1
|
Yan H, Liu M, Mao L, Zhu Y, Yang X, Yang S, Wang Z, Xia Y, Ren W, Jin Z, Gao Y. PyDNA-templated AgNPs coupled with poly (β‑cyclodextrin) enhanced fluorescence: A facile platform for signal amplification detection of biothiols in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125660. [PMID: 39736260 DOI: 10.1016/j.saa.2024.125660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Accurate and sensitive fluorescence imaging of biothiols is essential for understanding the mechanism underlying some physiological and pathological events, as well as the prevention and diagnosis of diseases. However, low signal transduction efficiency and poor biocompatibility of fluorescence tags associated with current sensors hinder their potential utilizations. Herein, a smart biothiols sensitive vivo imaging platform on the basis of amplifying nanoprobe has been designed. The as-prepared nanoprobe are composed of 5'-pyrene-labeled single-stranded DNA with C-rich (PyDNA), DNA-templated silver nanoparticles (AgNPs) and amplification carrier β-cyclodextrin-based polymer (βCDP). PyDNA was not only used as a signal tag, but also as a templated DNA for in situ growth of silver nanoparticles (PyDNA-AgNPs), resulting in fluorescence quenching of PyDNA through FRET. In the presence of GSH as a model biothiol, replace PyDNA off from the surface of AgNPs owing to the interact intensely between biothiol and AgNPs by forming S-Ag bonds, resulting in a fluorescence enhancement. Simultaneously, the released PyDNA was able to form a host-guest inclusion complex with βCDP to achieve signal amplification (10.1-fold enhancement). The obtained nanoprobe exhibits high sensitivity and selectivity to glutathione (GSH) with a detection limit as low as 71 nM. Using HeLa cells as a model, this nanoprobe not only realizes the highly sensitive amplifying detection and imaging of GSH in living cells, but also applies in vivo monitoring of exogenous GSH level in zebrafish. Further use of probes to reveal the overexpression of GSH with the high-contrast imaging in the tumor tissues from the lung disease model mice and clinical lung cancer patients was successfully demonstrated. It provides a facile tool for highly sensitive biothiols imaging and may pave a new avenue for the early and accurate diagnosis of tumors.
Collapse
Affiliation(s)
- Huijuan Yan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Mengxue Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Liying Mao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yuzhen Zhu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - XiuLi Yang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Shuo Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhenghui Wang
- Xinxiang City Key Laboratory of Rehabilitation Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, PR China
| | - Yimiao Xia
- Lishui Kangli Medical Equipment Co., Ltd., Lishui, Zhejiang, 323000, PR China
| | - Wu Ren
- School of Medical Engineering, Engineering Technology Research Center of Neuroscience and Control of Henan Province, Xinxiang Engineering Technology Research Center of Intelligent Rehabilitation Equipment, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhen Jin
- School of Medical Engineering, Engineering Technology Research Center of Neuroscience and Control of Henan Province, Xinxiang Engineering Technology Research Center of Intelligent Rehabilitation Equipment, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yiqiao Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| |
Collapse
|
2
|
Yan H, Yang S, Liu M, Bao K, Ren W, Lin F, Gao Y, Wang Z, Liu S, Lv J, Zhao Y. Aptamer-functionalized two-photon SiO 2@GQDs hybrid-based signal amplification strategy for targeted cancer imaging. Analyst 2023; 148:5124-5132. [PMID: 37681669 DOI: 10.1039/d3an01393f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Targeted imaging is playing an increasingly important role in the early detection and precise diagnosis of cancer. This need has motivated research into sensory nanomaterials that can be constructed into imaging agents to serve as biosensors. Graphene quantum dots (GQDs) as a valuable nanoprobe show great potential for use in two-photon biological imaging. However, most as-prepared GQDs exhibit a low two-photon absorption cross-section, narrow spectral coverage, and "one-to-one" signal conversion mode, which greatly hamper their wide application in sensitive early-stage cancer detection. Herein, a versatile strategy has been employed to fabricate an aptamer Sgc8c-functionalized hybrid as a proof-of-concept of the signal amplification strategy for targeted cancer imaging. In this study, GQDs with two-photon imaging performance, and silica nanoparticles (SiO2 NPs) as nanocarriers to provide amplified recognition events by high loading of GQD signal tags, were adopted to construct a two-photon hybrid-based signal amplification strategy. Thus, the obtained hybrid (denoted SiO2@GQDs) enabled extremely strong fluorescence with a quantum yield up to 0.49, excellent photostability and biocompatibility, and enhanced bright two-photon fluorescence up to 2.7 times that of bare GQDs (excitation at 760 nm; emission at 512 nm). Moreover, further modification with aptamer Sgc8c showed little disruption to the structure of the SiO2@GQDs-hybrid and the corresponding two-photon emission. Hence, SiO2@GQDs-Sgc8c showed specific responses to target cells. Moreover, it could be used as a signal-amplifying two-photon nanoprobe for targeted cancer imaging with high specificity and great efficiency, which exhibits a distinct green fluorescence compared to that of GQDs-Sgc8c or SiO2@GQDs. This signal amplification strategy holds great potential for the accurate early diagnosis of tumors and offers new tools for the detection a wide variety of analytes in clinical application.
