1
|
Du JJ, Zhou SH, Liu J, Zhong XY, Zhang RY, Zhao WX, Wen Y, Su ZH, Lu Z, Guo J. Diphtheria Toxoid-Derived T-Helper Epitope and α-galactosylceramide Synergistically Enhance the Immunogenicity of Glycopeptide Antigen. ACS Pharmacol Transl Sci 2024; 7:3889-3901. [PMID: 39698257 PMCID: PMC11651215 DOI: 10.1021/acsptsci.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 12/20/2024]
Abstract
The tumor-associated antigen MUC1 is an attractive target for immunotherapy, however, its weak immunogenicity limits the induction of antitumor immune responses. To overcome this limitation, in this study, MUC1 glycopeptide was covalently linked with a diphtheria toxin-derived T-helper epitope (DT331-345). Subsequently, the resulting DT-MUC1 glycopeptide was physically mixed with natural killer T cell agonist αGalCer to explore their immunomodulatory synergy. Biological results demonstrated that compared to MUC1+αGalCer and DT-MUC1 groups, the specific IgG antibody titer of DT-MUC1+αGalCer group increased by 189- and 3-fold, respectively, indicating that the diphtheria toxin-derived T-helper epitope synergistically enhanced MUC1 immunogenicity with αGalCer. Moreover, the DT-MUC1+αGalCer vaccine induced potent cellular immune responses and significantly inhibited the growth of B16-MUC1 tumors in vivo. Furthermore, it was found that the anti-MUC1 IgG antibody titer induced by DT-MUC1+αGalCer was equivalent to that induced by palmitoylated DT-MUC1+αGalCer (P1-DT-MUC1+αGalCer) and significantly higher than that induced by doubly palmitoylated DT-MUC1+αGalCer (P2-DT-MUC1+αGalCer), suggesting that the easily synthesized DT-MUC1 may not require lipid chain modification and already possess good amphiphilicity. This is the first time that a diphtheria toxin-derived helper T-helper epitope was covalently linked to a glycopeptide antigen to enhance its immunogenicity, and this study may provide an effective vaccine design strategy for MUC1-targeted antitumor vaccines and offer novel insights into the design of fully synthetic peptide vaccines.
Collapse
Affiliation(s)
- Jing-Jing Du
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Shi-Hao Zhou
- National
Key Laboratory of Green Pesticide, International Joint Research Center
for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jin Liu
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Xing-Yuan Zhong
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Ru-Yan Zhang
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Wen-Xiang Zhao
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Yu Wen
- National
Key Laboratory of Green Pesticide, International Joint Research Center
for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zhen-Hong Su
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Zheng Lu
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Jun Guo
- National
Key Laboratory of Green Pesticide, International Joint Research Center
for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
2
|
Du JJ, Su Z, Yu H, Qin S, Wang D. From design to clinic: Engineered peptide nanomaterials for cancer immunotherapy. Front Chem 2023; 10:1107600. [PMID: 36733612 PMCID: PMC9887119 DOI: 10.3389/fchem.2022.1107600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Immunotherapy has revolutionized the field of cancer therapy. Nanomaterials can further improve the efficacy and safety of immunotherapy because of their tunability and multifunctionality. Owing to their natural biocompatibility, diverse designs, and dynamic self-assembly, peptide-based nanomaterials hold great potential as immunotherapeutic agents for many malignant cancers, with good immune response and safety. Over the past several decades, peptides have been developed as tumor antigens, effective antigen delivery carriers, and self-assembling adjuvants for cancer immunotherapy. In this review, we give a brief introduction to the use of peptide-based nanomaterials for cancer immunotherapy as antigens, carriers, and adjuvants, and to their current clinical applications. Overall, this review can facilitate further understanding of peptide-based nanomaterials for cancer immunotherapy and may pave the way for designing safe and efficient methods for future vaccines or immunotherapies.
Collapse
Affiliation(s)
- Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Zhenhong Su
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Haoyi Yu
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Sanhai Qin
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China,*Correspondence: Dongyuan Wang,
| |
Collapse
|
3
|
Abstract
Self-adjuvanting vaccines, covalent conjugates between antigens and adjuvants, are chemically well-defined compared with conventional vaccines formulated through mixing antigens with adjuvants. Innate immune receptor ligands effectively induce acquired immunity through the activation of innate immunity, thereby enhancing host immune responses. Thus, innate immune receptor ligands are often used as adjuvants in self-adjuvanting vaccines. In a self-adjuvanting vaccine, the covalent linkage of antigen and adjuvant enables their simultaneous uptake into immune cells where the adjuvant consequently induces antigen-specific immune responses. Importantly, self-adjuvanting vaccines do not require immobilization to carrier proteins or co-administration of additional adjuvants and thus avoid inducing undesired immune responses. Because of these excellent properties, self-adjuvanting vaccines are expected to be candidates for next-generation vaccines. Here, we take an overview of vaccine adjuvants, mainly focusing on those utilized in self-adjuvanting vaccines and then we review recent reports on self-adjuvanting conjugate vaccines.
Collapse
|
4
|
Li Z, Derking R, Lee W, Bosman GP, Ward AB, Sanders RW, Boons G. Conjugation of a Toll-Like Receptor Agonist to Glycans of an HIV Native-Like Envelope Trimer Preserves Neutralization Epitopes. Chembiochem 2022; 23:e202200236. [PMID: 35647713 PMCID: PMC9510654 DOI: 10.1002/cbic.202200236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Indexed: 11/10/2022]
Abstract
Small molecule adjuvants are attractive for enhancing broad protection and durability of immune responses elicited by subunit vaccines. Covalent attachment of an adjuvant to an immunogen is particularly attractive because it simultaneously delivers both entities to antigen presenting cells resulting in more efficient immune activation. There is, however, a lack of methods to conjugate small molecule immune potentiators to viral glycoprotein immunogens without compromising epitope integrity. We describe herein a one-step enzymatic conjugation approach for the covalent attachment of small molecule adjuvants to N-linked glycans of viral glycoproteins. It involves the attachment of an immune potentiator to CMP-Neu5AcN3 by Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition followed by sialyltransferase-mediated transfer to N-glycans of a viral glycoprotein. The method was employed to modify a native-like HIV envelope trimer with a Toll-like receptor 7/8 agonist. The modification did not compromise Env-trimer recognition by several broadly neutralization antibodies. Electron microscopy confirmed structural integrity of the modified immunogen.
