1
|
Wang J, Liu Y, Li X, Luo Y, Zheng L, Hu J, Chen G, Chen H. Ultralow Crosslinked Microgel Brings Ultrahigh Catalytic Efficiency. Macromol Rapid Commun 2020; 41:e2000135. [PMID: 32483937 DOI: 10.1002/marc.202000135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/07/2020] [Indexed: 01/18/2023]
Abstract
Microgel nanoreactors maintain the stability of metallic nanoparticles and regulate their catalytic activity. However, limited by the synthetic method, the recycling ability and long-lasting stability of microgel nanoreactors are challenged. Herein, a brand-new nanoparticle carrier, ultralow crosslinked poly(N-isopropylacrylamide-b-methacrylic acid) (P(NIPAm-b-MAA)) microgel, is synthesized based on the reversible addition-fragmentation chain transfer polymerization method and the self-crosslinking mechanism of PNIPAm. This carrier enables the easy preparation, low cost, long-lasting stability, and high catalytic efficiency of nanoreactors. As far as it is known, the catalytic reduction rates of several dye models used in this work are the highest ones in similar systems. In addition, the presence of the MAA block leads to the agglomeration and dispersion of the microgels under different pH conditions, thus realizing rapid recycling of the nanoreactors. This novel carrier has great potential for a wide range of applications in catalysis.
Collapse
Affiliation(s)
- Jinghong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Yuping Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Xiang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Yan Luo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Lifang Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Jun Hu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| |
Collapse
|
2
|
Wang J, Liu Y, Chen R, Zhang Z, Chen G, Chen H. Ultralow Self-Cross-Linked Poly( N-isopropylacrylamide) Microgels Prepared by Solvent Exchange. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13991-13998. [PMID: 31596589 DOI: 10.1021/acs.langmuir.9b02722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We found that the poly(N-isopropylacrylamide) (PNIPAm) synthesized by free-radical polymerization in organic phase could also form stable microgels in water through solvent exchange without chemical cross-linkers. Dynamic light scattering and transmission electron microscopy showed the larger swelling ratio and higher deformability of these microgels. Nuclear magnetic resonance and infrared spectroscopy indicated that the self-cross-linking structures in these microgels were attributed to the hydrogen atom abstraction both from the isopropyl tert-carbon atoms and the vinyl tert-carbon atoms in PNIPAm chains and the organic solvents were important assistants in the hydrogen abstraction behavior. Our discovery revealed that the self-cross-linking of PNIPAm chains is a common phenomenon within their free-radical polymerization process, whether in aqueous phase or in organic phase. Besides, the addition of second monomers will not affect the cross-linkage of the PNIPAm portion, which may be of great significance for the synthesis of various functional ultralow cross-linking PNIPAm microgels.
Collapse
Affiliation(s)
- Jinghong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , People's Republic of China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology , Soochow University , Suzhou 215006 , People's Republic of China
| | - Yuping Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , People's Republic of China
| | - Rui Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , People's Republic of China
| | - Zexin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , People's Republic of China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology , Soochow University , Suzhou 215006 , People's Republic of China
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , People's Republic of China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology , Soochow University , Suzhou 215006 , People's Republic of China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , People's Republic of China
| |
Collapse
|