1
|
Yi J, Dai Y, Li Y, Zhao Y, Wu Y, Jiang M, Zhou G. -COOH & -OH Condensation Reaction Utilization for Biomass FDCA-based Polyesters. CHEMSUSCHEM 2024; 17:e202301681. [PMID: 38339820 DOI: 10.1002/cssc.202301681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
A green and sustainable -COOH & -OH condensation solution polymerization method was hereby reported for FDCA-based polyesters to avoid discoloration and toxic solvents. First, taking poly(ethylene 2,5-furandicarboxylate) (PEF) as the representative of FDCA-based polyester, enabling good white appearance PEF with Mn=6.51×103 g mol-1 from FDCA and ethylene glycol in green solvent γ-valerolactone (GVL), catalyzed by 4-dimethylaminopyridine (DMAP) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC). Additionally, the molecular weight of PEF was rapidly improved (Mn >2.5×104 g mol-1) via remelting polycondensation within minutes, with the dispersity still kept relatively low dispersity (Đ<1.40). Importantly, the -COOH & -OH condensation solution polymerization method was successfully applied for the synthesis of various FDCA-based polyesters, including diols with varying carbon chain lengths (3 to 11 carbons) and cycloalkyl diols, especially the applicability of this method to diols containing C=C double bonds, which was found to exhibit low heat resistance. Lastly, assisting with 13C labeled 1,4-succinic acid and in-situ 13C-NMR, an in-depth study of the possible catalytic mechanism was proposed, by which, EDC activated FDCA, and then DMAP catalyzed it with diol to yield macromolecular chain of polyester. Overall, the results provided a green and sustainable strategy for the synthesis of FDCA-based polyesters.
Collapse
Affiliation(s)
- Jing Yi
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
| | - Yuze Dai
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuxuan Li
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuhao Zhao
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuanpeng Wu
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
| | - Min Jiang
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guangyuan Zhou
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
2
|
Boquet V, Sauber C, Beltran R, Ferey V, Rodier F, Hansjacob P, Theunissen C, Evano G. Copper-Catalyzed Coupling between ortho-Haloanilines and Lactams/Amides: Synthesis of Benzimidazoles and Telmisartan. J Org Chem 2024; 89:5469-5479. [PMID: 38565075 DOI: 10.1021/acs.joc.3c02905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An efficient copper-catalyzed synthesis of (annelated) benzimidazoles is reported. This transformation is based on a simple and straightforward one-pot sequence involving a copper-catalyzed cross coupling between o-haloanilines and lactams/amides followed by a subsequent cyclization under acidic conditions. A variety of (annelated) benzimidazoles could be easily obtained in high yields from readily available starting materials, and this procedure could be further applied to the synthesis of the antihypertensive blockbuster drug telmisartan.
Collapse
Affiliation(s)
- Vincent Boquet
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Chris Sauber
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | | | | | - Fabien Rodier
- Sanofi, 45 Chemin de Météline, 04200 Sisteron, France
| | - Pierre Hansjacob
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
- WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
3
|
Basoccu F, Cuccu F, Caboni P, De Luca L, Porcheddu A. Mechanochemistry Frees Thiourea Dioxide (TDO) from the 'Veils' of Solvent, Exposing All Its Reactivity. Molecules 2023; 28:molecules28052239. [PMID: 36903485 PMCID: PMC10005452 DOI: 10.3390/molecules28052239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
The synthesis of nitrogen-based heterocycles has always been considered essential in developing pharmaceuticals in medicine and agriculture. This explains why various synthetic approaches have been proposed in recent decades. However performing as methods, they often imply harsh conditions or the employment of toxic solvents and dangerous reagents. Mechanochemistry is undoubtedly one of the most promising technologies currently used for reducing any possible environmental impact, addressing the worldwide interest in counteracting environmental pollution. Following this line, we propose a new mechanochemical protocol for synthesizing various heterocyclic classes by exploiting thiourea dioxide (TDO)'s reducing proprieties and electrophilic nature. Simultaneously exploiting the low cost of a component of the textile industry such as TDO and all the advantages brought by a green technique such as mechanochemistry, we plot a route towards a more sustainable and eco-friendly methodology for preparing heterocyclic moieties.
