1
|
Paenkaew S, Mahanitipong U, Rutnakornpituk M, Reiser O. Magnetite Nanoparticles Functionalized with Thermoresponsive Polymers as a Palladium Support for Olefin and Nitroarene Hydrogenation. ACS OMEGA 2023; 8:14531-14540. [PMID: 37125099 PMCID: PMC10134246 DOI: 10.1021/acsomega.3c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
A thermoresponsive and recyclable nanomaterial was synthesized by surface modification of magnetite nanoparticles (MNPs) with poly(N-isopropylacrylamide-co-diethylaminoethyl methacrylate) (P(NIPAAm-co-DEAEMA)), having PNIPAAm as a thermoresponsive moiety and PDEAEMA for catalyst binding. Palladium (Pd) nanoparticles were incorporated into this material, and the resulting nanocatalyst was efficient in the hydrogenation of olefins and nitro compounds with turnover frequencies (TOFs) up to 750 h-1. Consistent catalytic activity in 10 consecutive runs was observed when performing the hydrogenation at 45 °C, i.e., above the lower critical solution temperature (LCST) of the copolymer (37 °C), followed by cooling to 15 °C, i.e., below the LCST of the copolymer.
Collapse
Affiliation(s)
- Sujittra Paenkaew
- Department
of Chemistry and Center of Excellence in Biomaterials, Faculty of
Science, Naresuan University, Phitsanulok 65000, Thailand
- Institute
of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Usana Mahanitipong
- Department
of Chemistry and Center of Excellence in Biomaterials, Faculty of
Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Metha Rutnakornpituk
- Department
of Chemistry and Center of Excellence in Biomaterials, Faculty of
Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Oliver Reiser
- Institute
of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Zhou S, Zeng M, Liu Y, Sui X, Yuan J. Stimuli-Responsive Pickering Emulsions Regulated via Polymerization-Induced Self-Assembly Nanoparticles. Macromol Rapid Commun 2022; 43:e2200010. [PMID: 35393731 DOI: 10.1002/marc.202200010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/20/2022] [Indexed: 11/11/2022]
Abstract
With the development of reversible deactivated radical polymerization techniques, polymerization-induced self-assembly (PISA) is emerging as a facile method to prepare block copolymer nanoparticles in situ with high concentrations, providing wide potential applications in different fields, including nanomedicine, coatings, nanomanufacture, and Pickering emulsions. Polymeric emulsifiers synthesized by PISA have many advantages comparing with conventional nanoparticle emulsifiers. The morphologies, size, and amphiphilicity can be readily regulated via the synthetic process, post-modification, and external stimuli. By introducing stimulus responsiveness into PISA nanoparticles, Pickering emulsions stabilized with these nanoparticles can be endowed with "smart" behaviors. The emulsions can be regulated in reversible emulsification and demulsification. In this review, the authors focus on recent progress on Pickering emulsions stabilized by PISA nanoparticles with stimuli-responsiveness. The factors affecting the stability of emulsions during emulsification and demulsification are discussed in details. Furthermore, some viewpoints for preparing stimuli-responsive emulsions and their applications in antibacterial agents, diphase reaction platforms, and multi-emulsions are discussed as well. Finally, the future developments and applications of stimuli-responsive Pickering emulsions stabilized by PISA nanoparticles are highlighted.
Collapse
Affiliation(s)
- Shuo Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yanlin Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Zanata DDM, Felisberti MI. Thermo- and pH-responsive POEGMA-b-PDMAEMA-b-POEGMA triblock copolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Synthesis of Polymeric Ferrocenyl Amphiphiles with smart hydrophobic block and long hydrophilic poly(ethylene glycol) block and their application in self-assembly micelles with electrochemical response. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Razavi B, Soleymani-Kashkooli M, Salami-Kalajahi M, Roghani-Mamaqani H. Morphology evolution of multi-responsive ABA triblock copolymers containing photo-crosslinkable coumarin molecules. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Ganguly R, Saha P, Banerjee SL, Pich A, Singha NK. Stimuli-Responsive Block Copolymer Micelles Based on Mussel-Inspired Metal-Coordinated Supramolecular Networks. Macromol Rapid Commun 2021; 42:e2100312. [PMID: 34347312 DOI: 10.1002/marc.202100312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/16/2021] [Indexed: 12/21/2022]
Abstract
Amphiphilic diblock copolymers containing dopamine and zwitterions are synthesized via the RAFT polymerization method, which undergo temperature-mediated micellization in aqueous media. The presence of catechol moiety in dopamine is exploited to form pH-responsive cross-links with ferric ions (Fe3+ ) at different pH value. Herein, a comprehensive study of the effect of pH as well as temperature on the size and solution behavior of these cross-linked micelles is presented. These micelles cross-linked via metal-catechol coordination bonds can have several important biomedical applications such as degradable scaffolds for payload delivery.
