1
|
Varamogianni-Mamatsi D, Nunes MJ, Marques V, Anastasiou TI, Kagiampaki E, Vernadou E, Dailianis T, Kalogerakis N, Branco LC, Rodrigues CMP, Sobral RG, Gaudêncio SP, Mandalakis M. Comparative Chemical Profiling and Antimicrobial/Anticancer Evaluation of Extracts from Farmed versus Wild Agelas oroides and Sarcotragus foetidus Sponges. Mar Drugs 2023; 21:612. [PMID: 38132933 PMCID: PMC10744379 DOI: 10.3390/md21120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Marine sponges are highly efficient in removing organic pollutants and their cultivation, adjacent to fish farms, is increasingly considered as a strategy for improving seawater quality. Moreover, these invertebrates produce a plethora of bioactive metabolites, which could translate into an extra profit for the aquaculture sector. Here, we investigated the chemical profile and bioactivity of two Mediterranean species (i.e., Agelas oroides and Sarcotragus foetidus) and we assessed whether cultivated sponges differed substantially from their wild counterparts. Metabolomic analysis of crude sponge extracts revealed species-specific chemical patterns, with A. oroides and S. foetidus dominated by alkaloids and lipids, respectively. More importantly, farmed and wild explants of each species demonstrated similar chemical fingerprints, with the majority of the metabolites showing modest differences on a sponge mass-normalized basis. Furthermore, farmed sponge extracts presented similar or slightly lower antibacterial activity against methicillin-resistant Staphylococcus aureus, compared to the extracts resulting from wild sponges. Anticancer assays against human colorectal carcinoma cells (HCT-116) revealed marginally active extracts from both wild and farmed S. foetidus populations. Our study highlights that, besides mitigating organic pollution in fish aquaculture, sponge farming can serve as a valuable resource of biomolecules, with promising potential in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Despoina Varamogianni-Mamatsi
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Maria João Nunes
- LAQV, REQUIMTE, Associated Laboratory for Green Chemistry, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal; (M.J.N.); (L.C.B.)
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (V.M.); (C.M.P.R.)
| | - Thekla I. Anastasiou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Eirini Kagiampaki
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Emmanouela Vernadou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Thanos Dailianis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
| | - Luís C. Branco
- LAQV, REQUIMTE, Associated Laboratory for Green Chemistry, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal; (M.J.N.); (L.C.B.)
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (V.M.); (C.M.P.R.)
| | - Rita G. Sobral
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Manolis Mandalakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| |
Collapse
|
2
|
Schmidt EY, Tatarinova IV, Lobanova NA, Ushakov IA, Bagryanskaya IY, Trofimov BA. Rapid, room-temperature self-organization of polyarylated 1 H-pyrroles from acetylenes and nitriles in the KOBu t/DMSO system. Org Biomol Chem 2023; 21:7209-7218. [PMID: 37642476 DOI: 10.1039/d3ob01311a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We have discovered that three molecules of arylacetylene are rapidly (15 min) assembled with one molecule of nitrile at room temperature in the KOBut/DMSO system to afford 2-aryl-3-arylethynyl-4-aryl-5-benzyl-1H-pyrroles in up to 76% yield. We assume that this unprecedented self-organization process involves the cascade addition of acetylenic carbanions, first to the CN, then to the CC and CC bonds of the intermediates, followed by pyrrole ring closure via the intramolecular nucleophilic addition of the NH functional group to the CC bond of the final intermediates.
Collapse
Affiliation(s)
- Elena Yu Schmidt
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia.
| | - Inna V Tatarinova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia.
| | - Natal'ya A Lobanova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia.
| | - Igor A Ushakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia.
| | - Irina Yu Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Boris A Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia.
| |
Collapse
|
3
|
Chu MJ, Li M, Zhao Y. Dimeric pyrrole-imidazole alkaloids: sources, structures, bioactivities and biosynthesis. Bioorg Chem 2023; 133:106332. [PMID: 36773454 DOI: 10.1016/j.bioorg.2022.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Pyrrole-imidazole alkaloids (PIAs) constitute a highly diverse and densely functionalized subclass of marine natural products. Among them, the uncommon dimeric PIAs with ornate molecular architectures, attractive biological properties and interesting biosynthetic origin have spurred a considerable interest of chemists and biologists. The present review comprehensively summarized 84 dimeric PIAs discovered during the period from 1981 to September 2022, covering their source organisms, chemical structures, biological activities as well as biosynthesis. For a better understanding, these structurally intricate PIA dimers are firstly classified and presented according to their carbon skeleton features as well as biosynthesis pathways. Furthermore, relevant summaries focusing on the source organisms and the associated bioactivities of these compounds belonging to different chemical classes are also provided, which will help elucidate the fascinating chemistry and biology of these unusual PIA dimers.
Collapse
Affiliation(s)
- Mei-Jun Chu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Meng Li
- Department of Pharmacy, Qingdao Central Hospital, Qingdao 266042, China
| | - Yongda Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Zhao M, Guo W, Wu L, Qiu FG. I
2
‐Promoted Oxidative Metal‐Free [3+2] Tandem Annulation for the Synthesis of Multisubstituted Imidazoles in the Presence of Base. ChemistrySelect 2022. [DOI: 10.1002/slct.202203729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingming Zhao
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 (P. R. China) University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Linping Wu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 (P. R. China) University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fayang G. Qiu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 (P. R. China) University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
5
|
Patel RK, Chauhan A, Jha P, Kant R, Kumar R. Catalytic Friedel-Crafts Alkylative Desymmetrization of Cyclohexa-2,5-dienones: Access to Linear and Bridged Polycyclic Pyrroles and 3-Arylpyrroles. Org Lett 2022; 24:5422-5427. [PMID: 35852460 DOI: 10.1021/acs.orglett.2c02135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic [3 + 2]-cycloaddition/Friedel-Crafts alkylative desymmetrization strategy has been developed for the stereoselective construction of linear and bridged polycyclic pyrroles from alkynylcyclohexa-2,5-dienones. This strategy was further explored for the synthesis of 3-arylpyrroles under Brønsted acid catalysis. Reaction is highly chemo-, regio-, and stereoselective and is compatible with wide range of functionalized cyclohexa-2,5-dienones/pyrroles (>51 examples, ≤98% yields). Gram-scale synthesis and synthetic utility of the products have also been demonstrated to showcase the robustness of present method.