Collapse
Affiliation(s)
- Zeshi Li
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht University3584 CGUtrechtThe Netherlands
| | - Ronald Derking
- Department of Medical MicrobiologyAmsterdam Institute for Infection and ImmunityAmsterdam UMCUniversity of Amsterdam1105AZAmsterdamThe Netherlands
| | - Wen‐Hsin Lee
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCA, 92037USA
| | - Gerlof P. Bosman
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht University3584 CGUtrechtThe Netherlands
| | - Andrew B. Ward
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCA, 92037USA
| | - Rogier W. Sanders
- Department of Medical MicrobiologyAmsterdam Institute for Infection and ImmunityAmsterdam UMCUniversity of Amsterdam1105AZAmsterdamThe Netherlands
- Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkNY 10021USA
| | - Geert‐Jan Boons
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht University3584 CGUtrechtThe Netherlands
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGA 30602USA
- Bijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
- Chemistry DepartmentUniversity of GeorgiaAthensGA 30602USA
| |
Collapse
|
5
|
Built-in adjuvants for use in vaccines. Eur J Med Chem 2022; 227:113917. [PMID: 34688011 DOI: 10.1016/j.ejmech.2021.113917] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023]
Abstract
Vaccine refers to biological products that are produced using various pathogenic microorganisms for inoculation. The goal of vaccination is to induce a robust immune response against a specific antigen, thus preventing the organism from getting infected. In vaccines, adjuvants have been widely employed to enhance immunity against specific antigens. An ideal adjuvant should be stable, biodegradable, and low cost, not induce system rejection and promote an immune response. Various adjuvant components have been investigated across diverse applications. Typically, adjuvants are employed to meet the following objectives: (1) to improve the effectiveness of immunization with vaccines for specific populations, such as newborns and the elderly; (2) enhance the immunogenicity of highly purified or recombinant antigens; (3) allow immunization with a smaller dose of the vaccine, reducing drug dosage. In the present review, we primarily focus on chemically synthesized compounds that can be used as built-in adjuvants. We elaborate the classification of these compounds based on the induced immune activation mechanism and summarize their application in various vaccine types.
Collapse
|
6
|
Immunological Assessment of Lung Responses to Inhalational Lipoprotein Vaccines Against Bacterial Pathogens. Methods Mol Biol 2021. [PMID: 34784043 DOI: 10.1007/978-1-0716-1900-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Lipopeptides or lipoproteins show potential as safe and effective subunit vaccines for protection against bacterial pathogens. Provided suitable adjuvants are selected, such as the TLR2-stimulating molecules Pam2Cys and Pam3Cys, these may be formulated as inhalational vaccines to optimize localized pulmonary immune responses. Here, we present methods to assess antigen-specific memory lymphocyte responses to novel vaccines, with a focus on immune responses in the lung tissue and bronchoalveolar space. We describe detection of T-cell responses via leukocyte restimulation, followed by intracellular cytokine staining and flow cytometry, enzyme-linked immunosorbent spot assay (ELISpot), and sustained leukocyte restimulation for detection of antigen-specific memory responses. We also detail assessment of antibody responses to vaccine antigens, via enzyme-linked immunosorbent assay (ELISA)-based detection. These methods are suitable for testing a wide range of pulmonary vaccines.
Collapse
|
7
|
Mohammadzadeh R, Soleimanpour S, Pishdadian A, Farsiani H. Designing and development of epitope-based vaccines against Helicobacter pylori. Crit Rev Microbiol 2021; 48:489-512. [PMID: 34559599 DOI: 10.1080/1040841x.2021.1979934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the principal cause of serious diseases (e.g. gastric cancer and peptic ulcers). Antibiotic therapy is an inadequate strategy in H. pylori eradication because of which vaccination is an inevitable approach. Despite the presence of countless vaccine candidates, current vaccines in clinical trials have performed with poor efficacy which makes vaccination extremely challenging. Remarkable advancements in immunology and pathogenic biology have provided an appropriate opportunity to develop various epitope-based vaccines. The fusion of proper antigens involved in different aspects of H. pylori colonization and pathogenesis as well as peptide linkers and built-in adjuvants results in producing epitope-based vaccines with excellent therapeutic efficacy and negligible adverse effects. Difficulties of the in vitro culture of H. pylori, high genetic variation, and unfavourable immune responses against feeble epitopes in the complete antigen are major drawbacks of current vaccine strategies that epitope-based vaccines may overcome. Besides decreasing the biohazard risk, designing precise formulations, saving time and cost, and induction of maximum immunity with minimum adverse effects are the advantages of epitope-based vaccines. The present article is a comprehensive review of strategies for designing and developing epitope-based vaccines to provide insights into the innovative vaccination against H. pylori.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Pishdadian
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Dao Y, Wang B, Dong W, Zhang J, Zhong C, Zhang Z, Dong S. Facile Generation of Strained Peptidyl Thiolactones from Hydrazides and Its Application in Assembling
MUC
‐1
VNTR
Oligomers
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuankun Dao
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
- Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University Health Science Center Beijing 100191 China
| | - Biao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Weidong Dong
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Jun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Chao Zhong
- Institute of Systems Biomedicine, School of Basic Medical Sciences Peking University Health Science Center Beijing 100191 China
| | - Zhili Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| |
Collapse
|
9
|
Synthetic protein conjugate vaccines provide protection against Mycobacterium tuberculosis in mice. Proc Natl Acad Sci U S A 2021; 118:2013730118. [PMID: 33468674 DOI: 10.1073/pnas.2013730118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The global incidence of tuberculosis remains unacceptably high, with new preventative strategies needed to reduce the burden of disease. We describe here a method for the generation of synthetic self-adjuvanted protein vaccines and demonstrate application in vaccination against Mycobacterium tuberculosis Two vaccine constructs were designed, consisting of full-length ESAT6 protein fused to the TLR2-targeting adjuvants Pam2Cys-SK4 or Pam3Cys-SK4 These were produced by chemical synthesis using a peptide ligation strategy. The synthetic self-adjuvanting vaccines generated powerful local CD4+ T cell responses against ESAT6 and provided significant protection in the lungs from virulent M. tuberculosis aerosol challenge when administered to the pulmonary mucosa of mice. The flexible synthetic platform we describe, which allows incorporation of adjuvants to multiantigenic vaccines, represents a general approach that can be applied to rapidly assess vaccination strategies in preclinical models for a range of diseases, including against novel pandemic pathogens such as SARS-CoV-2.