Collapse
Affiliation(s)
- Ritabrata Ganguly
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, 721302, India
| | - Pabitra Saha
- DWI - Leibniz-Institute for Interactive Materials, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Germany
| | - Sovan Lal Banerjee
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, 721302, India
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Germany.,Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, 6167, The Netherlands
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, 721302, India.,School of Nanosciences and Technology, Indian Institute of Technology Kharagpur, 721302, India
| |
Collapse
|
7
|
Guo X, Shi W, Yin H, Pan J, Wang Z, Feng A, Thang SH. Facile Synthesis of CO 2 -Responsive Nano-Objects: Batch versus Semi-Batch RAFT Copolymerization. Macromol Rapid Commun 2021; 42:e2000765. [PMID: 33904216 DOI: 10.1002/marc.202000765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Indexed: 11/11/2022]
Abstract
Precise polymer architecture and self-assembled morphological control are attractive due to their promising applications, such as drug delivery, biosensors, tissue engineering and "smart" optical systems. Herein, starting from the same hydrophilic units poly(ethylene glycol) (PEG), using CO2 -sensitive monomer N, N-diethylaminoethyl methacrylate (DEAEMA) and hydrophobic monomer benzyl methacrylate (BzMA), a series of well-defined statistical, block, and gradient copolymers is designed and synthesized with similar degree of polymerization but different monomer sequences by batch and semi-batch RAFT polymerization process and their CO2 -responsive behaviors of these nano-objects is systematically studied. The gradient copolymers are generated by using semi-batch methods with programmed monomer feed rate controlled by syringe pumps, achieving precise control over desired gradient copolymer composition distribution. In aqueous solution, the copolymers could self-assemble into various aggregates before CO2 stimulus. Upon bubbling CO2 , the gradient copolymers preferred to form nanosheet-like structures, while the block and statistical copolymers with similar molar mass could only form larger vesicles with thinner membrane thickness or disassemble. The semi-batch strategy to precisely control over the desired composition distribution of the gradient segment presents an emerging trend for the fabrication and application of stimuli-responsive polymers.
Collapse
Affiliation(s)
- Xiaofeng Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wencheng Shi
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hang Yin
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiasheng Pan
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anchao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - San H Thang
- School of Chemistry, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| |
Collapse
|
8
|
Guo X, Ji X, Li X, Du J, Sun L, Feng A, Yuan J, Thang SH. Gas-Responsive Self-Assemblies for Mimicking the Alveoli. Macromol Rapid Commun 2021; 42:e2100019. [PMID: 33715233 DOI: 10.1002/marc.202100019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/13/2021] [Indexed: 01/14/2023]
Abstract
In human body, alveoli are the primary sites for gas exchange which are formed by the dilation and protrusion of bronchioles at the end of the lung, and the rapid gas-exchanging process in the alveoli ensures normal life activities. Based on the unique structures and functions of alveoli, it is necessary to study the regulation mechanism of its formation, respiration, and apoptosis. Herein, a class of reversible addition-fragmentation chain transfer (RAFT)-derived amphiphilic triblock copolymers, PEO-b-P(DEAEMA-co-FMA)-b-PS is designed and synthesized. Due to the amphiphilic and gas-responsive segments, these triblock copolymers can self-assemble in aqueous solution and undergo the morphological transition from nanotubes to vesicles under gas stimulation; meanwhile, in the cycles of CO2 /O2 stimulation, these vesicles can further realize the volume expansion and contraction, eventually rupture. The gas-driven morphological transformations of these aggregates successfully imitate the formation, respiration, and apoptosis of alveoli, and provide an essential basis for revealing the life phenomena.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xianfeng Ji
- Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuehai Li
- Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinhong Du
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lulu Sun
- Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anchao Feng
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - San H Thang
- School of Chemistry, Monash University, Clayton Campus, Victoria, 3800, Australia
| |
Collapse
|
9
|
Zanata DDM, Felisberti MI. Self-assembly of dual-responsive amphiphilic POEGMA- b-P4VP- b-POEGMA triblock copolymers: effect of temperature, pH, and complexation with Cu 2+. Polym Chem 2021. [DOI: 10.1039/d1py00716e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic and dual-responsive triblock copolymer POEGMA-b-P4VP-b-POEGMA synthesized by RAFT self-assemble into spherical or interconnected micelles depending on the external stimulus and their complexation with Cu2+ results in responsive nanogels.