Collapse
Affiliation(s)
- Huijuan Yan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Shuo Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Mengxue Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Ke Bao
- School of Medical Engineering, Engineering Technology Research Center of Neuroscience and Control of Henan Province, Xinxiang Engineering Technology Research Center of Intelligent Rehabilitation Equipment, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Wu Ren
- School of Medical Engineering, Engineering Technology Research Center of Neuroscience and Control of Henan Province, Xinxiang Engineering Technology Research Center of Intelligent Rehabilitation Equipment, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Fei Lin
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P. R. China
| | - Yiqiao Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Zhenghui Wang
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P. R. China
| | - Shuanghui Liu
- Department of Pharmacy, Xinxiang First People's Hospital, Xinxiang, Henan 453000, P. R. China
| | - Jieli Lv
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
- Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
3
|
Yan H, Liu S, Yang S, Ren W, Shangguan J, Lv J, Zhang M, Tang J, Zhao Y. In situ construction of a cobalt oxyhydroxide loaded pyrene-based fluorescent organic nanoprobe for bioimaging of endogenous ascorbic acid in living cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj02305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel in situ strategy to fabricate CoOOH nanoflake-loaded pyrene-based FONs (denoted as PyFONs@CoOOH) as proof-of-concept of a sensing platform for direct bioimaging of endogenous AA in living cells.
Collapse
Affiliation(s)
- Huijuan Yan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Shuanghui Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Shuo Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Wu Ren
- School of Medical Engineering, Xinxiang Neurosense and Control Engineering Technology Research Center, Xinxiang Key Lab of Biomedical Information Research, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Jieli Lv
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Mengzhen Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Juan Tang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
- Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang Medical University, Xinxiang, 453003, China
| |
Collapse
|
4
|
Singh AK, Nair AV, Singh NDP. Small Two-Photon Organic Fluorogenic Probes: Sensing and Bioimaging of Cancer Relevant Biomarkers. Anal Chem 2021; 94:177-192. [PMID: 34793114 DOI: 10.1021/acs.analchem.1c04306] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amit Kumar Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302, West Bengal, India
| | - Asha V Nair
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302, West Bengal, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302, West Bengal, India
| |
Collapse
|
5
|
Xu W, Li X, Wang L, Li S, Chu S, Wang J, Li Y, Hou J, Luo Q, Liu J. Design of Cyclodextrin-Based Functional Systems for Biomedical Applications. Front Chem 2021; 9:635507. [PMID: 33681149 PMCID: PMC7931691 DOI: 10.3389/fchem.2021.635507] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022] Open
Abstract
Cyclodextrins (CDs) are a family of α-1,4-linked cyclic oligosaccharides that possess a hydrophobic cavity and a hydrophilic outer surface with abundant hydroxyl groups. This unique structural characteristic allows CDs to form inclusion complexes with various guest molecules and to functionalize with different substituents for the construction of novel sophisticated systems, ranging from derivatives to polymers, metal-organic frameworks, hydrogels, and other supramolecular assemblies. The excellent biocompatibility, selective recognition ability, and unique bioactive properties also make these CD-based functional systems especially attractive for biomedical applications. In this review, we highlight the characteristics and advantages of CDs as a starting point to design different functional materials and summarize the recent advances in the use of these materials for bioseparation, enzymatic catalysis, biochemical sensing, biomedical diagnosis and therapy.