Collapse
|
10
|
Liu Y, Wang Z, Yu F, Li M, Zhu H, Wang K, Meng M, Zhao W. The Adjuvant of α-Galactosylceramide Presented by Gold Nanoparticles Enhances Antitumor Immune Responses of MUC1 Antigen-Based Tumor Vaccines. Int J Nanomedicine 2021; 16:403-420. [PMID: 33469292 PMCID: PMC7813472 DOI: 10.2147/ijn.s273883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Therapeutic tumor vaccines are one of the most promising strategies and have attracted great attention in cancer treatment. However, most of them have shown unsatisfactory immunogenicity, there are still few available vaccines for clinical use. Therefore, there is an urgent demand to develop novel strategies to improve the immune efficacy of antitumor vaccines. PURPOSE This study aimed to develop novel adjuvants and carriers to enhance the immune effect of MUC1 glycopeptide antigen-based antitumor vaccines. METHODS An antitumor vaccine was developed, in which MUC1 glycopeptide was used as tumor-associated antigen, α-GalCer served as an immune adjuvant and AuNPs was a multivalent carrier. RESULTS Immunological evaluation results indicated that the constructed vaccines enabled a significant antibody response. FACS analysis and immunofluorescence assay showed that the induced antisera exhibited a specific binding with MUC1 positive MCF-7 cells. Moreover, the induced antibody can mediate CDC to kill MCF-7 cells. Besides stimulating B cells to produce MUC1-specific antibodies, the prepared vaccines also induced MUC1-specific CTLs in vitro. Furthermore, the vaccines significantly delayed tumor development in tumor-bearing mice model. CONCLUSION These results showed that the construction of vaccines by presenting α-GalCer adjuvant and an antigen on gold nanoparticles offers a potential strategy to improve the antitumor response in cancer immunotherapy.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Neoplasm/immunology
- Antigens, Neoplasm/immunology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cytokines/metabolism
- Cytotoxicity, Immunologic/drug effects
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Female
- Galactosylceramides/chemical synthesis
- Galactosylceramides/chemistry
- Galactosylceramides/pharmacology
- Gold/pharmacology
- Humans
- Immune Sera/metabolism
- Melanoma/immunology
- Melanoma/pathology
- Metal Nanoparticles/chemistry
- Metal Nanoparticles/ultrastructure
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mucin-1/immunology
- Spleen/pathology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Mice
Collapse
Affiliation(s)
- Yonghui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Zhaoyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin300071, People’s Republic of China
| | - Mingjing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Haomiao Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Kun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| |
Collapse
|
11
|
Kaur A, Kaushik D, Piplani S, Mehta SK, Petrovsky N, Salunke DB. TLR2 Agonistic Small Molecules: Detailed Structure-Activity Relationship, Applications, and Future Prospects. J Med Chem 2020; 64:233-278. [PMID: 33346636 DOI: 10.1021/acs.jmedchem.0c01627] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are the pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) in microbial species. Among the various TLRs, TLR2 has a special place due to its ability to sense the widest repertoire of PAMPs owing to its heterodimerization with either TLR1 or TLR6, broadening its ligand diversity against pathogens. Various scaffolds are reported to activate TLR2, which include naturally occurring lipoproteins, synthetic lipopeptides, and small heterocyclic molecules. We described a detailed SAR in TLR2 agonistic scaffolds and also covered the design and chemistry for the conjugation of TLR2 agonists to antigens, carbohydrates, polymers, and fluorophores. The approaches involved in delivery of TLR2 agonists such as lipidation of antigen, conjugation to polymers, phosphonic acids, and other linkers to achieve surface adsorption, liposomal formulation, and encapsulating nanoparticles are elaborated. The crystal structure analysis and computational modeling are also included with the structural features that facilitate TLR2 activation.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sakshi Piplani
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Surinder K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India
| |
Collapse
|
12
|
Manabe Y, Chang TC, Fukase K. Recent advances in self-adjuvanting glycoconjugate vaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:61-71. [PMID: 34895656 DOI: 10.1016/j.ddtec.2020.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 11/26/2020] [Indexed: 01/02/2023]
Abstract
Compared to traditional vaccines that are formulated into mixtures of an adjuvant and an antigen, a self-adjuvanting vaccine consists of an antigen that is covalently conjugated to a well-defined adjuvant. In self-adjuvanting vaccines, innate immune receptor ligands are usually used as adjuvants. Innate immune receptor ligands effectively trigger acquired immunity through the activation of innate immunity to enhance host immune responses to antigens. When a self-adjuvanting vaccine is used, immune cells simultaneously uptake the antigen and the adjuvant because they are covalently linked. Consequently, the adjuvant can specifically induce immune responses against the conjugated antigen. Importantly, self-adjuvanting vaccines do not require co-administration of additional adjuvants or immobilization to carrier proteins, which enables avoidance of the use of highly toxic adjuvants or the induction of undesired immune responses. Given these excellent properties, self-adjuvanting vaccines are expected to serve as candidates for the next generation of vaccines. Herein, we review vaccine adjuvants, with a focus on the adjuvants used in self-adjuvanting vaccines, and then overview recent advances made with self-adjuvanting conjugate vaccines.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Japan; Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Japan.
| | - Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Japan; Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Japan.
| |
Collapse
|
13
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
14
|
Conibear AC, Schmid A, Kamalov M, Becker CFW, Bello C. Recent Advances in Peptide-Based Approaches for Cancer Treatment. Curr Med Chem 2020; 27:1174-1205. [PMID: 29173146 DOI: 10.2174/0929867325666171123204851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Peptide-based pharmaceuticals have recently experienced a renaissance due to their ability to fill the gap between the two main classes of available drugs, small molecules and biologics. Peptides combine the high potency and selectivity typical of large proteins with some of the characteristic advantages of small molecules such as synthetic accessibility, stability and the potential of oral bioavailability. METHODS In the present manuscript we review the recent literature on selected peptide-based approaches for cancer treatment, emphasizing recent advances, advantages and challenges of each strategy. RESULTS One of the applications in which peptide-based approaches have grown rapidly is cancer therapy, with a focus on new and established targets. We describe, with selected examples, some of the novel peptide-based methods for cancer treatment that have been developed in the last few years, ranging from naturally-occurring and modified peptides to peptidedrug conjugates, peptide nanomaterials and peptide-based vaccines. CONCLUSION This review brings out the emerging role of peptide-based strategies in oncology research, critically analyzing the advantages and limitations of these approaches and the potential for their development as effective anti-cancer therapies.
Collapse
Affiliation(s)
- Anne C Conibear
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Alanca Schmid
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Meder Kamalov
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Claudia Bello
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria.,Department of Chemistry "Ugo Schiff", University of Florence, Laboratory of Peptide and Protein Chemistry and Biolology-PeptLab, Via della Lastruccia 13, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
15
|
Beckwith DM, Cudic M. Tumor-associated O-glycans of MUC1: Carriers of the glyco-code and targets for cancer vaccine design. Semin Immunol 2020; 47:101389. [PMID: 31926647 DOI: 10.1016/j.smim.2020.101389] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023]
Abstract
The transformation from normal to malignant phenotype in human cancers is associated with aberrant cell-surface glycosylation. It has frequently been reported that MUC1, the heavily glycosylated cell-surface mucin, is altered in both, expression and glycosylation pattern, in human carcinomas of the epithelium. The presence of incomplete or truncated glycan structures, often capped by sialic acid, commonly known as tumor-associated carbohydrate antigens (TACAs), play a key role in tumor initiation, progression, and metastasis. Accumulating evidence suggests that expression of TACAs is associated with tumor escape from immune defenses. In this report, we will give an overview of the oncogenic functions of MUC1 that are exerted through TACA interactions with endogenous carbohydrate-binding proteins (lectins). These interactions often lead to creation of a pro-tumor microenvironment, favoring tumor progression and metastasis, and tumor evasion. In addition, we will describe current efforts in the design of cancer vaccines with special emphasis on synthetic MUC1 glycopeptide vaccines. Analysis of the key factors that govern structure-based design of immunogenic MUC1 glycopeptide epitopes are described. The role of TACA type, position, and density on observed humoral and cellular immune responses is evaluated.
Collapse
Affiliation(s)
- Donella M Beckwith
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States.
| |
Collapse
|
16
|
Chen PG, Hu HG, Sun ZY, Li QQ, Zhang BD, Wu JJ, Li WH, Zhao YF, Chen YX, Li YM. Fully Synthetic Invariant NKT Cell-Dependent Self-Adjuvanting Antitumor Vaccines Eliciting Potent Immune Response in Mice. Mol Pharm 2019; 17:417-425. [DOI: 10.1021/acs.molpharmaceut.9b00720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pu-Guang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Hong-Guo Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Zhan-Yi Sun
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Qian-Qian Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Bo-Dou Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Jun-Jun Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
- Beijing Institute for Brain Disorders, 100069 Beijing, China
| |
Collapse
|
17
|
Marqvorsen MHS, Araman C, van Kasteren SI. Going Native: Synthesis of Glycoproteins and Glycopeptides via Native Linkages To Study Glycan-Specific Roles in the Immune System. Bioconjug Chem 2019; 30:2715-2726. [PMID: 31580646 PMCID: PMC6873266 DOI: 10.1021/acs.bioconjchem.9b00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Glycosylation plays a myriad of roles in the immune system: Certain glycans can interact with specific immune receptors to kickstart a pro-inflammatory response, whereas other glycans can do precisely the opposite and ameliorate the immune response. Specific glycans and glycoforms can themselves become the targets of the adaptive immune system, leading to potent antiglycan responses that can lead to the killing of altered self- or pathogenic species. This hydra-like set of roles glycans play is of particular importance in cancer immunity, where it influences the anticancer immune response, likely playing pivotal roles in tumor survival or clearance. The complexity of carbohydrate biology requires synthetic access to glycoproteins and glycopeptides that harbor homogeneous glycans allowing the probing of these systems with high precision. One particular complicating factor in this is that these synthetic structures are required to be as close to the native structures as possible, as non-native linkages can themselves elicit immune responses. In this Review, we discuss examples and current strategies for the synthesis of natively linked single glycoforms of peptides and proteins that have enabled researchers to gain new insights into glycoimmunology, with a particular focus on the application of these reagents in cancer immunology.