Collapse
Affiliation(s)
- Daniela de Morais Zanata
- Institute of Chemistry, University of Campinas (UNICAMP), P. O. Box 6154, Campinas, SP 13083-970, Brazil
| | - Maria Isabel Felisberti
- Institute of Chemistry, University of Campinas (UNICAMP), P. O. Box 6154, Campinas, SP 13083-970, Brazil
| |
Collapse
|
10
|
Razavi B, Abbaszadeh R, Salami-Kalajahi M, Roghani-Mamaqani H. Multi-responsive poly(amidoamine)-initiated dendritic-star supramolecular structures containing UV cross-linkable coumarin groups for smart drug delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Eskandari P, Abousalman-Rezvani Z, Roghani-Mamaqani H, Salami-Kalajahi M. Carbon dioxide-switched removal of nitrate ions from water by cellulose nanocrystal-grafted and free multi-responsive block copolymers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Jiang T, Aseyev V, Niskanen J, Hietala S, Zhang Q, Tenhu H. Polyzwitterions with LCST Side Chains: Tunable Self-Assembly. Macromolecules 2020; 53:8267-8275. [PMID: 33122865 PMCID: PMC7586405 DOI: 10.1021/acs.macromol.0c01708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/05/2020] [Indexed: 12/20/2022]
Abstract
![]()
Manipulation
of self-assembly behavior of copolymers via environmental
change is attractive in the fabrication of smart polymeric materials.
We present tunable self-assembly behavior of graft copolymers, poly(sulfobetaine
methacrylate)-graft-poly[oligo(ethylene glycol) methyl
ether methacrylate)-co-di(ethylene glycol) methyl
ether methacrylate] (PSBM-g-P(OEGMA-co-DEGMA)). Upon heating the aqueous solutions, the graft copolymers
undergo a transition from micelles with PSBM cores to unimers (i.e.,
individual macromolecules) and then to reversed micelles with P(OEGMA-co-DEGMA) cores, thus demonstrating the tunability of the
self-assembling through temperature change. In the presence of salt
the temperature response of PSBM is eliminated, and the structure
of the micelles with the P(OEGMA-co-DEGMA) core changes.
Moreover, for the graft copolymer with long side chains, micelles
with aggregation number ∼ 2 were formed with
a PSBM core at low temperature, which is ascribed to the steric effect
of the P(OEGMA-co-DEGMA) shell.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Vladimir Aseyev
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Jukka Niskanen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.,Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Qilu Zhang
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.,State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| |
Collapse
|
13
|
Temperature-induced self-assembly of amphiphilic triblock terpolymers to low cytotoxic spherical and cubic structures as curcumin carriers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Tajmoradi Z, Roghani-Mamaqani H, Salami-Kalajahi M. Stimuli-transition of hydrophobicity/hydrophilicity in o-nitrobenzyl ester-containing multi-responsive copolymers: Application in patterning and droplet stabilization in heterogeneous media. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Amgoth C, Santhosh R, Malavath T, Singh A, Murali B, Tang G. Solvent‐Assisted [(Glycine)‐(MP‐SiO
2
NPs)] Aggregate for Drug Loading and Cancer Therapy. ChemistrySelect 2020. [DOI: 10.1002/slct.202001905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chander Amgoth
- Department of Chemistry Zhejiang University Hangzhou 310028 China
| | | | - Tirupathi Malavath
- Department of Biochemistry and Molecular Biology Tel Aviv University Israel
| | - Avinash Singh
- Department of Humanities and Sciences MLR Institute of Technology Hyderabad 500043 India
| | - Banavoth Murali
- School of Chemistry University of Hyderabad Hyderabad 500046 India
| | - Guping Tang
- Department of Chemistry Zhejiang University Hangzhou 310028 China
| |
Collapse
|
16
|
Modification of cellulose nanocrystal with dual temperature- and CO2-responsive block copolymers for ion adsorption applications. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Shieh YT, Yeh YC, Cheng CC. Two-Way CO 2-Responsive Polymer Particles with Controllable Amphiphilic Properties. ACS OMEGA 2020; 5:1862-1869. [PMID: 32039322 PMCID: PMC7003192 DOI: 10.1021/acsomega.9b03319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Multiple stimuli-responsive amphiphilic block copolymers of poly(methacrylic acid) (PMAA) and poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) were used as emulsifiers to prepare two-way CO2 stimuli-responsive poly(methyl methacrylate) (PMMA) latex particles via aqueous emulsion polymerization. The polymerization at pH 2 and 50 °C produced mainly PDMAEMA-surfaced PMMA latex particles, whereas the polymerization at pH 12 and 50 °C produced mainly PMAA-surfaced particles. Both types of latex particles appeared to precipitate at higher pH values from the emulsifier of a longer PDMAEMA block length. The direction from precipitation to dispersion for PDMAEMA-surfaced particles or from dispersion to precipitation for PMAA-surfaced particles in response to CO2 bubbling of the pH 12 dispersion of particles depended on the PDMAEMA block length. Together, this study reveals that-by tuning the PDMAEMA block length in PMAA-b-PDMAEMA used as an emulsifier and polymerization at pH 2 or 12-PMMA latex particles can exhibit two-way CO2 responsiveness between dispersion and precipitation. Thus, due to their simple preparation and unique dual pH and CO2 responsiveness, these newly developed PMAA-b-PDMAEMA emulsifiers provide a highly efficient approach for the development of smart PMMA latex nanoparticles with desirable multifunctional properties.