Collapse
Affiliation(s)
- Raj Kumar Patel
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Anil Chauhan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad UP-201002, India
| | - Priyankar Jha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad UP-201002, India
| |
Collapse
|
6
|
Wang L, Zhang Y, Miao AQ, Zhang TS, Wang X, Hao WJ, Tu SJ, Jiang B. Nitrative bicyclization of 1,7-diynes for accessing skeletally diverse tricyclic pyrroles. Chem Commun (Camb) 2022; 58:4376-4379. [PMID: 35297437 DOI: 10.1039/d2cc00206j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel metal-free nitrative bicyclization of 1,7-diynes with tBuONO in the presence of H2O is reported, producing three types of skeletally diverse tricyclic pyrroles, namely pyrrolo[3,4-c]quinolines, chromeno[3,4-c]pyrroles and benzo[e]isoindoles, with moderate to good yields by simply tuning the linkers of the 1,7-diynes. This domino protocol demonstrates remarkable compatibility regarding 1,7-diynes with different linkers, such as nitrogen and oxygen atoms and a hydroxymethyl group, and tBuONO plays dual roles as a nitro precursor as well as a nitrogen atom source.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yin Zhang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - An-Qi Miao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Xiang Wang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, People's Republic of China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
7
|
Chu MJ, Li M, Ma H, Li PL, Li GQ. Secondary metabolites from marine sponges of the genus Agelas: a comprehensive update insight on structural diversity and bioactivity. RSC Adv 2022; 12:7789-7820. [PMID: 35424773 PMCID: PMC8982468 DOI: 10.1039/d1ra08765g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
As one of the most common marine sponges in tropical and subtropical oceans, the sponges of the genus Agelas, have emerged as unique and yet under-investigated pools for discovery of natural products with fabulous molecular diversity and myriad interesting biological activities. The present review highlights the chemical structure and biological activity of 355 compounds that have been isolated and characterized from the members of Agelas sponges, over the period of about five decades (from 1971 to November 2021). For a better understanding, these numerous compounds are firstly classified and presented according to their carbon skeleton as well as their biosynthetic origins. Relevant summaries focusing on the source organism and the associated bioactivity of these compounds belonging to different chemical classes are also provided. This review highlights sponges of the genus Agelas as exciting source for discovery of intriguing natural compounds.
Collapse
Affiliation(s)
- Mei-Jun Chu
- College of Veterinary Medicine, Qingdao Agricultural University Qingdao 266109 China
| | - Meng Li
- Department of Pharmacy, Qingdao Central Hospital Qingdao 266042 China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University Qingdao 266109 China
| | - Ping-Lin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| | - Guo-Qiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
8
|
Rong L, Zhang Z, Sun Z, Wang C, Li F. An Efficient Synthesis of (Aryl)(4-(2-(arylethynyl)-phenyl)-1H-pyrrol-3-yl)methanone from the Reaction of (E)-1-Aryl-3-(2-(arylethynyl)phenyl)prop-2-en-1-one and p-Toluenesulfonylmethyl Isocyanide. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Ohashi E, Karanjit S, Nakayama A, Takeuchi K, Emam SE, Ando H, Ishida T, Namba K. Efficient construction of the hexacyclic ring core of palau'amine: the p K a concept for proceeding with unfavorable equilibrium reactions. Chem Sci 2021; 12:12201-12210. [PMID: 34667586 PMCID: PMC8457368 DOI: 10.1039/d1sc03260g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Palau'amine has received a great deal of attention as an attractive synthetic target due to its intriguing molecular architecture and significant immunosuppressive activity, and we achieved its total synthesis in 2015. However, the synthesized palau'amine has not been readily applicable to the mechanistic study of immunosuppressive activity, because it requires 45 longest linear steps from a commercially available compound. Here, we report the short-step construction of the ABCDEF hexacyclic ring core of palau'amine. The construction of the CDE tricyclic ring core in a single step is achieved by our pKa concept for proceeding with unfavorable equilibrium reactions, and a palau'amine analog without the aminomethyl and chloride groups is synthesized in 20 longest linear steps from the same starting material. The palau'amine analog is confirmed to retain the immunosuppressive activity. The present synthetic approach for a palau'amine analog has the potential for use in the development of palau'amine probes for mechanistic elucidation. A palau'amine analog (2) was synthesized from 2-cyclopentenone in 20 steps. The construction of the CDE tricyclic ring core in a single step is achieved by our pKa concept for proceeding with the unfavorable equilibrium reactions.![]()
Collapse
Affiliation(s)
- Eisaku Ohashi
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Sangita Karanjit
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan .,Research Cluster on "Innovative Chemical Sensing", Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Atsushi Nakayama
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan .,Research Cluster on "Innovative Chemical Sensing", Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Kohei Takeuchi
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Sherif E Emam
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Hidenori Ando
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Tatsuhiro Ishida
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| | - Kosuke Namba
- Graduate School of Pharmaceutical Sciences, Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan .,Research Cluster on "Innovative Chemical Sensing", Tokushima University 1-78 Shomachi Tokushima 770-8505 Japan
| |
Collapse
|
10
|
Seipp K, Geske L, Opatz T. Marine Pyrrole Alkaloids. Mar Drugs 2021; 19:514. [PMID: 34564176 PMCID: PMC8471394 DOI: 10.3390/md19090514] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Nitrogen heterocycles are essential parts of the chemical machinery of life and often reveal intriguing structures. They are not only widespread in terrestrial habitats but can also frequently be found as natural products in the marine environment. This review highlights the important class of marine pyrrole alkaloids, well-known for their diverse biological activities. A broad overview of the marine pyrrole alkaloids with a focus on their isolation, biological activities, chemical synthesis, and derivatization covering the decade from 2010 to 2020 is provided. With relevant structural subclasses categorized, this review shall provide a clear and timely synopsis of this area.
