1
|
O'Connor PBF. The Evolutionary Transition of the RNA World to Obcells to Cellular-Based Life. J Mol Evol 2024; 92:278-285. [PMID: 38683368 DOI: 10.1007/s00239-024-10171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
The obcell hypothesis is a proposed route for the RNA world to develop into a primitive cellular one. It posits that this transition began with the emergence of the proto-ribosome which enabled RNA to colonise the external surface of lipids by the synthesis of amphipathic peptidyl-RNAs. The obcell hypothesis also posits that the emergence of a predation-based ecosystem provided a selection mechanism for continued sophistication amongst early life forms. Here, I argue for this hypothesis owing to its significant explanatory power; it offers a rationale why a ribosome which initially was capable only of producing short non-coded peptides was advantageous and it forgoes issues related to maintaining a replicating RNA inside a lipid enclosure. I develop this model by proposing that the evolutionary selection for improved membrane anchors resulted in the emergence of primitive membrane pores which enabled obcells to gradually evolve into a cellular morphology. Moreover, I introduce a model of obcell production which advances that tRNAs developed from primers of the RNA world.
Collapse
|
2
|
Kahana A, Lancet D. Self-reproducing catalytic micelles as nanoscopic protocell precursors. Nat Rev Chem 2021; 5:870-878. [PMID: 37117387 DOI: 10.1038/s41570-021-00329-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Protocells at life's origin are often conceived as bilayer-enclosed precursors of life, whose self-reproduction rests on the early advent of replicating catalytic biopolymers. This Perspective describes an alternative scenario, wherein reproducing nanoscopic lipid micelles with catalytic capabilities were forerunners of biopolymer-containing protocells. This postulate gains considerable support from experiments describing micellar catalysis and autocatalytic proliferation, and, more recently, from reports on cross-catalysis in mixed micelles that lead to life-like steady-state dynamics. Such results, along with evidence for micellar prebiotic compatibility, synergize with predictions of our chemically stringent computer-simulated model, illustrating how mutually catalytic lipid networks may enable micellar compositional reproduction that could underlie primal selection and evolution. Finally, we highlight studies on how endogenously catalysed lipid modifications could guide further protocellular complexification, including micelle to vesicle transition and monomer to biopolymer progression. These portrayals substantiate the possibility that protocellular evolution could have been seeded by pre-RNA lipid assemblies.
Collapse
|
3
|
Toparlak Ö, Wang A, Mansy SS. Population-Level Membrane Diversity Triggers Growth and Division of Protocells. JACS AU 2021; 1:560-568. [PMID: 34467319 PMCID: PMC8395648 DOI: 10.1021/jacsau.0c00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 06/01/2023]
Abstract
To date, multiple mechanisms have been described for the growth and division of model protocells, all of which exploit the lipid dynamics of fatty acids. In some examples, the more heterogeneous aggregate consisting of fatty acid and diacyl phospholipid or fatty acid and peptide grows at the expense of the more homogeneous aggregate containing a restricted set of lipids with similar dynamics. Imbalances between surface area and volume during growth can generate filamentous vesicles, which are typically divided by shear forces. Here, we describe another pathway for growth and division that depends simply on differences in the compositions of fatty acid membranes without additional components. Growth is driven by the thermodynamically favorable mixing of lipids between two populations, i.e., the system as a whole proceeds toward equilibrium. Division is the result of growth-induced curvature. Importantly, growth and division do not require a specific composition of lipids. For example, vesicles made from one type of lipid, e.g., short-chain fatty acids, grow and divide when fed with vesicles consisting of another type of lipid, e.g., long-chain fatty acids, and vice versa. After equilibration, additional rounds of growth and division could potentially proceed by the introduction of compositionally distinct aggregates. Since prebiotic synthesis likely gave rise to mixtures of lipids, the data are consistent with the presence of growing and dividing protocells on the prebiotic Earth.
Collapse
Affiliation(s)
- Ö.