Collapse
Affiliation(s)
- Mikkel H. S. Marqvorsen
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Can Araman
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sander I. van Kasteren
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
18
|
Ashhurst AS, McDonald DM, Hanna CC, Stanojevic VA, Britton WJ, Payne RJ. Mucosal Vaccination with a Self-Adjuvanted Lipopeptide Is Immunogenic and Protective against Mycobacterium tuberculosis. J Med Chem 2019; 62:8080-8089. [PMID: 31373811 DOI: 10.1021/acs.jmedchem.9b00832] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tuberculosis (TB) remains a staggering burden on global public health. Novel preventative tools are desperately needed to reach the targets of the WHO post-2015 End-TB Strategy. Peptide or protein-based subunit vaccines offer potential as safe and effective generators of protection, and enhancement of local pulmonary immunity may be achieved by mucosal delivery. We describe the synthesis of a novel subunit vaccine via native chemical ligation. Two immunogenic epitopes, ESAT61-20 and TB10.43-11 from Mycobacterium tuberculosis (Mtb), were covalently conjugated to the TLR2-ligand Pam2Cys to generate a self-adjuvanting lipopeptide vaccine. When administered mucosally to mice, the vaccine enhanced pulmonary immunogenicity, inducing strong Th17 responses in the lungs and multifunctional peripheral T-lymphocytes. Mucosal, but not peripheral vaccination, provided substantial protection against Mtb infection, emphasizing the importance of delivery route for optimal efficacy.
Collapse
|
19
|
Li M, Yu F, Yao C, Wang PG, Liu Y, Zhao W. Synthetic and immunological studies on trimeric MUC1 immunodominant motif antigen-based anti-cancer vaccine candidates. Org Biomol Chem 2019; 16:993-999. [PMID: 29345713 DOI: 10.1039/c7ob02976d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapeutic vaccines have been regarded as a very promising treatment modality against cancer. Tumor-associated MUC1 is a promising antigen for the design of antitumor vaccines. However, body's immune tolerance and low immunogenicity of MUC1 glycopeptides limited their use as effective antigen epitopes of therapeutic vaccines. To solve this problem, we chose the immune dominant region of MUC1 VNTRs. We designed and synthesized its linear trivalent glycopeptide fragments and coupled the fragments with BSA. Immunological evaluation indicated that the antibodies induced by glycosylated MUC1 based vaccine 11 had a stronger binding than non-glycosylated 10. The novel constructed antigen epitopes have the potential to overcome the weak immunogenicity of natural MUC1 glycopeptides and deserve further research.
Collapse
Affiliation(s)
- Mingjing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P.R. China
| | | | | | | | | | | |
Collapse
|
20
|
Lei Y, Zhao F, Shao J, Li Y, Li S, Chang H, Zhang Y. Application of built-in adjuvants for epitope-based vaccines. PeerJ 2019; 6:e6185. [PMID: 30656066 PMCID: PMC6336016 DOI: 10.7717/peerj.6185] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Several studies have shown that epitope vaccines exhibit substantial advantages over conventional vaccines. However, epitope vaccines are associated with limited immunity, which can be overcome by conjugating antigenic epitopes with built-in adjuvants (e.g., some carrier proteins or new biomaterials) with special properties, including immunologic specificity, good biosecurity and biocompatibility, and the ability to vastly improve the immune response of epitope vaccines. When designing epitope vaccines, the following types of built-in adjuvants are typically considered: (1) pattern recognition receptor ligands (i.e., toll-like receptors); (2) virus-like particle carrier platforms; (3) bacterial toxin proteins; and (4) novel potential delivery systems (e.g., self-assembled peptide nanoparticles, lipid core peptides, and polymeric or inorganic nanoparticles). This review primarily discusses the current and prospective applications of these built-in adjuvants (i.e., biological carriers) to provide some references for the future design of epitope-based vaccines.
Collapse
Affiliation(s)
- Yao Lei
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Furong Zhao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Junjun Shao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yangfan Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifang Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
21
|
McDonald DM, Hanna CC, Ashhurst AS, Corcilius L, Byrne SN, Payne RJ. Synthesis of a Self-Adjuvanting MUC1 Vaccine via Diselenide-Selenoester Ligation-Deselenization. ACS Chem Biol 2018; 13:3279-3285. [PMID: 30359529 DOI: 10.1021/acschembio.8b00675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Access to lipopeptide-based vaccines for immunological studies remains a significant challenge owing to the amphipathic nature of the molecules, which makes them difficult to synthesize and purify to homogeneity. Here, we describe the application of a new peptide ligation technology, the diselenide-selenoester ligation (DSL), to access self-adjuvanting glycolipopeptide vaccines. We show that rapid ligation of glyco- and lipopeptides is possible via DSL in mixed organic solvent-aqueous buffer and, when coupled with deselenization chemistry, affords rapid and efficient access to a vaccine candidate possessing a MUC1 glycopeptide epitope and the lipopeptide adjuvant Pam2Cys. This construct was shown to elicit MUC1-specific antibody and cytotoxic T lymphocyte responses in the absence of any other injected lipids or adjuvants. The inclusion of the helper T cell epitope PADRE both boosted the antibody response and resulted in elevated cytokine production.