Collapse
Affiliation(s)
- Wanjia Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Xiumei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Liang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Siyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Shengnan Chu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Jiachun Wang
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| | - Yijia Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Jinxing Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
6
|
Yan H, Ren W, Liu S, Yu Y. Two-photon imaging of aptamer-functionalized Copolymer/TPdye fluorescent organic dots targeted to cancer cells. Anal Chim Acta 2020; 1106:199-206. [PMID: 32145849 DOI: 10.1016/j.aca.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Fluorescent organic dots (O-dots) recently have emerged as a new class of promising contrast reagents for two-photon fluorescence (TPF) imaging. However, most of these developed two-photon absorption (TPA) O-dots have no tumor-targeting group, which hampers their wide application for targeted tumor imaging. Herein, we fabricated Sgc8c aptamer-mediated TPA O-dots as a proof-of-concept of the sensing platform for targeted imaging in live cells or deep tissues. The O-dots composed of trans-4-[p-(N, N-diethylamino)styryl]-4'-(dimethyl amino) stilbene (DEAS) emerged as TPA organic emissive cores and encapsulation by using poly (methyl methacrylate-co-methacrylic acid) (PMMA-co-MAA) as polymeric encapsulating matrix to form DEAS/PMMA-co-MAA O-dots via a co-precipitation strategy. The obtained O-dots enabled an extremely high TPA absorption cross-section, bright two-photon fluorescence (excitation at 720 nm; emission at 412 nm and 434 nm), excellent cell-permeability and high penetration depth. Sgc8c aptamer, as a protein tyrosine kinase-7 (PTK7) receptor-targetable ligand, was further anchored on the surface of O-dots to obtain DEAS/PMMA-co-MAA@Sgc8c nanoprobes by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC)-mediated coupling reaction. Guided by Sgc8c aptamer, DEAS/PMMA-co-MAA@Sgc8c nanoprobes could be rapidly internalized into target acute lymphoblastic leukemia cells (CEM) cells with high specificity and great efficiency. It was also performed that two-photon images of TPA nanoprobes exhibited high two-photon brightness not only in target CEM cells, but also in mouse liver tissue slices even a depth of up to 210 μm. In our perception, it is highly promising that this nanoprobe provides a valuable tool for in vivo targeted imaging.
Collapse
Affiliation(s)
- Huijuan Yan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| | - Wu Ren
- School of Medical Engineering, Xinxiang Neurosense and Control Engineering Technology Research Center, Xinxiang Key Lab of Biomedical Information Research, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Shuanghui Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Neurosense and Control Engineering Technology Research Center, Xinxiang Key Lab of Biomedical Information Research, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| |
Collapse
|
7
|
Xie Y, Wang N, Li Y, Deng T, Li J, Zhang K, Yu R. Cyclodextrin supramolecular inclusion-enhanced pyrene excimer switching for highly selective detection of RNase H. Anal Chim Acta 2019; 1088:137-143. [PMID: 31623709 DOI: 10.1016/j.aca.2019.08.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
Abstract
Here, we report a novel fluorescence method for the highly selective and sensitive detection of RNase H by combining the use of a dual-pyrene-labeled DNA/RNA duplex with supramolecular inclusion-enhanced fluorescence. Initially, the probe is in the "off" state due to the rigidness of the double-stranded duplex, which separates the two pyrene units. In the presence of RNase H, the RNA strand of the DNA/RNA duplex will be hydrolyzed, and the DNA strand transforms into a hairpin structure, bringing close the two pyrene units which in turn enter the hydrophobic cavity of a γ-cyclodextrin. As a result, the pyrene excimer emission is greatly enhanced, thereby realizing the detection of RNase H activity. Under optimal conditions, RNase H detection can be achieved in the range from 0.08 to 4 U/mL, with a detection limit of 0.02 U/mL.