Collapse
Affiliation(s)
| | | | - Till Opatz
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10–14, 55128 Mainz, Germany; (K.S.); (L.G.)
| |
Collapse
|
11
|
Herath AK, Lovely CJ. Pyrrole carboxamide introduction in the total synthesis of pyrrole-imidazole alkaloids. Org Biomol Chem 2021; 19:2603-2621. [PMID: 33683231 DOI: 10.1039/d0ob02052d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review various strategies for the incorporation of the signature pyrrole carboxamide moiety in the total syntheses of pyrrole-imidazole alkaloids (PIA) are discussed. These so-called oroidin alkaloids have a broad range of biological activities and display interesting skeletal diversity and complexity. These alkaloids are sponge-derived secondary metabolites and thus far more than 200 members of the PIA family have been isolated over the past few decades. Methods range from classical amide bond forming processes to non-traditional bond formation including the de novo synthesis of the pyrrole itself.
Collapse
Affiliation(s)
- Apsara K Herath
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | | |
Collapse
|
12
|
Rossi R, Ciofalo M. An Updated Review on the Synthesis and Antibacterial Activity of Molecular Hybrids and Conjugates Bearing Imidazole Moiety. Molecules 2020; 25:molecules25215133. [PMID: 33158247 PMCID: PMC7663458 DOI: 10.3390/molecules25215133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023] Open
Abstract
The rapid growth of serious infections caused by antibiotic resistant bacteria, especially the nosocomial ESKAPE pathogens, has been acknowledged by Governments and scientists and is one of the world's major health problems. Various strategies have been and are currently investigated and developed to reduce and/or delay the bacterial resistance. One of these strategies regards the design and development of antimicrobial hybrids and conjugates. This unprecedented critical review, in which our continuing interest in the synthesis and evaluation of the bioactivity of imidazole derivatives is testified, aims to summarise and comment on the results obtained from the end of the 1900s until February 2020 in studies conducted by numerous international research groups on the synthesis and evaluation of the antibacterial properties of imidazole-based molecular hybrids and conjugates in which the pharmacophoric constituents of these compounds are directly covalently linked or connected through a linker or spacer. In this review, significant attention was paid to summarise the strategies used to overcome the antibiotic resistance of pathogens whose infections are difficult to treat with conventional antibiotics. However, it does not include literature data on the synthesis and evaluation of the bioactivity of hybrids and conjugates in which an imidazole moiety is fused with a carbo- or heterocyclic subunit.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi, 3, I-56124 Pisa, Italy
- Correspondence: (R.R.); (M.C.)
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
- Correspondence: (R.R.); (M.C.)
| |
Collapse
|
13
|
Abstract
A four-step synthesis of the dimeric pyrrole-imidazole alkaloid sceptrin is reported. The brevity of the route is based on a simple solution developed for selective assembly of the cyclobutane core of the natural product. The photochemical intermolecular [2 + 2] dimerization of a useful hymenidin surrogate enables direct entry to this enigmatic class of biologically active marine secondary metabolites.
Collapse
Affiliation(s)
- Long V Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy F Jamison
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Mohanty I, Moore SG, Yi D, Biggs JS, Gaul DA, Garg N, Agarwal V. Precursor-Guided Mining of Marine Sponge Metabolomes Lends Insight into Biosynthesis of Pyrrole-Imidazole Alkaloids. ACS Chem Biol 2020; 15:2185-2194. [PMID: 32662980 DOI: 10.1021/acschembio.0c00375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pyrrole-imidazole alkaloids are natural products isolated from marine sponges, holobiont metazoans that are associated with symbiotic microbiomes. Pyrrole-imidazole alkaloids have attracted attention due to their chemical complexity and their favorable pharmacological properties. However, insights into how these molecules are biosynthesized within the sponge holobionts are scarce. Here, we provide a multiomic profiling of the microbiome and metabolomic architectures of three sponge genera that are prolific producers of pyrrole-imidazole alkaloids. Using a retrobiosynthetic scheme as a guide, we mine the metabolomes of these sponges to detect intermediates in pyrrole-imidazole alkaloid biosynthesis. Our findings reveal that the nonproteinogenic amino acid homoarginine is a critical branch point that connects primary metabolite lysine to the production of pyrrole-imidazole alkaloids. These insights are derived from the polar metabolomes of these sponges which additionally reveal the presence of zwitterionic betaines that may serve important ecological roles in marine habitats. We also establish that metabolomic richness does not correlate with microbial diversity of the sponge holobiont for neither the polar nor the nonpolar metabolomes. Our findings now provide the biochemical foundation for genomic interrogation of the sponge holobiont to establish biogenetic routes for pyrrole-imidazole alkaloid production.
Collapse
Affiliation(s)
- Ipsita Mohanty
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Samuel G. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dongqi Yi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jason S. Biggs
- Marine Laboratory, University of Guam, UOG Station, Mangilao 96923, Guam
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Yoshimitsu T. Chemical Syntheses and Biological Studies of Agelastatin A, a Bioactive Marine Heterocycle Gifted from Nature. HETEROCYCLES 2020. [DOI: 10.3987/rev-20-929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Sabbasani VR, Wang K, Streeter MD, Spiegel DA. One‐Step Synthesis of 2,5‐Diaminoimidazoles and Total Synthesis of Methylglyoxal‐Derived Imidazolium Crosslink (MODIC). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Venkata R. Sabbasani
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - Kung‐Pern Wang
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - Matthew D. Streeter
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - David A. Spiegel
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| |
Collapse
|
17
|
Sabbasani VR, Wang K, Streeter MD, Spiegel DA. One-Step Synthesis of 2,5-Diaminoimidazoles and Total Synthesis of Methylglyoxal-Derived Imidazolium Crosslink (MODIC). Angew Chem Int Ed Engl 2019; 58:18913-18917. [PMID: 31713976 PMCID: PMC6973230 DOI: 10.1002/anie.201911156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Indexed: 01/28/2023]
Abstract
Here we describe a general method for the synthesis of 2,5-diaminoimidazoles, which involves a thermal reaction between α-aminoketones and substituted guanylhydrazines without the need for additives. As one of the few known ways to access the 2,5-diaminoimidazole motif, our method greatly expands the number of reported diaminoimidazoles and further supports our previous observations that these compounds spontaneously adopt the non-aromatic 4(H) tautomer. The reaction works successfully on both cyclic and acyclic amino ketone starting materials, as well as a range of substituted guanylhydrazines. Following optimization, the method was applied to the efficient synthesis of the advanced glycation end product (AGE) methylglyoxal-derived imidazolium crosslink (MODIC). We expect that this method will enable rapid access to a variety of biologically important 2,5-diaminoimidazole-containing products.