Collapse
Affiliation(s)
- Francesco Basoccu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Federico Cuccu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Pietro Caboni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Lidia De Luca
- Department of Chemical, Physical, Mathematical, and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Andrea Porcheddu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
- Correspondence:
| |
Collapse
|
4
|
An efficient NaHSO3-promoted protocol for chemoselective synthesis of 2-substituted benzimidazoles in water. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0367-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Liang Y, Zhou Y, Deng S, Chen T. Microwave-Assisted Syntheses of Benzimidazole-Containing Selenadiazole Derivatives That Induce Cell-Cycle Arrest and Apoptosis in Human Breast Cancer Cells by Activation of the ROS/AKT Pathway. ChemMedChem 2016; 11:2339-2346. [DOI: 10.1002/cmdc.201600261] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/03/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Yuanwei Liang
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Yangliang Zhou
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Shulin Deng
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| |
Collapse
|
6
|
Abstract
Over the years, there have been remarkable efforts in the development of selective protein labeling strategies. In this review, we deliver a comprehensive overview of the currently available bioorthogonal and chemoselective reactions. The ability to introduce bioorthogonal handles to proteins is essential to carry out bioorthogonal reactions for protein labeling in living systems. We therefore summarize the techniques that allow for site-specific "installation" of bioorthogonal handles into proteins. We also highlight the biological applications that have been achieved by selective chemical labeling of proteins.
Collapse
Affiliation(s)
- Xi Chen
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | | |
Collapse
|
7
|
Draganov AB, Wang K, Holmes J, Damera K, Wang D, Dai C, Wang B. Click with a boronic acid handle: a neighboring group-assisted click reaction that allows ready secondary functionalization. Chem Commun (Camb) 2015; 51:15180-3. [PMID: 26327521 PMCID: PMC4603419 DOI: 10.1039/c5cc05890b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The feasibility of a neighboring boronic acid-facilitated facile condensation of an aldehyde is described. This reaction is bio-orthogonal, complete at room temperature within minutes, and suitable for bioconjugation chemistry. The boronic acid group serves the dual purpose of catalyzing the condensation reaction and being a handle for secondary functionalization.
Collapse
Affiliation(s)
- Alexander B Draganov
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, 30303-3965, Georgia, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | | |
Collapse
|
9
|
Abstract
Bioorthogonal chemistry has enabled the selective labeling and detection of biomolecules in living systems. Bioorthogonal smart probes, which become fluorescent or deliver imaging or therapeutic agents upon reaction, allow for the visualization of biomolecules or targeted delivery even in the presence of excess unreacted probe. This review discusses the strategies used in the development of bioorthogonal smart probes and highlights the potential of these probes to further our understanding of biology.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
McKay CS, Finn MG. Click chemistry in complex mixtures: bioorthogonal bioconjugation. CHEMISTRY & BIOLOGY 2014; 21:1075-101. [PMID: 25237856 PMCID: PMC4331201 DOI: 10.1016/j.chembiol.2014.09.002] [Citation(s) in RCA: 570] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/18/2023]
Abstract
The selective chemical modification of biological molecules drives a good portion of modern drug development and fundamental biological research. While a few early examples of reactions that engage amine and thiol groups on proteins helped establish the value of such processes, the development of reactions that avoid most biological molecules so as to achieve selectivity in desired bond-forming events has revolutionized the field. We provide an update on recent developments in bioorthogonal chemistry that highlights key advances in reaction rates, biocompatibility, and applications. While not exhaustive, we hope this summary allows the reader to appreciate the rich continuing development of good chemistry that operates in the biological setting.
Collapse
Affiliation(s)
- Craig S McKay
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M G Finn
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|