considering that aldehydes normally require harsh reaction conditions to take part in such transformations, with mixtures of alkylated and acylated products often being obtained, this net decarbonylative alkylation approach becomes particularly useful. The present method takes place under mild reaction conditions and requires only persulfate as a stoichiometric oxidant, making the procedure suitable for the late-stage C-H alkylation of complex molecules. Notably, structurally complex pharmaceutical agents could be functionalized or prepared with this protocol, such as the antimalarial Atovaquone and antitheilerial Parvaquone, thus evidencing its applicability. Mechanistic studies revealed a likely radical chain process via the formation of a dearomatized intermediate, providing a deeper understanding of the factors governing the reactivity of these radical forebears.
Collapse
Affiliation(s)
| | | | - Jennifer K. Matsui
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
44
|
Cai Y, Benischke AD, Knochel P, Gosmini C. Cobalt-Catalyzed Reductive Cross-Coupling Between Styryl and Benzyl Halides. Chemistry 2016; 23:250-253. [PMID: 27762460 DOI: 10.1002/chem.201603832] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 12/14/2022]
Abstract
A simple and efficient protocol for the direct reductive cross-coupling between alkenyl and benzyl halides using a Co/Mn system has been developed. This reaction proceeds smoothly in the presence of [CoBr2 (PPh3 )2 ] as the catalyst, with NaI as an additive in acetonitrile with a broad scope of functionalized alkenyl and benzyl halides. Different functional groups are tolerated on both coupling partners, thus, significantly extending the general scope of transition-metal-catalyzed benzylation of alkenyl halides. Moderate to excellent yields were also obtained. From a mechanistic point of view, a radical chain mechanism was proposed. This reaction is stereospecific and some studies suggest the retention of the double-bond configuration.
Collapse
Affiliation(s)
- Yingxiao Cai
- LCM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128, Palaiseau, France
| | - Andreas D Benischke
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Corinne Gosmini
- LCM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128, Palaiseau, France
| |
Collapse
|
45
|
Nakajima K, Nojima S, Nishibayashi Y. Nickel- and Photoredox-Catalyzed Cross-Coupling Reactions of Aryl Halides with 4-Alkyl-1,4-dihydropyridines as Formal Nucleophilic Alkylation Reagents. Angew Chem Int Ed Engl 2016; 55:14106-14110. [DOI: 10.1002/anie.201606513] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/18/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Kazunari Nakajima
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Sunao Nojima
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
46
|
Nakajima K, Nojima S, Nishibayashi Y. Nickel- and Photoredox-Catalyzed Cross-Coupling Reactions of Aryl Halides with 4-Alkyl-1,4-dihydropyridines as Formal Nucleophilic Alkylation Reagents. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606513] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kazunari Nakajima
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Sunao Nojima
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
47
|
Chen W, Liu Z, Tian J, Li J, Ma J, Cheng X, Li G. Building Congested Ketone: Substituted Hantzsch Ester and Nitrile as Alkylation Reagents in Photoredox Catalysis. J Am Chem Soc 2016; 138:12312-5. [DOI: 10.1021/jacs.6b06379] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wenxin Chen
- Institute
of Chemistry and Biomedical Sciences, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China
| | - Zheng Liu
- Institute
of Chemistry and Biomedical Sciences, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China
| | - Jiaqi Tian
- Key
Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation
Center of Chemistry for Life Sciences, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China
| | - Jin Li
- Institute
of Chemistry and Biomedical Sciences, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China
| | - Jing Ma
- Key
Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation
Center of Chemistry for Life Sciences, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China
| | - Xu Cheng
- Institute
of Chemistry and Biomedical Sciences, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China
| | - Guigen Li
- Institute
of Chemistry and Biomedical Sciences, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
48
|
Nakajima K, Nojima S, Sakata K, Nishibayashi Y. Visible‐Light‐Mediated Aromatic Substitution Reactions of Cyanoarenes with 4‐Alkyl‐1,4‐dihydropyridines through Double Carbon–Carbon Bond Cleavage. ChemCatChem 2016. [DOI: 10.1002/cctc.201600037] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kazunari Nakajima
- Institute of Engineering Innovation School of Engineering The University of Tokyo, Yayoi, Bunkyo-ku Tokyo 113-8656 Japan
| | - Sunao Nojima
- Institute of Engineering Innovation School of Engineering The University of Tokyo, Yayoi, Bunkyo-ku Tokyo 113-8656 Japan
| | - Ken Sakata
- Faculty of Pharmaceutical Sciences Hoshi University, Ebara, Shinagawa-ku Tokyo 142-8501 Japan
| | - Yoshiaki Nishibayashi
- Institute of Engineering Innovation School of Engineering The University of Tokyo, Yayoi, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
49
|
Xing Q, Lv H, Xia C, Li F. Iron-catalyzed aerobic oxidative cleavage of the C–C σ-bond using air as the oxidant: chemoselective synthesis of carbon chain-shortened aldehydes, ketones and 1,2-dicarbonyl compounds. Chem Commun (Camb) 2016; 52:489-92. [DOI: 10.1039/c5cc07390a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient iron-catalyzed aerobic oxidative cleavage of the C–C bond to generate a number of carbon-shortened carbonyl compounds.
Collapse
Affiliation(s)
- Qi Xing
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Hui Lv
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
50
|
Kim KH, Akiyama T, Cheon CH. Remarkable Differences in Reactivity between Benzothiazoline and Hantzsch Ester as a Hydrogen Donor in Chiral Phosphoric Acid Catalyzed Asymmetric Reductive Amination of Ketones. Chem Asian J 2015; 11:274-9. [PMID: 26482021 DOI: 10.1002/asia.201501020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Kyung-Hee Kim
- Department of Chemistry; Korea University; 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Takahiko Akiyama
- Department of Chemistry; Gakushuin University; 1-5-1 Mejiro, Toshima-ku Tokyo 171-8588 Japan
| | - Cheol-Hong Cheon
- Department of Chemistry; Korea University; 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| |
Collapse
|