Collapse
Affiliation(s)
| | - Kung‐Pern Wang
- Department of ChemistryYale University225 Prospect StreetNew HavenCT06511USA
| | - Matthew D. Streeter
- Department of ChemistryYale University225 Prospect StreetNew HavenCT06511USA
| | - David A. Spiegel
- Department of ChemistryYale University225 Prospect StreetNew HavenCT06511USA
| |
Collapse
|
18
|
Konishi K, Takeda N, Yasui M, Matsuzaki H, Miyata O, Ueda M. Copper-Catalyzed Cycloisomerization of Cyclopropenylimine for Synthesis of Pyrroles. J Org Chem 2019; 84:14320-14329. [PMID: 31558020 DOI: 10.1021/acs.joc.9b02178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper-catalyzed cycloisomerization of 3-iminocyclopropenes for synthesis of pyrroles has been developed. The reaction allows regioselective construction of pyrroles with various substitution patterns, including fully substituted pyrroles. The method was successfully applied to synthesis of steroidal pyrroles as well as a N-fused pyrrole.
Collapse
Affiliation(s)
- Keiji Konishi
- Kobe Pharmaceutical University, Motoyamakita , Higashinada, Kobe 658-8558 , Japan
| | - Norihiko Takeda
- Kobe Pharmaceutical University, Motoyamakita , Higashinada, Kobe 658-8558 , Japan
| | - Motohiro Yasui
- Kobe Pharmaceutical University, Motoyamakita , Higashinada, Kobe 658-8558 , Japan
| | - Haruo Matsuzaki
- Kobe Pharmaceutical University, Motoyamakita , Higashinada, Kobe 658-8558 , Japan
| | - Okiko Miyata
- Kobe Pharmaceutical University, Motoyamakita , Higashinada, Kobe 658-8558 , Japan
| | - Masafumi Ueda
- Kobe Pharmaceutical University, Motoyamakita , Higashinada, Kobe 658-8558 , Japan
| |
Collapse
|
19
|
Yamaguchi M, Fujiwara S, Manabe K. Synthesis of 2,2,5-Trisubstituted 2H-Pyrroles and 2,3,5-Trisubstituted 1H-Pyrroles by Ligand-Controlled Site-Selective Dearomative C2-Arylation and Direct C3-Arylation. Org Lett 2019; 21:6972-6977. [DOI: 10.1021/acs.orglett.9b02559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Miyuki Yamaguchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sakiko Fujiwara
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kei Manabe
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
20
|
Kwon OS, Kim D, Kim H, Lee YJ, Lee HS, Sim CJ, Oh DC, Lee SK, Oh KB, Shin J. Bromopyrrole Alkaloids from the Sponge Agelas kosrae. Mar Drugs 2018; 16:md16120513. [PMID: 30563015 PMCID: PMC6316234 DOI: 10.3390/md16120513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/23/2022] Open
Abstract
Two new sceptrin derivatives (1,2) and eight structurally-related known bromopyrrole-bearing alkaloids were isolated from the tropical sponge Agelas kosrae. By a combination of spectroscopic methods, the new compounds, designated dioxysceptrin (1) and ageleste C (2), were determined to be structural analogs of each other that differ at the imidazole moiety. Dioxysceptrin was also found to exist as a mixture of α-amido epimers. The sceptrin alkaloids exhibited weak cytotoxicity against cancer cells. Compounds 1 and 2 also moderately exhibited anti-angiogenic and isocitrate lyase-inhibitory activities, respectively.
Collapse
Affiliation(s)
- Oh-Seok Kwon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea.
| | - Donghwa Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea.
| | - Heegyu Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Korea.
| | - Yeon-Ju Lee
- Marine Natural Products Laboratory, Korea Institute of Ocean Science and Technology, P.O. Box 29, Seoul 425-600, Korea.
| | - Hyi-Seung Lee
- Marine Natural Products Laboratory, Korea Institute of Ocean Science and Technology, P.O. Box 29, Seoul 425-600, Korea.
| | - Chung J Sim
- Department of Biological Science, College of Life Science and Nano Technology, Hannam University, 461-6 Jeonmin, Yuseong, Daejeon 305-811, Korea.
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea.
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea.
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Korea.
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea.
| |
Collapse
|
21
|
Hiscox A, Ribeiro K, Batey RA. Lanthanide(III)-Catalyzed Synthesis of trans-Diaminocyclopentenones from Substituted Furfurals and Secondary Amines via a Domino Ring-Opening/4π-Electrocyclization Pathway. Org Lett 2018; 20:6668-6672. [DOI: 10.1021/acs.orglett.8b02711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Afton Hiscox
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Kauan Ribeiro
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Robert A. Batey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
22
|
Rua CPJ, de Oliveira LS, Froes A, Tschoeke DA, Soares AC, Leomil L, Gregoracci GB, Coutinho R, Hajdu E, Thompson CC, Berlinck RGS, Thompson FL. Microbial and Functional Biodiversity Patterns in Sponges that Accumulate Bromopyrrole Alkaloids Suggest Horizontal Gene Transfer of Halogenase Genes. MICROBIAL ECOLOGY 2018; 76:825-838. [PMID: 29546438 DOI: 10.1007/s00248-018-1172-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Marine sponge holobionts harbor complex microbial communities whose members may be the true producers of secondary metabolites accumulated by sponges. Bromopyrrole alkaloids constitute a typical class of secondary metabolites isolated from sponges that very often display biological activities. Bromine incorporation into secondary metabolites can be catalyzed by either halogenases or haloperoxidases. The diversity of the metagenomes of sponge holobiont species containing bromopyrrole alkaloids (Agelas spp. and Tedania brasiliensis) as well as holobionts devoid of bromopyrrole alkaloids spanning in a vast biogeographic region (approx. Seven thousand km) was studied. The origin and specificity of the detected halogenases was also investigated. The holobionts Agelas spp. and T. brasiliensis did not share microbial halogenases, suggesting a species-specific pattern. Bacteria of diverse phylogenetic origins encoding halogenase genes were found to be more abundant in bromopyrrole-containing sponges. The sponge holobionts (e.g., Agelas spp.) with the greatest number of sequences related to clustered, interspaced, short, palindromic repeats (CRISPRs) exhibited the fewest phage halogenases, suggesting a possible mechanism of protection from phage infection by the sponge host. This study highlights the potential of phages to transport halogenases horizontally across host sponges, particularly in more permissive holobiont hosts, such as Tedania spp.