Collapse
Affiliation(s)
- Yeong-Tarng Shieh
- Department
of Chemical and Materials Engineering, National
University of Kaohsiung, 700 Kaohsiung University Road, Nanzih District, Kaohsiung 81148, Taiwan
| | - Yao-Chuan Yeh
- Department
of Chemical and Materials Engineering, National
University of Kaohsiung, 700 Kaohsiung University Road, Nanzih District, Kaohsiung 81148, Taiwan
| | - Chih-Chia Cheng
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Da’an District, Taipei 10607, Taiwan
| |
Collapse
|
18
|
Li SS, Lv XH, Sun XL, Wan WM, Bao H. Well-controlled polymerization of tri-vinyl dynamic covalent boroxine monomer: one dynamic covalent boroxine moiety toward a tunable penta-responsive polymer. Polym Chem 2020. [DOI: 10.1039/d0py00401d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attributed to dynamic characteristics of dynamic covalent boroxine, well-controlled polymerization of tri-vinyl monomer and molecular design of penta-responsive polymer with only one functional moiety are achieved.
Collapse
Affiliation(s)
- Shun-Shun Li
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Xin-Hu Lv
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China)
- Qingdao 266580
- P. R. of China
| | - Xiao-Li Sun
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China)
- Qingdao 266580
- P. R. of China
| | - Wen-Ming Wan
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| |
Collapse
|
19
|
Guo X, Zhang T, Wu Y, Shi W, Choi B, Feng A, Thang SH. Synthesis of CO 2-responsive gradient copolymers by switchable RAFT polymerization and their controlled self-assembly. Polym Chem 2020. [DOI: 10.1039/d0py01109f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Switchable RAFT agents, so-called because they can be reversibly switched by an acid/base stimulus to offer very good control over polymerization of both MAMs and LAMs, provide a route to prepare well-defined polyMAM-block-polyLAM copolymers.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Tianren Zhang
- The Experimental High School Attached to Beijing Normal University
- Beijing
- China
| | - Yuetong Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wencheng Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Bonnie Choi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Anchao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | | |
Collapse
|
20
|
Razavi B, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M. Light- and temperature-responsive micellar carriers prepared by spiropyran-initiated atom transfer polymerization: Investigation of photochromism kinetics, responsivities, and controlled release of doxorubicin. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122046] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Wang B, Xing C, Gao D, Yuan H, Qiu L, Yang X, Huang Y, Zhan Y. Carbon dioxide-controlled assembly based on conjugated polymer and boron nitride. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Shahriari M, Torchilin VP, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. “Smart” self-assembled structures: toward intelligent dual responsive drug delivery systems. Biomater Sci 2020; 8:5787-5803. [DOI: 10.1039/d0bm01283a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the current review, we summarized the polymer and peptide-based schizophrenic copolymers which could form micellar and vesicular (polymersome) systems providing novel structures with beneficial applications.
Collapse
Affiliation(s)
- Mahsa Shahriari
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine
- Northeastern University
- Boston
- USA
- Department of Oncology
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Khalil Abnous
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| |
Collapse
|
23
|
Abousalman-Rezvani Z, Eskandari P, Roghani-Mamaqani H, Salami-Kalajahi M. Synthesis of coumarin-containing multi-responsive CNC-grafted and free copolymers with application in nitrate ion removal from aqueous solutions. Carbohydr Polym 2019; 225:115247. [DOI: 10.1016/j.carbpol.2019.115247] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
|
24
|
Carl N, Prévost S, Schweins R, Houston JE, Morfin I, Huber K. Invertible Micelles Based on Ion-Specific Interactions of Sr 2+ and Ba 2+ with Double Anionic Block Copolyelectrolytes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nico Carl
- Large Scale Structures Group, DS, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20 156, 38042 Grenoble, France
- Chemistry Departement, University of Paderborn, Warburger Str. 100, 33098 Paderborn, North Rhine-Westphalia, Germany
| | - Sylvain Prévost
- Large Scale Structures Group, DS, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20 156, 38042 Grenoble, France
| | - Ralf Schweins
- Large Scale Structures Group, DS, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20 156, 38042 Grenoble, France
| | - Judith E. Houston
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 85747 Garching, Bavaria, Germany
| | | | - Klaus Huber
- Chemistry Departement, University of Paderborn, Warburger Str. 100, 33098 Paderborn, North Rhine-Westphalia, Germany
| |
Collapse
|
25
|
Abousalman-Rezvani Z, Eskandari P, Roghani-Mamaqani H, Mardani H, Salami-Kalajahi M. Grafting light-, temperature, and CO2-responsive copolymers from cellulose nanocrystals by atom transfer radical polymerization for adsorption of nitrate ions. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121830] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Sar P, Ghosh S, Gordievskaya YD, Goswami KG, Kramarenko EY, De P. pH-Induced Amphiphilicity-Reversing Schizophrenic Aggregation by Alternating Copolymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01804] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pintu Sar