Duhan Toparlak
- Department
of Cellular, Computational and Integrative Biology (D-CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | - Anna Wang
- School
of Chemistry and Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Sheref S. Mansy
- Department
of Cellular, Computational and Integrative Biology (D-CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G
2G2, Canada
| |
Collapse
|
4
|
Lopez A, Fayolle D, Fiore M, Strazewski P. Chemical Analysis of Lipid Boundaries after Consecutive Growth and Division of Supported Giant Vesicles. iScience 2020; 23:101677. [PMID: 33163935 PMCID: PMC7609504 DOI: 10.1016/j.isci.2020.101677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
The reproduction of the shape of giant vesicles usually results in the increase of their "population" size. This may be achieved on giant vesicles by appropriately supplying "mother" vesicles with membranogenic amphiphiles. The next "generation" of "daughter" vesicles obtained from this "feeding" is inherently difficult to distinguish from the original mothers. Here we report on a method for the consecutive feeding with different fatty acids that each provoke membrane growth and detachment of daughter vesicles from glass microsphere-supported phospholipidic mother vesicles. We discovered that a saturated fatty acid was carried over to the next generation of mothers better than two unsaturated congeners. This has an important bearing on the growth and replication of primitive compartments at the early stages of life. Microsphere-supported vesicles are also a precise analytical tool.
Collapse
Affiliation(s)
- Augustin Lopez
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Bâtiment Edgar Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne Cedex, France
| | - Dimitri Fayolle
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Bâtiment Edgar Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne Cedex, France
| | - Michele Fiore
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Bâtiment Edgar Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne Cedex, France
| | - Peter Strazewski
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Bâtiment Edgar Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne Cedex, France
| |
Collapse
|
5
|
Lopez A, Fiore M. Investigating Prebiotic Protocells for A Comprehensive Understanding of the Origins of Life: A Prebiotic Systems Chemistry Perspective. Life (Basel) 2019; 9:E49. [PMID: 31181679 PMCID: PMC6616946 DOI: 10.3390/life9020049] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 01/06/2023] Open
Abstract
Protocells are supramolecular systems commonly used for numerous applications, such as the formation of self-evolvable systems, in systems chemistry and synthetic biology. Certain types of protocells imitate plausible prebiotic compartments, such as giant vesicles, that are formed with the hydration of thin films of amphiphiles. These constructs can be studied to address the emergence of life from a non-living chemical network. They are useful tools since they offer the possibility to understand the mechanisms underlying any living cellular system: Its formation, its metabolism, its replication and its evolution. Protocells allow the investigation of the synergies occurring in a web of chemical compounds. This cooperation can explain the transition between chemical (inanimate) and biological systems (living) due to the discoveries of emerging properties. The aim of this review is to provide an overview of relevant concept in prebiotic protocell research.
Collapse
Affiliation(s)
- Augustin Lopez
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 1 Rue Victor Grignard, Bâtiment Lederer, 69622 Villeurbanne CEDEX, France.
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, 69342 Lyon CEDEX 07, France.
| | - Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 1 Rue Victor Grignard, Bâtiment Lederer, 69622 Villeurbanne CEDEX, France.
| |
Collapse
|
6
|
Fiore M, Maniti O, Girard-Egrot A, Monnard PA, Strazewski P. Glass Microsphere-Supported Giant Vesicles for the Observation of Self-Reproduction of Lipid Boundaries. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires; Université de Lyon; Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918 69622 Villeurbanne Cedex France
| | - Ofelia Maniti
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires; Université de Lyon; Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918 69622 Villeurbanne Cedex France
| | - Agnes Girard-Egrot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires; Université de Lyon; Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918 69622 Villeurbanne Cedex France
| | - Pierre-Alain Monnard
- Institute of Physics, Chemistry and Pharmacy; University of Southern Denmark; Campusvej 55 5230 Odense M Denmark
| | - Peter Strazewski
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires; Université de Lyon; Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918 69622 Villeurbanne Cedex France
| |
Collapse
|
7
|
Fiore M, Maniti O, Girard-Egrot A, Monnard PA, Strazewski P. Glass Microsphere-Supported Giant Vesicles for the Observation of Self-Reproduction of Lipid Boundaries. Angew Chem Int Ed Engl 2017; 57:282-286. [PMID: 29105911 DOI: 10.1002/anie.201710708] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 01/03/2023]
Abstract
Growth and division experiments on phospholipid boundaries were carried out using glass microsphere-supported phospholipid (DOPC) giant vesicles (GVs) fed with a fatty acid solution (oleic acid) at two distinct feeding rates. Both fast and slow feeding methods produced daughter GVs. Under slow feeding conditions the membrane growth process (evagination, buds, filaments) was observed in detail by fluorescence microscopy. The density difference between supported mother vesicles and newly formed daughter vesicles allowed their easy separation. Mass spectrometric analysis of the resulting mother and daughter GVs showed that the composition of both vesicle types was a mixture of original supported phospholipids and added fatty acids reflecting the total composition of amphiphiles after the feeding process. Thus, self-reproduction of phospholipid vesicles can take place under preservation of the lipid composition but different aggregate size.