Collapse
Affiliation(s)
- Ye Xie
- Institute of Applied Chemistry, School of Science, College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ningning Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yulong Li
- Institute of Applied Chemistry, School of Science, College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ke Zhang
- Institute of Applied Chemistry, School of Science, College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Ruqin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
8
|
Wang N, Yu X, Deng T, Zhang K, Yang R, Li J. Two-Photon Excitation/Red Emission, Ratiometric Fluorescent Nanoprobe for Intracellular pH Imaging. Anal Chem 2019; 92:583-587. [DOI: 10.1021/acs.analchem.9b04782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xinyan Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ting Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ke Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
9
|
A versatile assay for alkaline phosphatase detection based on thymine-HgII-thymine structure generation mediated by TdT. Talanta 2019; 195:566-572. [DOI: 10.1016/j.talanta.2018.11.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022]
|
10
|
Cobalt oxyhydroxide modified with poly-β-cyclodextrin and a cyanine dye as a nanoplatform for two-photon imaging of ascorbic acid in living cells and tissue. Mikrochim Acta 2019; 186:201. [PMID: 30796531 DOI: 10.1007/s00604-019-3320-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/13/2019] [Indexed: 01/26/2023]
Abstract
This article describes the development of several nanoconjugates composed of cobalt (III) oxyhydroxide and DEASPI/βCDP, where DEASPI stands for the dye trans-4-[p-(N,N-diethylamino)styryl]-N-methylpyridinium, and βCDP stands for β-cyclodextrin. The material enables sensitive fluorometric detection and 3D imaging of ascorbic acid (AA) in biological samples. A nanomicelle composed of DEASPI and βCDP was prepared to act as a two-photon absorbance (TPA) nanofluorophore with desirable two-photon-sensitized fluorescence, high penetration depth, and excellent cell-permeability). The CoOOH nanoflakes were placed on the surface of the nanomicelle to act as both a quencher of fluorescence and as the recognition unit for AA. In the presence of AA, the CoOOH nanoflakes are reduced to Co (II), and this triggers the recovery of fluorescence. This new nanoprobe exhibits amplified two-photon fluorescence (excitation at 840 nm; emission at 565 nm), high sensitivity, and good selectivity. In-vitro imaging of endogenous AA was demonstrated in living HeLa cells. It was also employed to 3D imaging of exogenous AA in tissue by two-photon excitation microscopy to a depth of up to 320 μm. In our perception, this nanoprobe represents a valuable tool for elucidating the roles of AA in biochemical and clinical studies. Graphical abstract Schematic presentation of the preparation of a novel Poly β-Cyclodextrin/TPdye conjugated with cobalt oxyhydroxide nanoplatform and its application for high sensitive and two-photon 3D imaging of ascorbic acid (AA) in living cells and deep tissues.
Collapse
|
11
|
Lai WF, Rogach AL, Wong WT. Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev 2018; 46:6379-6419. [PMID: 28930330 DOI: 10.1039/c7cs00040e] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides bearing a basket-shaped topology with an "inner-outer" amphiphilic character. The abundance of hydroxyl groups enables CDs to be functionalized with multiple targeting ligands and imaging elements. The imaging time, and the payload of different imaging elements, can be tuned by taking advantage of the commercial availability of CDs with different sizes of the cavity. This review aims to offer an outlook of the chemistry and engineering of CDs for the development of molecular probes. Complexation thermodynamics of CDs, and the corresponding implications for probe design, are also presented with examples demonstrating the structural and physiochemical roles played by CDs in the full ambit of molecular imaging. We hope that this review not only offers a synopsis of the current development of CD-based molecular probes, but can also facilitate translation of the incremental advancements from the laboratory to real biomedical applications by illuminating opportunities and challenges for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, China.
| | | | | |
Collapse
|
12
|
Zhao DH, Yang J, Xia RX, Yao MH, Jin RM, Zhao YD, Liu B. High quantum yield Ag 2S quantum dot@polypeptide-engineered hybrid nanogels for targeted second near-infrared fluorescence/photoacoustic imaging and photothermal therapy. Chem Commun (Camb) 2018; 54:527-530. [PMID: 29265135 DOI: 10.1039/c7cc09266k] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A high quantum yield (4.3%) hybrid nanogel system based on engineered polypeptides and Ag2S quantum dots has been developed as a multifunctional diagnostic and therapeutic agent for targeted second near-infrared fluorescence, photoacoustic imaging, and photothermal therapy.