Collapse
Affiliation(s)
- Cintia P J Rua
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Caixa Postal 780 - CEP13560-970, São Carlos, SP, CEP 13566-590, Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Louisi S de Oliveira
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Adriana Froes
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Diogo A Tschoeke
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
- Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764 - São José do Barreto, Macaé - RJ, Macaé, RJ, CEP 27965-045, Brazil
| | - Ana Carolina Soares
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Luciana Leomil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Gustavo B Gregoracci
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Av. Alm. Saldanha da Gama, 89, Santos, CEP 11030-400, Brazil
| | - Ricardo Coutinho
- Instituto de Estudos do Mar Almirante Paulo Moreira, Rua Kioto, 253, Praia dos Anjos, Arraial do Cabo, RJ, CEP 28930-000, Brazil
| | - Eduardo Hajdu
- Museu Nacional - UFRJ, Departamento de Invertebrados. Laboratório de Porifera, Quinta da Boa Vista, s/n. São Cristóvão, Rio de Janeiro, CEP 20940-040, Brazil
| | - Cristiane C Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, s/ n° - CCS, Lab de Microbiologia - Bloco A (Anexo) A3 - sl 102, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Caixa Postal 780 - CEP13560-970, São Carlos, SP, CEP 13566-590, Brazil.
| | - Fabiano L Thompson
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Caixa Postal 780 - CEP13560-970, São Carlos, SP, CEP 13566-590, Brazil.
| |
Collapse
|
23
|
Cannon JS. A Nitrone Dipolar Cycloaddition Strategy toward an Enantioselective Synthesis of Massadine. Org Lett 2018; 20:3883-3887. [PMID: 29897770 DOI: 10.1021/acs.orglett.8b01464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An enantioselective route to the C,D-bicycle of massadine is reported. Enantiopure intermediates were generated by a single stereoselective reduction using the Corey-Bakshi-Shibata reagent. This initial stereoinduction was translated into the five contiguous stereocenters of the massadine D-ring by a synthetic route that features a diastereoselective and stereospecific Ireland-Claisen rearrangement of a trianionic enolate followed by a diastereoselective nitrone dipolar cycloaddition of a highly electron-poor oxime.
Collapse
Affiliation(s)
- Jeffrey S Cannon
- Department of Chemistry , University of California , 1102 Natural Sciences II, Irvine , California 92697-2025 , United States
| |
Collapse
|
24
|
Toward the Synthesis of Sceptrin and Benzosceptrin: Solvent Effect in Stereo- and Regioselective [2+2] Photodimerization and Easy Access to the Fully Substituted Benzobutane. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Ding H, Roberts AG, Chiang R, Harran PG. Cascading Auto-oxidative Biproline Guanylations Form Optically Active Dispacamide Dimers and Permit an Eight-Step Synthesis of (−)-Ageliferin. J Org Chem 2018; 83:7231-7238. [DOI: 10.1021/acs.joc.8b00631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Ding
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Andrew G. Roberts
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Rocky Chiang
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Patrick G. Harran
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
26
|
Rapid access to the core skeleton of the [3 + 2]-type dimeric pyrrole-imidazole alkaloids by triplet ketone-mediated C-H functionalization. Tetrahedron 2018; 74:769-772. [PMID: 29622843 DOI: 10.1016/j.tet.2017.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of triplet ketones to abstract a hydrogen atom from hydrocarbons is reminiscent of that of the high-spin metal-oxo complexes in C-H oxidation enzymes. In practice, the reactivity of triplet ketones is easier to control and applicable to promoting a wider range of reactions. We demonstrate herein the synthetic utility of triplet ketone-mediated C-addition of methanol to cyclopentenone derivatives with an expedient synthesis of the core skeleton of the [3+2]-type dimeric pyrrole-imidazole alkaloids. Remarkably, this photochemical C-H functionalization reaction is highly regioselective and can tolerate a good range of functional groups.
Collapse
|
27
|
Parra LLL, Bertonha AF, Severo IRM, Aguiar ACC, de Souza GE, Oliva G, Guido RVC, Grazzia N, Costa TR, Miguel DC, Gadelha FR, Ferreira AG, Hajdu E, Romo D, Berlinck RGS. Isolation, Derivative Synthesis, and Structure-Activity Relationships of Antiparasitic Bromopyrrole Alkaloids from the Marine Sponge Tedania brasiliensis. JOURNAL OF NATURAL PRODUCTS 2018; 81:188-202. [PMID: 29297684 PMCID: PMC5989537 DOI: 10.1021/acs.jnatprod.7b00876] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The isolation and identification of a series of new pseudoceratidine (1) derivatives from the sponge Tedania brasiliensis enabled the evaluation of their antiparasitic activity against Plasmodium falciparum, Leishmania (Leishmania) amazonensis, Leishmania (Leishmania) infantum, and Trypanosoma cruzi, the causative agents of malaria, cutaneous leishmaniasis, visceral leishmaniasis, and Chagas disease, respectively. The new 3-debromopseudoceratidine (4), 20-debromopseudoceratidine (5), 4-bromopseudoceratidine (6), 19-bromopseudoceratidine (7), and 4,19-dibromopseudoceratidine (8) are reported. New tedamides A-D (9-12), with an unprecedented 4-bromo-4-methoxy-5-oxo-4,5-dihydro-1H-pyrrole-2-carboxamide moiety, are also described. Compounds 4 and 5, 6 and 7, 9 and 10, and 11 and 12 have been isolated as pairs of inseparable structural isomers differing in their sites of bromination or oxidation. Tedamides 9+10 and 11+12 were obtained as optically active pairs, indicating an enzymatic formation rather than an artifactual origin. N12-Acetylpseudoceratidine (2) and N12-formylpseudoceratidine (3) were obtained by derivatization of pseudoceratidine (1). The antiparasitic activity of pseudoceratidine (1) led us to synthesize 23 derivatives (16, 17, 20, 21, 23, 25, 27-29, 31, 33, 35, 38, 39, 42, 43, 46, 47, 50, and 51) with variations in the polyamine chain and aromatic moiety in sufficient amounts for biological evaluation in antiparasitic assays. The measured antimalarial activity of pseudoceratidine (1) and derivatives 4, 5, 16, 23, 25, 31, and 50 provided an initial SAR evaluation of these compounds as potential leads for antiparasitics against Leishmania amastigotes and against P. falciparum. The results obtained indicate that pseudoceratidine represents a promising scaffold for the development of new antimalarial drugs.