Collapse
Affiliation(s)
- David M. McDonald
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Cameron C. Hanna
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anneliese S. Ashhurst
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Scott N. Byrne
- Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
22
|
Wu JJ, Li WH, Chen PG, Zhang BD, Hu HG, Li QQ, Zhao L, Chen YX, Zhao YF, Li YM. Targeting STING with cyclic di-GMP greatly augmented immune responses of glycopeptide cancer vaccines. Chem Commun (Camb) 2018; 54:9655-9658. [PMID: 30101273 DOI: 10.1039/c8cc04860f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclic di-GMP (CDG) was applied to MUC1 glycopeptide-based cancer vaccines with physical mixing and built-in (at 2'-OH of CDG) strategies for activating the STING pathway. CDG in both strategies behaved as a potent immunostimulant and contributed to high titers of IgG antibodies and the expression of multiple cytokines.
Collapse
Affiliation(s)
- Jun-Jun Wu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
24
|
Li Q, Guo Z. Recent Advances in Toll Like Receptor-Targeting Glycoconjugate Vaccines. Molecules 2018; 23:molecules23071583. [PMID: 29966261 PMCID: PMC6100623 DOI: 10.3390/molecules23071583] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/04/2023] Open
Abstract
Many malignant cell surface carbohydrates resulting from abnormal glycosylation patterns of certain diseases can serve as antigens for the development of vaccines against these diseases. However, carbohydrate antigens are usually poorly immunogenic by themselves, thus they need to be covalently coupled with immunologically active carrier molecules to be functional. The most well established and commonly used carriers are proteins. In recent years, the use of toll-like receptor (TLR) ligands to formulate glycoconjugate vaccines has gained significant attention because TLR ligands can serve not only as carrier molecules but also as built-in adjuvants to form fully synthetic and self-adjuvanting conjugate vaccines, which have several advantages over carbohydrate-protein conjugates and formulated mixtures with external adjuvants. This article reviews recent progresses in the development of conjugate vaccines based on TLR ligands. Two major classes of TLR ligands, lipopeptides and lipid A derivatives will be covered with more focus on monophosohoryl lipid A (MPLA) and related analogs, which are TLR4 ligands demonstrated to be able to provoke T cell-dependent, adaptive immune responses. Corresponding conjugate vaccines have shown promising application potentials to multiple diseases including cancer.
Collapse
Affiliation(s)
- Qingjiang Li
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
25
|
Kowalczyk R, Harris PWR, Williams GM, Yang SH, Brimble MA. Peptide Lipidation - A Synthetic Strategy to Afford Peptide Based Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1030:185-227. [PMID: 29081055 PMCID: PMC7121180 DOI: 10.1007/978-3-319-66095-0_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide and protein aberrant lipidation patterns are often involved in many diseases including cancer and neurological disorders. Peptide lipidation is also a promising strategy to improve pharmacokinetic and pharmacodynamic profiles of peptide-based drugs. Self-adjuvanting peptide-based vaccines commonly utilise the powerful TLR2 agonist PamnCys lipid to stimulate adjuvant activity. The chemical synthesis of lipidated peptides can be challenging hence efficient, flexible and straightforward synthetic routes to access homogeneous lipid-tagged peptides are in high demand. A new technique coined Cysteine Lipidation on a Peptide or Amino acid (CLipPA) uses a 'thiol-ene' reaction between a cysteine and a vinyl ester and offers great promise due to its simplicity, functional group compatibility and selectivity. Herein a brief review of various synthetic strategies to access lipidated peptides, focusing on synthetic methods to incorporate a PamnCys motif into peptides, is provided.
Collapse
Affiliation(s)
- Renata Kowalczyk
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Geoffrey M Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand. .,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand.
| |
Collapse
|
26
|
Ignacio BJ, Albin TJ, Esser-Kahn AP, Verdoes M. Toll-like Receptor Agonist Conjugation: A Chemical Perspective. Bioconjug Chem 2018; 29:587-603. [PMID: 29378134 PMCID: PMC10642707 DOI: 10.1021/acs.bioconjchem.7b00808] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are vital elements of the mammalian immune system that function by recognizing pathogen-associated molecular patterns (PAMPs), bridging innate and adaptive immunity. They have become a prominent therapeutic target for the treatment of infectious diseases, cancer, and allergies, with many TLR agonists currently in clinical trials or approved as immunostimulants. Numerous studies have shown that conjugation of TLR agonists to other molecules can beneficially influence their potency, toxicity, pharmacokinetics, or function. The functional properties of TLR agonist conjugates, however, are highly dependent on the ligation strategy employed. Here, we review the chemical structural requirements for effective functional TLR agonist conjugation. In addition, we provide similar analysis for those that have yet to be conjugated. Moreover, we discuss applications of covalent TLR agonist conjugation and their implications for clinical use.
Collapse
Affiliation(s)
- Bob J. Ignacio
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Tyler J. Albin
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Aaron P. Esser-Kahn
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
27
|
Supekar NT, Lakshminarayanan V, Capicciotti CJ, Sirohiwal A, Madsen CS, Wolfert MA, Cohen PA, Gendler SJ, Boons GJ. Synthesis and Immunological Evaluation of a Multicomponent Cancer Vaccine Candidate Containing a Long MUC1 Glycopeptide. Chembiochem 2018; 19:121-125. [PMID: 29120508 PMCID: PMC5975269 DOI: 10.1002/cbic.201700424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 12/16/2022]
Abstract
A fully synthetic MUC1-based cancer vaccine was designed and chemically synthesized containing an endogenous helper T-epitope (MHC class II epitope). The vaccine elicited robust IgG titers that could neutralize cancer cells by antibody-dependent cell-mediated cytotoxicity (ADCC). It also activated cytotoxic T-lymphocytes. Collectively, the immunological data demonstrate engagement of helper T-cells in immune activation. A synthetic methodology was developed for a penta-glycosylated MUC1 glycopeptide, and antisera of mice immunized by the new vaccine recognized such a structure. Previously reported fully synthetic MUC1-based cancer vaccines that elicited potent immune responses employed exogenous helper T-epitopes derived from microbes. It is the expectation that the use of the newly identified endogenous helper T-epitope will be more attractive, because it will activate cognate CD4+ T-cells that will provide critical tumor-specific help intratumorally during the effector stage of tumor rejection and will aid in the generation of sustained immunological memory.