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Sipra Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Yulia D. Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow 119991, Russia
| | - Krishna Gopal Goswami
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Elena Yu. Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow 119991, Russia
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
27
|
Shieh YT, Yeh YC, Cheng CC. Multistimuli-Responsive Emulsifiers Based on Two-Way Amphiphilic Diblock Polymers. ACS OMEGA 2019; 4:15479-15487. [PMID: 31572848 PMCID: PMC6761613 DOI: 10.1021/acsomega.9b01728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Diblock copolymers of poly(tert-butyl methacrylate) (PtBuMA) and poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) of four different block lengths were prepared by sequential two-step reversible addition-fragmentation chain transfer radical polymerization, followed by hydrolysis of the PtBuMA blocks to obtain poly(methacrylic acid)-b-PDMAEMA (PMAA-b-PDMAEMA). The effect of the PDMAEMA block length on the multistimuli-responsive amphiphilic features of both types of diblock copolymers was investigated as CO2-switchable emulsifiers for emulsification/demulsification of n-octane (an oil) in water in response to CO2/N2 bubbling. The amphiphilicity of PtBuMA-b-PDMAEMA was switched on, and the amphiphilicity of PMAA-b-PDMAEMA was switched off by CO2 bubbling at pH 12 and 25 °C to achieve emulsification/demulsification. A longer PDMAEMA block length in PMAA-b-PDMAEMA conferred more sensitive CO2-responsive amphiphilicity but reduced the extent of recovery of emulsification ability on N2 bubbling. This newly developed diblock copolymer system could potentially serve as a "multifunctional surfactant" for CO2-switchable emulsification/demulsification of oil-in-water and water-in-oil mixtures.
Collapse
Affiliation(s)
- Yeong-Tarng Shieh
- Department
of Chemical and Materials Engineering, National
University of Kaohsiung, No. 700, Kaohsiung University Road, Nanzih District, Kaohsiung 81148, Taiwan
| | - Yao-Chuan Yeh
- Department
of Chemical and Materials Engineering, National
University of Kaohsiung, No. 700, Kaohsiung University Road, Nanzih District, Kaohsiung 81148, Taiwan
| | - Chih-Chia Cheng
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Da’an District, Taipei 10607, Taiwan
| |
Collapse
|
28
|
Chen B, Wan C, Kang X, Chen M, Zhang C, Bai Y, Dong L. Enhanced CO2 separation of mixed matrix membranes with ZIF-8@GO composites as fillers: Effect of reaction time of ZIF-8@GO. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Polo Fonseca L, Felisberti MI. Dynamic urea bond mediated polymerization as a synthetic route for telechelic low molar mass dispersity polyurethanes and its block copolymers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Cunningham MF, Jessop PG. Carbon Dioxide-Switchable Polymers: Where Are the Future Opportunities? Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00914] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Jiang B, Zhang Y, Huang X, Kang T, Severtson SJ, Wang WJ, Liu P. Tailoring CO2-Responsive Polymers and Nanohybrids for Green Chemistry and Processes. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bingxue Jiang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Yuchen Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Xiaodong Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Ting Kang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Steven J. Severtson
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, St. Paul, Minnesota 55108, United States
| | - Wen-Jun Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Pingwei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
32
|
Reversible Addition-Fragmentation Chain Transfer Polymerization of 2-Chloroethyl Methacrylate and Post-Polymerization Modification. Macromol Res 2019. [DOI: 10.1007/s13233-019-7118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Zhang D, Fan Y, Chen H, Trépout S, Li MH. CO 2 -Activated Reversible Transition between Polymersomes and Micelles with AIE Fluorescence. Angew Chem Int Ed Engl 2019; 58:10260-10265. [PMID: 31145525 DOI: 10.1002/anie.201905089] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Indexed: 11/05/2022]
Abstract
Fluorescent polymersomes with both aggregation-induced emission (AIE) and CO2 -responsive properties were developed from amphiphilic block copolymer PEG-b-P(DEAEMA-co-TPEMA) in which the hydrophobic block was a copolymer made of tetraphenylethene functionalized methacrylate (TPEMA) and 2-(diethylamino)ethyl methacrylate (DEAEMA) with unspecified sequence arrangement. Four block copolymers with different DEAEMA/TPEMA and hydrophilic/hydrophobic ratios were synthesized, and bright AIE polymersomes were prepared by nanoprecipitation in THF/water and dioxane/water systems. Polymersomes of PEG45 -b-P(DEAEMA36 -co-TPEMA6 ) were chosen to study the CO2 -responsive property. Upon CO2 bubbling vesicles transformed to small spherical micelles, and upon Ar bubbling micelles returned to vesicles with the presence of a few intermediate morphologies. These polymersomes might have promising applications as sensors, nanoreactors, or controlled release systems.