Collapse
Affiliation(s)
- Lizbeth L. L. Parra
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Ariane F. Bertonha
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76706, USA
| | - Ivan R. M. Severo
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Anna C. C. Aguiar
- Instituto de Física de São Carlos, Av. Joao Dagnone, 1100, Jardim Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Guilherme E. de Souza
- Instituto de Física de São Carlos, Av. Joao Dagnone, 1100, Jardim Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Glaucius Oliva
- Instituto de Física de São Carlos, Av. Joao Dagnone, 1100, Jardim Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Rafael V. C. Guido
- Instituto de Física de São Carlos, Av. Joao Dagnone, 1100, Jardim Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Nathalia Grazzia
- Departamento de Biologia Animal e Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-862, Campinas, SP, Brazil
| | - Tábata R. Costa
- Departamento de Biologia Animal e Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-862, Campinas, SP, Brazil
| | - Danilo C. Miguel
- Departamento de Biologia Animal e Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-862, Campinas, SP, Brazil
| | - Fernanda R. Gadelha
- Departamento de Biologia Animal e Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, CEP 13083-862, Campinas, SP, Brazil
| | - Antonio G. Ferreira
- Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235 - SP-310, CEP 13565-905, São Carlos, SP, Brazil
| | - Eduardo Hajdu
- Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, CEP 20940-040, Rio de Janeiro, RJ, Brazil
| | - Daniel Romo
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76706, USA
| | - Roberto G. S. Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
28
|
Ma Z, Chen C. Natural products as inspiration for the development of new synthetic methods. J CHIN CHEM SOC-TAIP 2018; 65:43-59. [PMID: 29430058 PMCID: PMC5800783 DOI: 10.1002/jccs.201700134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Natural products have played an important role in shaping modern synthetic organic chemistry. In particular, their complex molecular skeletons have stimulated the development of many new synthetic methods. We highlight in this article some recent examples of synthetic design inspired by the biosynthesis of natural products.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Chuo Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| |
Collapse
|
29
|
Kwon KH, Edwards AV, Yang M, Looper RE. Exploring hydroamination-cycloaddition-fragmentation sequences to access polycyclicguanidines and vinyl-2-aminoimidazoles. Tetrahedron 2017; 73:6067-6079. [PMID: 29681663 DOI: 10.1016/j.tet.2017.08.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The intramolecular hydroamination of a guanidine on an eneyne unit affords a guanidine-substituted diene capable of reacting with dienophiles. These substrates undergo [4+2]-cycloaddition reactions to generate a series of complex cyclic- and spirocyclic-guanidines. Select substrates can further undergo a ring opening-elimination cascade that ultimately reveals a vinyl-2-aminoimidazole. As such this cascade reaction may find application in the synthesis of oroidin-type natural products and their analogues.
Collapse
Affiliation(s)
- Ki-Hyeok Kwon
- Department of Chemistry, University of Utah 315 S 1400 E, Salt Lake City, UT 8103, USA
| | - Anne V Edwards
- Department of Chemistry, University of Utah 315 S 1400 E, Salt Lake City, UT 8103, USA
| | - Miao Yang
- Department of Chemistry, University of Utah 315 S 1400 E, Salt Lake City, UT 8103, USA
| | - Ryan E Looper
- Department of Chemistry, University of Utah 315 S 1400 E, Salt Lake City, UT 8103, USA
| |
Collapse
|
30
|
Yao Y, Wang X, Liang G. Total syntheses of (+)-agelastatin A and (+)-agelastatin B through cationic cyclizations. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Abstract
Covering: July 2012 to June 2015. Previous review: Nat. Prod. Rep., 2013, 30, 869-915The structurally diverse imidazole-, oxazole-, and thiazole-containing secondary metabolites are widely distributed in terrestrial and marine environments, and exhibit extensive pharmacological activities. In this review the latest progress involving the isolation, biological activities, and chemical and biogenetic synthesis studies on these natural products has been summarized.
Collapse
Affiliation(s)
- Zhong Jin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
32
|
Sun YT, Lin B, Li SG, Liu M, Zhou YJ, Xu Y, Hua HM, Lin HW. New bromopyrrole alkaloids from the marine sponge Agelas sp. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Ma Z, You L, Chen C. Stereocontrolled Formation of a [4.4]Heterospiro Ring System with Unexpected Inversion of Configuration at the Spirocenter. J Org Chem 2017; 82:731-736. [PMID: 27933858 PMCID: PMC5527678 DOI: 10.1021/acs.joc.6b02266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stereoselective construction of the 1,3-diazaspiro[4.4]nonane core skeleton of massadine and related dimeric pyrrole-imidazole alkaloids is a synthetic challenge. We describe herein the synthesis of all C13/14 diastereomers of this spiro molecule through controlled oxidation and epimerization of the C13 spirocenter under mild acidic conditions.