Collapse
Affiliation(s)
- Nitin T Supekar
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
- Department of Chemistry, The University of Georgia, 140 Cedar Street, Athens, Georgia, 30602, USA
| | - Vani Lakshminarayanan
- Departments of Biochemistry and Molecular Biology and Immunology, Mayo Clinic College of Medicine and, Mayo Clinic Comprehensive Cancer Center, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Chantelle J Capicciotti
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
| | - Anju Sirohiwal
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
| | - Cathy S Madsen
- Departments of Biochemistry and Molecular Biology and Immunology, Mayo Clinic College of Medicine and, Mayo Clinic Comprehensive Cancer Center, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Margreet A Wolfert
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, Netherlands
| | - Peter A Cohen
- Departments of Biochemistry and Molecular Biology and Immunology, Mayo Clinic College of Medicine and, Mayo Clinic Comprehensive Cancer Center, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Sandra J Gendler
- Departments of Biochemistry and Molecular Biology and Immunology, Mayo Clinic College of Medicine and, Mayo Clinic Comprehensive Cancer Center, 13400 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
- Department of Chemistry, The University of Georgia, 140 Cedar Street, Athens, Georgia, 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, Netherlands
| |
Collapse
|
28
|
Recent progress of fully synthetic carbohydrate-based vaccine using TLR agonist as build-in adjuvant. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Stergiou N, Glaffig M, Jonuleit H, Schmitt E, Kunz H. Immunization with a Synthetic Human MUC1 Glycopeptide Vaccine against Tumor‐Associated MUC1 Breaks Tolerance in Human MUC1 Transgenic Mice. ChemMedChem 2017; 12:1424-1428. [DOI: 10.1002/cmdc.201700387] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Natascha Stergiou
- Johannes Gutenberg University MainzUniversity Medical Center – Institute of Immunology Langenbeckstraße 1, Building 708 55131 Mainz Germany
| | - Markus Glaffig
- Johannes Gutenberg University MainzInstitute of Organic Chemistry Duesbergweg 10–14 55128 Mainz Germany
| | - Helmut Jonuleit
- Johannes Gutenberg University MainzUniversity Medical Center – Dermatology Langenbeckstraße 1, Building 401 55116 Mainz Germany
| | - Edgar Schmitt
- Johannes Gutenberg University MainzUniversity Medical Center – Institute of Immunology Langenbeckstraße 1, Building 708 55131 Mainz Germany
| | - Horst Kunz
- Johannes Gutenberg University MainzInstitute of Organic Chemistry Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
30
|
Abstract
AbstractCancer immunotherapy based on tumor vaccine is very promising and intriguing for carcinoma treatment. Herein, antitumor nanovaccines consisting of self-assembled chitosan (CS) nanoparticles and two-component mucin1 (MUC1) glycopeptide antigens were reported. Two different kinds of polyanionic electrolyte [sodium tripolyphosphate (TPP) and γ-poly-L-glutamic acid (γ-PGA)] were combined with chitosan polymers to fabricate the diameter of nearly 400–500 nm CS nanoparticles by electrostatic interactions. The nanovaccines were constructed by physically mixing MUC1 glycopeptide antigens with CS nanoparticles, which reduced vaccine constructing complexity compared with traditional chemical total synthetic vaccines. Immunological studies revealed that the CS/γ-PGA nanoparticle could dramatically enhance the immunogenicity of peptide epitope and produce significantly high titers of IgG antibody which was even better than Freund’s adjuvant-containing vaccines.
Collapse
|
31
|
Sun ZY, Chen PG, Liu YF, Shi L, Zhang BD, Wu JJ, Zhao YF, Chen YX, Li YM. Self-Assembled Nano-Immunostimulant for Synergistic Immune Activation. Chembiochem 2017; 18:1721-1729. [PMID: 28618135 DOI: 10.1002/cbic.201700246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/11/2022]
Abstract
Immunotherapy has become one of the most promising therapies for the treatment of diseases. Synthetic immunostimulants and nanomaterial immunostimulant systems are indispensable for the activation of the immune system in cancer immunotherapy. Herein, a strategy for preparing self-assembled nano-immunostimulants (SANIs) for synergistic immune activation is reported. Three immunostimulants self-assemble into nanoparticles through electrostatic interactions. SANIs showed strong synergistic immunostimulation in macrophages. SANIs could also induce a strong antitumor immune response to inhibit tumor growth in mice and act as an efficient adjuvant of antitumor vaccines. Therefore, SANIs may be generally applied in cancer immunotherapy. This novel SANI strategy provides a new way for the development of both immunostimulants and -suppressants.