Collapse
Affiliation(s)
- Dong-Hui Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Collaborative Innovation Center for Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Tang S, Ghazvini Zadeh EH, Kim B, Toomey NT, Bondar MV, Belfield KD. Protein-induced fluorescence enhancement of two-photon excitable water-soluble diketopyrrolopyrroles. Org Biomol Chem 2018; 15:6511-6519. [PMID: 28745371 DOI: 10.1039/c7ob01397c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent contrast agents are important tools in cell biology and medical imaging due to their high sensitivity and relative availability. Diketopyrrolopyrrole (DPP) derivatives have been recently studied for applications in bioimaging, but certain drawbacks due to their inherent structure have stifled progress towards their widespread implementation. Aggregation caused quenching (ACQ) associated with π-π stacking in relatively rigid extended conjugation systems as well as hydrophobicity of previously reported DPPs make most unsuitable for biological imaging applications. Addressing these deficiencies, we report the synthesis and photophysical characterization of two new water-soluble diketopyrrolopyrole (DPP) probes that exhibit pronounced protein-induced fluorescence enhancement (PIFE) upon binding serum albumin protein. In vitro studies were also performed showing low cytotoxicity for the new DPP probes. Two-photon fluorescence microscopy (2PFM) images were obtained via excitation at 810 nm and emission in the NIR window of biological transparency, illustrating the potential of these compounds as nonlinear optical bioimaging probes.
Collapse
Affiliation(s)
- Simon Tang
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | | | | | | | | | | |
Collapse
|
14
|
Yan H, Gao Q, Liu Y, Ren W, Shangguan J, Yang X, Li K. Poly(β-cyclodextrin) enhanced fluorescence coupled with specific reaction for amplified detection of GSH and trypsin activity. NEW J CHEM 2018. [DOI: 10.1039/c8nj04325f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic illustration of the construction process of a specific-reaction assay coupled with βCDP-induced signal amplification platform.
Collapse
Affiliation(s)
- Huijuan Yan
- School of Pharmacy, Xinxiang Medical University
- Xinxiang
- P. R. China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University
- Xinxiang
- P. R. China
| | - Yufei Liu
- School of Pharmacy, Xinxiang Medical University
- Xinxiang
- P. R. China
| | - Wu Ren
- Xinxiang Neurosense and Control Engineering Technology Center, Xinxiang Medical University
- Xinxiang
- P. R. China
| | | | - Xue Yang
- School of Pharmacy, Xinxiang Medical University
- Xinxiang
- P. R. China
| | - Keke Li
- School of Pharmacy, Xinxiang Medical University
- Xinxiang
- P. R. China
| |
Collapse
|
15
|
Wang P, Zhang C, Liu HW, Xiong M, Yin SY, Yang Y, Hu XX, Yin X, Zhang XB, Tan W. Supramolecular assembly affording a ratiometric two-photon fluorescent nanoprobe for quantitative detection and bioimaging. Chem Sci 2017; 8:8214-8220. [PMID: 29568469 PMCID: PMC5855966 DOI: 10.1039/c7sc03977h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022] Open
Abstract
Fluorescence quantitative analyses for vital biomolecules are in great demand in biomedical science owing to their unique detection advantages with rapid, sensitive, non-damaging and specific identification. However, available fluorescence strategies for quantitative detection are usually hard to design and achieve. Inspired by supramolecular chemistry, a two-photon-excited fluorescent supramolecular nanoplatform (TPSNP) was designed for quantitative analysis with three parts: host molecules (β-CD polymers), a guest fluorophore of sensing probes (Np-Ad) and a guest internal reference (NpRh-Ad). In this strategy, the TPSNP possesses the merits of (i) improved water-solubility and biocompatibility; (ii) increased tissue penetration depth for bioimaging by two-photon excitation; (iii) quantitative and tunable assembly of functional guest molecules to obtain optimized detection conditions; (iv) a common approach to avoid the limitation of complicated design by adjustment of sensing probes; and (v) accurate quantitative analysis by virtue of reference molecules. As a proof-of-concept, we utilized the two-photon fluorescent probe NHS-Ad-based TPSNP-1 to realize accurate quantitative analysis of hydrogen sulfide (H2S), with high sensitivity and good selectivity in live cells, deep tissues and ex vivo-dissected organs, suggesting that the TPSNP is an ideal quantitative indicator for clinical samples. What's more, TPSNP will pave the way for designing and preparing advanced supramolecular sensors for biosensing and biomedicine.