Collapse
Affiliation(s)
- Dapeng Zhang
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75231, Paris, France
| | - Yujiao Fan
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75231, Paris, France
| | - Hui Chen
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75231, Paris, France
| | | | - Min-Hui Li
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75231, Paris, France.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
34
|
Zhang D, Fan Y, Chen H, Trépout S, Li M. CO
2
‐Activated Reversible Transition between Polymersomes and Micelles with AIE Fluorescence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dapeng Zhang
- Chimie ParisTechPSL UniversityCNRSInstitut de Recherche de Chimie Paris 11 rue Pierre et Marie Curie 75231 Paris France
| | - Yujiao Fan
- Chimie ParisTechPSL UniversityCNRSInstitut de Recherche de Chimie Paris 11 rue Pierre et Marie Curie 75231 Paris France
| | - Hui Chen
- Chimie ParisTechPSL UniversityCNRSInstitut de Recherche de Chimie Paris 11 rue Pierre et Marie Curie 75231 Paris France
| | | | - Min‐Hui Li
- Chimie ParisTechPSL UniversityCNRSInstitut de Recherche de Chimie Paris 11 rue Pierre et Marie Curie 75231 Paris France
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
35
|
Shieh YT, Tai PY, Cheng CC. Dual CO2/temperature-responsive diblock copolymers confer controlled reversible emulsion behavior. Polym Chem 2019. [DOI: 10.1039/c9py00325h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dual-stimuli responsive diblock copolymers possessing unique temperature-sensitive and CO2/N2-switching ability were successfully developed to promote efficient manipulation of reversible emulsification processes.
Collapse
Affiliation(s)
- Yeong-Tarng Shieh
- Department of Chemical and Materials Engineering
- National University of Kaohsiung
- Kaohsiung 81148
- Taiwan
| | - Pei-Yu Tai
- Department of Chemical and Materials Engineering
- National University of Kaohsiung
- Kaohsiung 81148
- Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
- Advanced Membrane Materials Research Center
| |
Collapse
|
36
|
Zhu R, Luo X, Feng Y, Billon L. CO2-Triggered and temperature-switchable crystallization-driven self-assembly of a semicrystalline block copolymer in aqueous medium. Polym Chem 2019. [DOI: 10.1039/c9py01298b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a semicrystalline block copolymer comprising a hydrophilic poly(acrylic acid) pure block and an amphiphilic poly(acrylic acid)-r-poly(octadecyl acrylate) random block by nitroxide-mediated polymerization is reported.
Collapse
Affiliation(s)
- Rui Zhu
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Xinjie Luo
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Yujun Feng
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Laurent Billon
- CNRS
- Université de Pau & Pays Adour
- E2S UPPA
- IPREM UMR 5254
- Bio-inspired Materials Group: Functionality & Self-assembly
| |
Collapse
|
37
|
Pan X, Guo X, Choi B, Feng A, Wei X, Thang SH. A facile synthesis of pH stimuli biocompatible block copolymer poly(methacrylic acid)-block-poly(N-vinylpyrrolidone) utilizing switchable RAFT agents. Polym Chem 2019. [DOI: 10.1039/c9py00110g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of block copolymer PMAA-b-PNVP utilizing switchable RAFT agents and its self-assembly.
Collapse
Affiliation(s)
- Xiangyu Pan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Xiaofeng Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Bonnie Choi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Anchao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Xiaohu Wei
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - San H. Thang
- School of Chemistry
- Monash University Clayton Campus
- Australia
| |
Collapse
|
38
|
Liu L, Ma G, Zeng M, Du W, Yuan J. Renewable boronic acid affiliated glycerol nano-adsorbents for recycling enzymatic catalyst in biodiesel fuel production. Chem Commun (Camb) 2018; 54:12475-12478. [PMID: 30338320 DOI: 10.1039/c8cc06169f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nano-adsorbents composed of poly(4-vinylphenyl boronic acid) shell and silica core efficiently remove residual glycerol from a lipase catalyst layer in biodiesel fuel production, resulting in excellent lipase recycling. The subsequent CO2-acidolysis endows the adsorbents with sustainable renewability.