Collapse
Affiliation(s)
| | - Lin You
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Chuo Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
34
|
Lindel T. Chemistry and Biology of the Pyrrole–Imidazole Alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2017; 77:117-219. [DOI: 10.1016/bs.alkal.2016.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Midya SP, Gopi E, Satam N, Namboothiri INN. Synthesis of fused cyanopyrroles and spirocyclopropanes via addition of N-ylides to chalconimines. Org Biomol Chem 2017; 15:3616-3627. [DOI: 10.1039/c7ob00529f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DABCO-ylides react as a one-carbon source with chalconimines to afford fused cyanopyrrolesvia[4 + 1] annulation and spirocyclopropanesvia[2 + 1] annulation.
Collapse
Affiliation(s)
- Siba Prasad Midya
- Department of Chemistry Indian Institute of Technology
- Mumbai 400 076
- India
| | - Elumalai Gopi
- Department of Chemistry Indian Institute of Technology
- Mumbai 400 076
- India
| | - Nishikant Satam
- Department of Chemistry Indian Institute of Technology
- Mumbai 400 076
- India
| | | |
Collapse
|
36
|
Affiliation(s)
- Kosuke Namba
- Graduate School of Biomedical Sciences, Tokushima University
| | | | | | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University
| |
Collapse
|
37
|
Yonekura K, Oki K, Tsuchimoto T. Indium-Catalyzed Formal N-Arylation and N-Alkylation of Pyrroles with Amines. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kyohei Yonekura
- Department of Applied Chemistry; School of Science and Technology; Meiji University; 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Kenji Oki
- Department of Applied Chemistry; School of Science and Technology; Meiji University; 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Teruhisa Tsuchimoto
- Department of Applied Chemistry; School of Science and Technology; Meiji University; 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| |
Collapse
|
38
|
Mou XQ, Xu ZL, Xu L, Wang SH, Zhang BH, Zhang D, Wang J, Liu WT, Bao W. The Synthesis of Multisubstituted Pyrroles via a Copper-Catalyzed Tandem Three-Component Reaction. Org Lett 2016; 18:4032-5. [DOI: 10.1021/acs.orglett.6b01883] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xue-Qing Mou
- School
of Pharmacy and State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zheng-Liang Xu
- School
of Pharmacy and State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li Xu
- School
of Pharmacy and State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shao-Hua Wang
- School
of Pharmacy and State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bang-Hong Zhang
- School
of Pharmacy and State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Di Zhang
- School
of Pharmacy and State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jie Wang
- School
of Pharmacy and State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wei-Ting Liu
- School
of Pharmacy and State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wen Bao
- School
of Pharmacy and State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
39
|
Ma Z, Wang X, Ma Y, Chen C. Asymmetric Synthesis of Axinellamines A and B. Angew Chem Int Ed Engl 2016; 55:4763-6. [PMID: 27037993 PMCID: PMC4836294 DOI: 10.1002/anie.201600007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/05/2016] [Indexed: 11/10/2022]
Abstract
Axinellamines A and B are broad-spectrum antibacterial pyrrole-imidazole alkaloids that have a complex polycyclic skeleton. A new asymmetric synthesis of these marine sponge metabolites is described herein, featuring an oxidative rearrangement and an anchimeric chlorination reaction.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Xiao Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Department of Chemistry and Biochemistry, The University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yuyong Ma
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Department of Chemistry and Biochemistry, The University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chuo Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
40
|
Affiliation(s)
- Zhiqiang Ma
- Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390 USA
| | - Xiao Wang
- Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390 USA
- Department of Chemistry and Biochemistry The University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Yuyong Ma
- Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390 USA
- Department of Chemistry and Biochemistry The University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Chuo Chen
- Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390 USA
| |
Collapse
|
41
|
Ma Q, Gong L, Meggers E. Enantioselective β-alkylation of pyrroles with the formation of an all-carbon quaternary stereocenter. Org Chem Front 2016. [DOI: 10.1039/c6qo00273k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A substitutionally and configurationally inert octahedral chiral-at-metal iridium complex is reported to be an efficient catalyst for the enantioselective Friedel–Crafts alkylation of 2,5-disubstituted pyrroles at the β-position using nitroacrylates as electrophiles.
Collapse
Affiliation(s)
- Qiao Ma
- Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Lei Gong
- Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Eric Meggers
- Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| |
Collapse
|
42
|
Beniddir MA, Evanno L, Joseph D, Skiredj A, Poupon E. Emergence of diversity and stereochemical outcomes in the biosynthetic pathways of cyclobutane-centered marine alkaloid dimers. Nat Prod Rep 2016; 33:820-42. [DOI: 10.1039/c5np00159e] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A deep-sea dive into the ecology and chemistry of surprising cyclobutanes from marine invertebrates.
Collapse
Affiliation(s)
| | - Laurent Evanno
- BioCIS
- Univ. Paris-Sud
- CNRS
- Université Paris-Saclay
- Châtenay-Malabry
| | - Delphine Joseph
- BioCIS
- Univ. Paris-Sud
- CNRS
- Université Paris-Saclay
- Châtenay-Malabry
| | - Adam Skiredj
- BioCIS
- Univ. Paris-Sud
- CNRS
- Université Paris-Saclay
- Châtenay-Malabry
| | - Erwan Poupon
- BioCIS
- Univ. Paris-Sud
- CNRS
- Université Paris-Saclay
- Châtenay-Malabry
| |
Collapse
|
43
|
Namba K, Takeuchi K, Kaihara Y, Oda M, Nakayama A, Nakayama A, Yoshida M, Tanino K. Total synthesis of palau'amine. Nat Commun 2015; 6:8731. [PMID: 26530707 PMCID: PMC4667646 DOI: 10.1038/ncomms9731] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/25/2015] [Indexed: 11/09/2022] Open
Abstract
Palau'amine has received a great deal of attention in the past two decades as an attractive synthetic target by virtue of its intriguing molecular architecture and significant immunosuppressive activity. Here we report the total synthesis of palau'amine characterized by the construction of an ABDE tetracyclic ring core including a trans-bicylo[3.3.0]octane skeleton at a middle stage of total synthesis. The ABDE tetracyclic ring core is constructed by a cascade reaction of a cleavage of the N-N bond, including simultaneous formation of imine, the addition of amide anion to the resulting imine (D-ring formation) and the condensation of pyrrole with methyl ester (B-ring formation) in a single step. The synthetic palau'amine is confirmed to exhibit excellent immunosuppressive activity. The present synthetic route has the potential to help elucidate a pharmacophore as well as the mechanistic details of immunosuppressive activity.