Collapse
Affiliation(s)
- Peng Wang
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Cheng Zhang
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Sheng-Yan Yin
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Yue Yang
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China . .,Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Life Sciences , Hunan University , Changsha , Hunan 410082 , China
| | - Xia Yin
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| |
Collapse
|
16
|
Qu F, Pei H, Kong R, Zhu S, Xia L. Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO 2 nanosheets. Talanta 2017; 165:136-142. [DOI: 10.1016/j.talanta.2016.11.051] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022]
|
17
|
Xue SS, Tan CP, Chen MH, Cao JJ, Zhang DY, Ye RR, Ji LN, Mao ZW. Tumor-targeted supramolecular nanoparticles self-assembled from a ruthenium-β-cyclodextrin complex and an adamantane-functionalized peptide. Chem Commun (Camb) 2017; 53:842-845. [DOI: 10.1039/c6cc08296c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A supramolecular strategy was presented to form water-soluable Ru(ii) nanoparticles. The particles can induce cell death in integrin αvβ3-rich tumor cells with high selectivity.
Collapse
Affiliation(s)
- Shan-Shan Xue
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Mu-He Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Jian-Jun Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Dong-Yang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Rui-Rong Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
18
|
Ma Q, Song J, Zhang S, Wang M, Guo Y, Dong C. Colorimetric detection of riboflavin by silver nanoparticles capped with β-cyclodextrin-grafted citrate. Colloids Surf B Biointerfaces 2016; 148:66-72. [DOI: 10.1016/j.colsurfb.2016.08.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/27/2022]
|
19
|
Yang L, Qing Z, Liu C, Tang Q, Li J, Yang S, Zheng J, Yang R, Tan W. Direct Fluorescent Detection of Blood Potassium by Ion-Selective Formation of Intermolecular G-Quadruplex and Ligand Binding. Anal Chem 2016; 88:9285-92. [PMID: 27558922 DOI: 10.1021/acs.analchem.6b02667] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
G-quadruplex analogues have been widely used as molecular tools for detection of potassium ion (K(+)). However, interference from a higher concentration of sodium ion (Na(+)), enzymatic degradation of the oligonucleotide, and background absorption and fluorescence of blood samples have all limited the use of G-quadruplex for direct detection of K(+) in blood samples. Here, we reported, for the first time, an intermolecular G-quadruplex-based assay capable of direct fluorescent detection of blood K(+). Increased stringency of intermolecular G-quadruplex formation based on our screened G-rich oligonucleotide (5'-TGAGGGA GGGG-3') provided the necessary selectivity for K(+) against Na(+) at physiological ion level. To increase long-term stability of oligonucleotide in blood, the screened oligonucleotide was modified with an inverted thymine nucleotide whose 3'-terminus was connected to the 3'-terminus of the upstream nucleotide, acting as a blocking group to greatly improve antinuclease stability. Lastly, to avoid interference from background absorption and autofluorescence of blood, a G-quadruplex-binding, two-photon-excited ligand, EBMVC-B, was synthesized and chosen as the fluorescence reporter. Thus, based on selective K(+) ion-induced formation of intermolecular G-quadruplex and EBMVC-B binding, this approach could linearly respond to K(+) from 0.5 to 10 mM, which matches quite well with the physiologically relevant concentration of blood K(+). Moreover, the system was highly selective for K(+) against other metal ions, including Na(+), Ca(2+), Mg(2+), Zn(2+) common in blood. The practical application was demonstrated by direct detection of K(+) from real blood samples by two-photon fluorescence technology. To the best of our knowledge, this is the first attempt to exploit molecular G-quadruplex-based fluorescent sensing for direct assay of blood target. As such, we expect that it will promote the design and practical application of similar DNA-based sensors in complex real systems.