Collapse
Affiliation(s)
- Lei Liu
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China.
| | | | | | | | | |
Collapse
|
39
|
He N, Cao Q, Wang L, Chen X, Li B, Liu Z. Carbon Dioxide-Switchable Chitosan/Polymer Composite Nanogels. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Naipu He
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou 730070 P. R. China
| | - Qi Cao
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou 730070 P. R. China
| | - Li Wang
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou 730070 P. R. China
| | - Xiunan Chen
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou 730070 P. R. China
| | - Baiyu Li
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou 730070 P. R. China
| | - Zaiman Liu
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou 730070 P. R. China
| |
Collapse
|
40
|
Joseph VS, Hong JD. Phenylboronic acid-modified oligoamine sensitive to monosaccharides and carbon dioxide under physiological conditions. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
41
|
Chu Y, Qin L, Zhen L, Pan Q. Controlled Movement of a Smart Miniature Submarine at Various Interfaces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24899-24904. [PMID: 29943972 DOI: 10.1021/acsami.8b06631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Smart miniaturized aquatic devices have many important applications, but their locomotion at different interfaces remains a challenge. Here, we report a smart miniaturized submarine moving at various air/liquid or oil/water interfaces. The microsubmarine is fabricated by a CO2-responsive superhydrophobic copper mesh and is driven by the Marangoni effect. The microsubmarine can not only transfer among different interfaces reversibly but also move horizontally at the interfaces freely. The unique locomotion of the device is attributed to a CO2-triggered switch between superhydrophobicity and underwater superoleophobicity. Moreover, the microsubmarine exhibits good stability and excellent oil repellence at the oil/water interface. Our study provides a strategy for fabricating smart aquatic devices that have potential applications in environment monitoring, water purification, channel-free microfluidics, and so on.
Collapse
Affiliation(s)
- Ying Chu
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| | - Liming Qin
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| | - Liang Zhen
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| | - Qinmin Pan
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| |
Collapse
|
42
|
Zhao T, Zhu X, Zhang L, Cang H, Zhang X, Li C, Wei H, Ma N. Dual-Responsive Self-Propulsion Smart Device Steadily Driven by CO 2 and H 2O 2. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4095-4101. [PMID: 29308646 DOI: 10.1021/acsami.7b16930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we introduce a kind of tertiary amine-based CO2-responsive material combining with the H2O2-responsive material to develop a dual-responsive self-propulsion smart device which can convert the chemical energy of H2O2 into mechanical energy steadily through diving-surfacing cycles. In this dual-responsive device, the CO2-responsive material is designed as a wettability conversion species, which is wrapped with a strip of platinum to catalyze the decomposition of H2O2 to generate gaseous O2 to realize surfacing. In deionized water, the device floats on the surface of the water initially and can perform a diving-surfacing cycle when CO2 and H2O2 stimuli are alternately applied to the aqueous solution. The cyclic movement of the device can be realized by the generation and release of the inner gas through the hydrophobic cover, leading to a new controllable transition of different kinds of energy.
Collapse
Affiliation(s)
- Tingting Zhao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Xu Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Lijie Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Hongyuan Cang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Xinyue Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Cancan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Hao Wei
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Ning Ma
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| |
Collapse
|
43
|
CO2-responsive polyacrylamide copolymer vesicles with acid-sensitive morpholine moieties and large hydrophobic RAFT end-group. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Liu B, Wang J, Zhang Y, Wu S, Ru G, Feng J. Inhomogeneous-collapse driven micelle-vesicle transition of amphiphilic block copolymers. SOFT MATTER 2017; 13:7106-7111. [PMID: 28852756 DOI: 10.1039/c7sm01540b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the morphological transition dynamics related to the hydrophilic-hydrophobic interface has been a challenge due to the lack of an effective evaluation method. Herein, nuclear magnetic resonance spectroscopy was employed to study the morphological transition related chain collapse of poly(N,N'-diethylaminoethylmethacrylate)-b-poly(N-isopropylacrylamide) (PDEAEMA133-b-PNIPA322) and poly(N,N'-dimethylaminoethylmethacrylate)-b-poly(N-isopropylacrylamide) (PDMAEMA95-b-PNIPA228) and was proved to be a powerful technique in morphological transition mechanism studies once combined with dynamic light scattering and transmission electron microscopy. Unlike the cooperative coil collapse of two blocks in the PDMAEMA95-b-PNIPA228 alkaline solution upon heating which induces the assembly of a nanostructure (∼200 nm) with a hydrophobic core containing both collapsed PDMAEMA and PNIPA segments and a hydrophilic surface part consisting of un-shrunk PDMAEMA and PNIPA segments, PDEAEMA133-b-PNIPA322 with a low-temperature core-shell micelle structure showed a micelle-vesicle transition due to temperature-induced inhomogeneous-collapse of PNIPA. The PNIPA segments in the shell sequentially collapse outside (starting at the core-shell interface), accompanied by a gradual decrease in micelle size. Above the critical temperature, the residual hydrophilic PNIPA segments become too short to stabilize the micelle structure, the micelles then transform into vesicles of a slightly larger size, instead of micelle aggregation and precipitation as normally expected.