Collapse
Affiliation(s)
- Michele Fiore
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
| | - Ofelia Maniti
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
| | - Agnes Girard-Egrot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
| | - Pierre-Alain Monnard
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Peter Strazewski
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
| |
Collapse
|
8
|
Hanczyc MM, Monnard PA. Primordial membranes: more than simple container boundaries. Curr Opin Chem Biol 2017; 40:78-86. [DOI: 10.1016/j.cbpa.2017.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/19/2017] [Accepted: 07/20/2017] [Indexed: 01/14/2023]
|
9
|
Kee TP, Monnard PA. Chemical systems, chemical contiguity and the emergence of life. Beilstein J Org Chem 2017; 13:1551-1563. [PMID: 28904604 PMCID: PMC5564265 DOI: 10.3762/bjoc.13.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022] Open
Abstract
Charting the emergence of living cells from inanimate matter remains an intensely challenging scientific problem. The complexity of the biochemical machinery of cells with its exquisite intricacies hints at cells being the product of a long evolutionary process. Research on the emergence of life has long been focusing on specific, well-defined problems related to one aspect of cellular make-up, such as the formation of membranes or the build-up of information/catalytic apparatus. This approach is being gradually replaced by a more "systemic" approach that privileges processes inherent to complex chemical systems over specific isolated functional apparatuses. We will summarize the recent advances in system chemistry and show that chemical systems in the geochemical context imply a form of chemical contiguity in the syntheses of the various molecules that precede modern biomolecules.
Collapse
Affiliation(s)
- Terrence P Kee
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Pierre-Alain Monnard
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
10
|
Rasmussen S, Constantinescu A, Svaneborg C. Generating minimal living systems from non-living materials and increasing their evolutionary abilities. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150440. [PMID: 27431518 PMCID: PMC4958934 DOI: 10.1098/rstb.2015.0440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 11/12/2022] Open
Abstract
We review lessons learned about evolutionary transitions from a bottom-up construction of minimal life. We use a particular systemic protocell design process as a starting point for exploring two fundamental questions: (i) how may minimal living systems emerge from non-living materials? and (ii) how may minimal living systems support increasingly more evolutionary richness? Under (i), we present what has been accomplished so far and discuss the remaining open challenges and their possible solutions. Under (ii), we present a design principle we have used successfully both for our computational and experimental protocellular investigations, and we conjecture how this design principle can be extended for enhancing the evolutionary potential for a wide range of systems.This article is part of the themed issue 'The major synthetic evolutionary transitions'.
Collapse
Affiliation(s)
- Steen Rasmussen
- Center for Fundamental Living Technology (FLinT), Department for Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Adi Constantinescu
- Center for Fundamental Living Technology (FLinT), Department for Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Carsten Svaneborg
- Center for Fundamental Living Technology (FLinT), Department for Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
11
|
Current Ideas about Prebiological Compartmentalization. Life (Basel) 2015; 5:1239-63. [PMID: 25867709 PMCID: PMC4500137 DOI: 10.3390/life5021239] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/17/2023] Open
Abstract
Contemporary biological cells are highly sophisticated dynamic compartment systems which separate an internal volume from the external medium through a boundary, which controls, in complex ways, the exchange of matter and energy between the cell's interior and the environment. Since such compartmentalization is a fundamental principle of all forms of life, scenarios have been elaborated about the emergence of prebiological compartments on early Earth, in particular about their likely structural characteristics and dynamic features. Chemical systems that consist of potentially prebiological compartments and chemical reaction networks have been designed to model pre-cellular systems. These systems are often referred to as "protocells". Past and current protocell model systems are presented and compared. Since the prebiotic formation of cell-like compartments is directly linked to the prebiotic availability of compartment building blocks, a few aspects on the likely chemical inventory on the early Earth are also summarized.
Collapse
|
12
|
Strazewski P. Omne Vivum Ex Vivo … Omne? How to Feed an Inanimate Evolvable Chemical System so as to Let it Self-evolve into Increased Complexity and Life-like Behaviour. Isr J Chem 2015. [DOI: 10.1002/ijch.201400175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|