Collapse
Affiliation(s)
- Le Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Zhihe Qing
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410004, P. R. China
| | - Changhui Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Qiao Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Sheng Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410004, P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China.,School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410004, P. R. China
| | - Weihong Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| |
Collapse
|
20
|
Kong XJ, Wu S, Chen TT, Yu RQ, Chu X. MnO2-induced synthesis of fluorescent polydopamine nanoparticles for reduced glutathione sensing in human whole blood. NANOSCALE 2016; 8:15604-10. [PMID: 27511888 DOI: 10.1039/c6nr04777g] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polydopamine (PDA) nanoparticles, as a kind of popular polymer material, have attracted a great deal of attention from various areas including materials science, biomedicine, energy, environmental science and so on owing to their striking physicochemical properties. Herein, we reported for the first time the synthesis of intrinsic fluorescent PDA nanoparticles using MnO2 as an oxidant. In the presence of MnO2, dopamine was quickly oxidized into its quinone derivative, and autopolymerized into fluorescent PDA nanoparticles. Using fluorescent PDA nanoparticles as a fluorescence signal indicator, we further established a cost-effective sensor for rapid, sensitive and selective sensing of reduced glutathione (GSH) based on the redox reaction between MnO2 and GSH, and the key role of MnO2 in the formation of fluorescent PDA nanoparticles. GSH has the capability of reducing MnO2 into Mn(2+), which inhibited the formation of the fluorescent PDA nanoparticles. Thus, the concentration of GSH was directly related to the decreased fluorescence signal intensity of the PDA nanoparticles. The sensor showed good sensing performance for GSH detection with high sensitivity and desirable selectivity over other potential interfering species. Additionally, the sensor exhibited excellent practical applications for GSH detection in human whole blood samples, which presents potential applications in biological detection and clinical diagnosis.
Collapse
Affiliation(s)
- Xiang-Juan Kong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Shuang Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Ting-Ting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
21
|
Yang G, Liu J, Wu Y, Feng L, Liu Z. Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Zhu X, Gao H, Zan W, Li Y, Zhang J, Liu X, Wei X, Qi F, Yao X, Zhang H. A rational designed thiols fluorescence probe: the positional isomer in PET. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Niu W, Guo L, Li Y, Shuang S, Dong C, Wong MS. Highly Selective Two-Photon Fluorescent Probe for Ratiometric Sensing and Imaging Cysteine in Mitochondria. Anal Chem 2016; 88:1908-14. [PMID: 26717855 DOI: 10.1021/acs.analchem.5b04329] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel ratiometric mitochondrial cysteine (Cys)-selective two-photon fluorescence probe has been developed on the basis of a merocyanine as the fluorophore and an acrylate moiety as the biothiol reaction site. The biocompatible and photostable acrylate-functionalized merocyanine probe shows not only a mitochondria-targeting property but also highly selective detection and monitoring of Cys over other biothiols such as homocysteine (Hcy) and glutathione (GSH) and hydrogen sulfide (H2S) in live cells. In addition, this probe exhibits ratiometric fluorescence emission characteristics (F518/F452), which are linearly proportional to Cys concentrations in the range of 0.5-40 μM. More importantly, the probe and its released fluorophore, merocyanine, exhibit strong two-photon excited fluorescence (TPEF) with two-photon action cross-section (Φσmax) of 65.2 GM at 740 nm and 72.6 GM at 760 nm in aqueous medium, respectively, which is highly desirable for high contrast and brightness ratiometric two-photon fluorescence imaging of the living samples. The probe has been successfully applied to ratiometrically image and detect mitochondrial Cys in live cells and intact tissues down to a depth of 150 μm by two-photon fluorescence microscopy. Thus, this ratiometric two-photon fluorescent probe is practically useful for an investigation of Cys in living biological systems.