Collapse
Affiliation(s)
- Kosuke Namba
- Department of Pharmaceutical Science, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Kohei Takeuchi
- Department of Pharmaceutical Science, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Yukari Kaihara
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Masataka Oda
- Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8514, Japan
| | - Akira Nakayama
- Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan
| | - Atsushi Nakayama
- Department of Pharmaceutical Science, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Masahiro Yoshida
- Department of Pharmaceutical Science, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
44
|
Abstract
The carbocyclic core of massadine has been synthesized relying on a stereoselective formal [3 + 2] cycloaddition of lithiumtrimethylsilyldiazomethane with α,β-unsaturated esters to form a Δ(2)-pyrazoline moiety followed by facile N-N bond cleavage. A unique feature of the current approach is the direct installation of the tertiary α-amino center and a β-cyano group in a cis arrangement on the resulting cyclopentane framework via a previously developed formal aminocyanation protocol.
Collapse
Affiliation(s)
- Chunrui Sun
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Hyunjin Lee
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
45
|
Wang X, Gao Y, Ma Z, Rodriguez RA, Yu ZX, Chen C. Syntheses of Sceptrins and Nakamuric Acid and Insights into the Biosyntheses of Pyrrole-Imidazole Dimers. Org Chem Front 2015; 2:978-984. [PMID: 26328059 PMCID: PMC4551504 DOI: 10.1039/c5qo00165j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sceptrins and nakamuric acid are structurally unique antibiotics isolated from marine sponges. Recent studies suggest that the biosynthesis of these dimeric pyrrole-imidazole alkaloids involves a single-electron transfer (SET)-promoted [2+2] cycloaddition to form their cyclobutane core skeletons. We describe herein the biomimetic syntheses of racemic sceptrin and nakamuric acid. We also report the asymmetric syntheses of sceptrin, bromosceptrin, and dibromosceptrin in their natural enantiomeric form. We further provide mechanistic insights into the pathway selectivity of the SET-promoted [2+2] and [4+2] cycloadditions that lead to the divergent formation of the sceptrin and ageliferin core skeletons. Both the [2+2] and [4+2] cycloadditions are stepwise reactions, with the [2+2] pathway kinetically and thermodynamically favored over the [4+2] pathway. For the [2+2] cycloaddition, the dimerization of pyrrole-imidazole monomers is rate-limiting, whereas for the [4+2] cycloaddition, the cyclization is the slowest step.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Gao
- College of Chemistry, Peking University, Beijing 100871, China ; Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Hubei, Wuhan 430079, China
| | - Zhiqiang Ma
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rodrigo A Rodriguez
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zhi-Xiang Yu
- College of Chemistry, Peking University, Beijing 100871, China
| | - Chuo Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
46
|
Abstract
The biosynthesis of dimeric pyrrole-imidazole alkaloids is likely mediated by enzyme-catalyzed reversible single-electron transfer (SET) cycloaddition. We now show that Ir(ppy)3 can promote SET-mediated formal [2+2] and [4+2] cycloaddition reactions of pyrrole-imidazole alkaloids-related substrates under photolytic conditions. This biomimetic approach is useful for the construction of the core skeleton of nakamuric acid and sceptrin.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Chuo Chen
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| |
Collapse
|
47
|
Zhang F, Wang B, Prasad P, Capon RJ, Jia Y. Asymmetric Total Synthesis of (+)-Dragmacidin D Reveals Unexpected Stereocomplexity. Org Lett 2015; 17:1529-32. [DOI: 10.1021/acs.orglett.5b00327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fengying Zhang
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Bin Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Pritesh Prasad
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Robert J. Capon
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Yanxing Jia
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
48
|
Abstract
Naturally occurring guanidine derivatives frequently display medicinally useful properties. Among them, the higher order pyrrole-imidazole alkaloids, the dragmacidins, the crambescidins/batzelladines, and the saxitoxins/tetradotoxins have stimulated the development of many new synthetic methods over the past decades. We provide here an overview of the syntheses of these cyclic guanidine-containing natural products.
Collapse
Affiliation(s)
- Yuyong Ma
- Division of Chemistry, Department of Biochemistry, U T Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Saptarshi De
- Division of Chemistry, Department of Biochemistry, U T Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Chuo Chen
- Division of Chemistry, Department of Biochemistry, U T Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| |
Collapse
|
49
|
Gopi E, Kumar T, Menna-Barreto RFS, Valença WO, da Silva Júnior EN, Namboothiri INN. Imidazoles from nitroallylic acetates and α-bromonitroalkenes with amidines: synthesis and trypanocidal activity studies. Org Biomol Chem 2015; 13:9862-71. [DOI: 10.1039/c5ob01444a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One-pot cascade reactions of amidines with nitroallylic acetates and α-bromonitroalkenes provide functionalized imidazoles that exhibit trypanocidal activity.
Collapse
Affiliation(s)
- Elumalai Gopi
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400 076
- India
| | - Tarun Kumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400 076
- India
| | | | - Wagner O. Valença
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | | | | |
Collapse
|
50
|
Kumar T, Verma D, Menna-Barreto RFS, Valença WO, da Silva Júnior EN, Namboothiri INN. Synthesis of imidazoles via cascade reaction of nitroallylic acetates with amidines and studies on their trypanocidal activity. Org Biomol Chem 2015; 13:1996-2000. [DOI: 10.1039/c4ob02561j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functionalized imidazoles derived from nitroallylic acetates and amidines exhibit potent activity against T. cruzi, the etiological agent of Chagas disease.
Collapse
Affiliation(s)
- Tarun Kumar
- Indian Institute of Technology Bombay
- Mumbai 400 076
- India
| | - Deepti Verma
- Indian Institute of Technology Bombay
- Mumbai 400 076
- India
| | | | - Wagner O. Valença
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | | | | |
Collapse
|