Collapse
Affiliation(s)
- Biaolan Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | | | | | | | | | | |
Collapse
|
45
|
Canning S, Neal TJ, Armes SP. pH-Responsive Schizophrenic Diblock Copolymers Prepared by Polymerization-Induced Self-Assembly. Macromolecules 2017; 50:6108-6116. [PMID: 28867829 PMCID: PMC5577634 DOI: 10.1021/acs.macromol.7b01005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/03/2017] [Indexed: 01/28/2023]
Abstract
Polymerization-induced self-assembly (PISA) is used for the highly convenient and efficient preparation of ampholytic diblock copolymer nanoparticles directly in acidic aqueous solution. Cationic nanoparticles comprising a protonated polyamine stabilizer block and a hydrophobic polyacid core-forming block are formed at pH 2. Micelle inversion occurs at pH 10 to produce anionic nanoparticles with an ionized polyacid stabilizer block and a hydrophobic polyamine core-forming block. Macroscopic precipitation occurs at around pH 6-7, which lies close to the isoelectric point of this ampholytic diblock copolymer. Incorporation of fluorescein and rhodamine dye labels into the acid and amine blocks, respectively, leads to dual-color bifluorescent self-reporting pH-responsive nanoparticles.
Collapse
Affiliation(s)
- Sarah
L. Canning
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Thomas J. Neal
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
46
|
Abstract
Gas-responsive polymers have inspired much interest over the past ten years. Gas triggers can interact with functionalities on polymer chains and, thus, modulate their chain structures, architectures, and aggregation states. This review summarizes the latest research progresses in the theme of developing different gas triggers for fine control over some critical properties of polymers, as well as their potential applications in various areas. We focus on the interactions/reactions between gases and gas-responsive functionalities of polymers and highlight some state-of-art developments, which provided good insight and understanding of each particular gas-responsive polymer. We also offer a perspective point of view on future research directions on gas-responsive polymers, both in fundamental studies and in potential application developments.
Collapse
Affiliation(s)
- Qi Zhang
- College
of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lei Lei
- Department
of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Shiping Zhu
- Department
of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
47
|
Hu X, Zhang Y, Xie Z, Jing X, Bellotti A, Gu Z. Stimuli-Responsive Polymersomes for Biomedical Applications. Biomacromolecules 2017; 18:649-673. [DOI: 10.1021/acs.biomac.6b01704] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiuli Hu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- State
Key Laboratory of Polymer Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin 130022, People’s Republic of China
| | - Yuqi Zhang
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhigang Xie
- State
Key Laboratory of Polymer Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin 130022, People’s Republic of China
| | - Xiabin Jing
- State
Key Laboratory of Polymer Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin 130022, People’s Republic of China
| | - Adriano Bellotti
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Department
of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhen Gu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics,
UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
48
|
Tang X, Zhang Q, Pei M. Temperature-/CO2-dual-responsiveness of a zwitterionic “schizophrenic” copolymer. RSC Adv 2017. [DOI: 10.1039/c6ra28018h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A zwitterionic “schizophrenic” copolymer with dual-responsiveness to temperature and carbon dioxide self-assembles to undergo a reversible phase transition in a weakly alkaline borate buffer solution.
Collapse
Affiliation(s)
- Xinde Tang
- School of Material Science and Engineering
- Shandong Jiaotong University
- Jinan 250023
- China
| | - Qun Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
49
|
Penfold NJW, Lovett JR, Verstraete P, Smets J, Armes SP. Stimulus-responsive non-ionic diblock copolymers: protonation of a tertiary amine end-group induces vesicle-to-worm or vesicle-to-sphere transitions. Polym Chem 2017. [DOI: 10.1039/c6py01076h] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Morpholine-functionalised poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles are transformed into worms or spheres on lowering the solution pH.
Collapse
Affiliation(s)
| | | | | | - Johan Smets
- Procter & Gamble
- Eurocor NV/SA
- 1853 Strombeek-Bever
- Belgium
| | | |
Collapse
|
50
|
Kong T, Guo G, Zhang H, Gao L. Post-synthetic modification of polyvinyl alcohol with a series of N-alkyl-substituted carbamates towards thermo and CO2-responsive polymers. Polym Chem 2017. [DOI: 10.1039/c7py01136a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intensive efforts have been devoted to the synthesis of thermoresponsive polymers with terminal N-alkyl-substituted groups.
Collapse
Affiliation(s)
- Tengfei Kong
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Guoqiang Guo
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Liang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| |
Collapse
|