Collapse
Affiliation(s)
- Weifen Niu
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, People's Republic of China
| | - Lei Guo
- Department of Chemistry and Institute of Molecular Functional Materials, Hong Kong Baptist University , Hong Kong SAR, People's Republic of China
| | - Yinhui Li
- Department of Chemistry and Institute of Molecular Functional Materials, Hong Kong Baptist University , Hong Kong SAR, People's Republic of China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, People's Republic of China
| | - Shaomin Shuang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, People's Republic of China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, People's Republic of China
| | - Man Shing Wong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, People's Republic of China.,Department of Chemistry and Institute of Molecular Functional Materials, Hong Kong Baptist University , Hong Kong SAR, People's Republic of China
| |
Collapse
|
24
|
Wang K, Peng H, Thurecht KJ, Puttick S, Whittaker AK. Multifunctional hyperbranched polymers for CT/19F MRI bimodal molecular imaging. Polym Chem 2016. [DOI: 10.1039/c5py01707f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional hyperbranched polymers containing iodine and fluorine were synthesised by reversible addition–fragmentation chain transfer (RAFT) polymerisation, and evaluated as novel contrast agents for CT/19F MRI bimodal molecular imaging.
Collapse
Affiliation(s)
- Kewei Wang
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Simon Puttick
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology
- Centre for Advanced Imaging
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- The University of Queensland
- St. Lucia
| |
Collapse
|
25
|
Imaging of fluoride ion in living cells and tissues with a two-photon ratiometric fluorescence probe. SENSORS 2015; 15:1611-22. [PMID: 25594597 PMCID: PMC4327094 DOI: 10.3390/s150101611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/29/2014] [Indexed: 11/17/2022]
Abstract
A reaction-based two-photon (TP) ratiometric fluorescence probe Z2 has been developed and successfully applied to detect and image fluoride ion in living cells and tissues. The Z2 probe was designed designed to utilize an ICT mechanism between n-butylnaphthalimide as a fluorophore and tert-butyldiphenylsilane (TBDPS) as a response group. Upon addition of fluoride ion, the Si-O bond in the Z2 would be cleaved, and then a stronger electron-donating group was released. The fluorescent changes at 450 and 540 nm, respectively, made it possible to achieve ratiometric fluorescence detection. The results indicated that the Z2 could ratiometrically detect and image fluoride ion in living cells and tissues in a depth of 250 μm by two-photon microscopy (TPM).
Collapse
|
26
|
Kirakci K, Šícha V, Holub J, Kubát P, Lang K. Luminescent Hydrogel Particles Prepared by Self-Assembly of β-Cyclodextrin Polymer and Octahedral Molybdenum Cluster Complexes. Inorg Chem 2014; 53:13012-8. [DOI: 10.1021/ic502144z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the AS CR, v.v.i, Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Václav Šícha
- Institute of Inorganic Chemistry of the AS CR, v.v.i, Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Josef Holub
- Institute of Inorganic Chemistry of the AS CR, v.v.i, Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the AS CR, v.v.i, Dolejškova 3, 182 23 Praha 8, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the AS CR, v.v.i, Husinec-Řež 1001, 250 68 Řež, Czech Republic
| |
Collapse
|
27
|
Yan H, He L, Zhao W, Li J, Xiao Y, Yang R, Tan W. Poly β-Cyclodextrin/TPdye Nanomicelle-based Two-Photon Nanoprobe for Caspase-3 Activation Imaging in Live Cells and Tissues. Anal Chem 2014; 86:11440-50. [DOI: 10.1021/ac503546r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huijuan Yan
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Leiliang He
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Wenjie Zhao
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Jishan Li
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Yue Xiao
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Ronghua Yang
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| | - Weihong Tan
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People’s Republic of China
| |
Collapse
|