Collapse
Affiliation(s)
- Zhan-Yi Sun
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Pu-Guang Chen
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-Fang Liu
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Shi
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bo-Dou Zhang
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun-Jun Wu
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Fen Zhao
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yong-Xiang Chen
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
Pett C, Cai H, Liu J, Palitzsch B, Schorlemer M, Hartmann S, Stergiou N, Lu M, Kunz H, Schmitt E, Westerlind U. Microarray Analysis of Antibodies Induced with Synthetic Antitumor Vaccines: Specificity against Diverse Mucin Core Structures. Chemistry 2017; 23:3875-3884. [PMID: 27957769 DOI: 10.1002/chem.201603921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 01/08/2023]
Abstract
Glycoprotein research is pivotal for vaccine development and biomarker discovery. Many successful methodologies for reliably increasing the antigenicity toward tumor-associated glycopeptide structures have been reported. Deeper insights into the quality and specificity of the raised polyclonal, humoral reactions are often not addressed, despite the fact that an immunological memory, which produces antibodies with cross-reactivity to epitopes exposed on healthy cells, may cause autoimmune diseases. In the current work, three MUC1 antitumor vaccine candidates conjugated with different immune stimulants are evaluated immunologically. For assessment of the influence of the immune stimulant on antibody recognition, a comprehensive library of mucin 1 glycopeptides (>100 entries) is synthesized and employed in antibody microarray profiling; these range from small tumor-associated glycans (TN , STN , and T-antigen structures) to heavily extended O-glycan core structures (type-1 and type-2 elongated core 1-3 tri-, tetra-, and hexasaccharides) glycosylated in variable density at the five different sites of the MUC1 tandem repeat. This is one of the most extensive glycopeptide libraries ever made through total synthesis. On tumor cells, the core 2 β-1,6-N-acetylglucosaminyltransferase-1 (C2GlcNAcT-1) is down-regulated, resulting in lower amounts of the branched core 2 structures, which favor formation of linear core 1 or core 3 structures, and in particular, truncated tumor-associated antigen structures. The core 2 structures are commonly found on healthy cells and the elucidation of antibody cross-reactivity to such epitopes may predict the tumor-selectivity and safety of synthetic vaccines. With the extended mucin core structures in hand, antibody cross-reactivity toward the branched core 2 glycopeptide epitopes is explored. It is observed that the induced antibodies recognize MUC1 peptides with very high glycosylation site specificity. The nature of the antibody response is characteristically different for antibodies directed to glycosylation sites in either the immune-dominant PDTR or the GSTA domain. All antibody sera show high reactivity to the tumor-associated saccharide structures on MUC1. Extensive glycosylation with branched core 2 structures, typically found on healthy cells, abolishes antibody recognition of the antisera and suggests that all vaccine conjugates preferentially induce a tumor-specific humoral immune response.
Collapse
Affiliation(s)
- Christian Pett
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Hui Cai
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Jia Liu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn Palitzsch
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Manuel Schorlemer
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Sebastian Hartmann
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Natascha Stergiou
- University Medical Center, Institute of Immunology, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, Geb. 708, 55101, Mainz, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Horst Kunz
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Edgar Schmitt
- University Medical Center, Institute of Immunology, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, Geb. 708, 55101, Mainz, Germany
| | - Ulrika Westerlind
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| |
Collapse
|
33
|
Immunological Evaluation of Recent MUC1 Glycopeptide Cancer Vaccines. Vaccines (Basel) 2016; 4:vaccines4030025. [PMID: 27472370 PMCID: PMC5041019 DOI: 10.3390/vaccines4030025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
Aberrantly glycosylated mucin 1 (MUC1) is a recognized tumor-specific antigen on epithelial cell tumors. A wide variety of MUC1 glycopeptide anti-cancer vaccines have been formulated by many research groups. Some researchers have used MUC1 alone as an immunogen whereas other groups used different antigenic carrier proteins such as bovine serum albumin or keyhole limpet hemocyanin for conjugation with MUC1 glycopeptide. A variety of adjuvants have been used with MUC1 glycopeptides to improve their immunogenicity. Fully synthetic multicomponent vaccines have been synthesized by incorporating different T helper cell epitopes and Toll-like receptor agonists. Some vaccine formulations utilized liposomes or nanoparticles as vaccine delivery systems. In this review, we discuss the immunological evaluation of different conjugate or synthetic MUC1 glycopeptide vaccines in different tumor or mouse models that have been published since 2012.
Collapse
|
34
|
Shi L, Cai H, Huang ZH, Sun ZY, Chen YX, Zhao YF, Kunz H, Li YM. Synthetic MUC1 Antitumor Vaccine Candidates with Varied Glycosylation Pattern BearingR/S-configured Pam3CysSerLys4. Chembiochem 2016; 17:1412-5. [DOI: 10.1002/cbic.201600206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Lei Shi
- Key Laboratory of Bioorganic Phosphorus Chemistry and; Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Hui Cai
- Key Laboratory of Bioorganic Phosphorus Chemistry and; Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Zhi-Hua Huang
- Key Laboratory of Bioorganic Phosphorus Chemistry and; Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Zhan-Yi Sun
- Key Laboratory of Bioorganic Phosphorus Chemistry and; Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and; Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and; Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Horst Kunz
- Institute of Organic Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and; Chemical Biology (Ministry of Education); Department of Chemistry; Tsinghua University; Beijing 100084 China
| |
Collapse
|
35
|
Palitzsch B, Gaidzik N, Stergiou N, Stahn S, Hartmann S, Gerlitzki B, Teusch N, Flemming P, Schmitt E, Kunz H. A Synthetic Glycopeptide Vaccine for the Induction of a Monoclonal Antibody that Differentiates between Normal and Tumor Mammary Cells and Enables the Diagnosis of Human Pancreatic Cancer. Angew Chem Int Ed Engl 2016; 55:2894-8. [PMID: 26800384 DOI: 10.1002/anie.201509935] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/06/2022]
Abstract
In studies within the realm of cancer immunotherapy, the synthesis of exactly specified tumor-associated glycopeptide antigens is shown to be a key strategy for obtaining a highly selective biological reagent, that is, a monoclonal antibody that completely differentiates between tumor and normal epithelial cells and specifically marks the tumor cells in pancreas tumors. Mucin MUC1, which is overexpressed in many prevalent cancers, was identified as a promising target for this strategy. Tumor-associated MUC1 differs significantly from that expressed by normal cells, in particular by altered glycosylation. Structurally defined tumor-associated MUC1 cannot be isolated from tumor cells. We synthesized MUC1-glycopeptide vaccines and analyzed their structure-activity relationships in immunizations; a monoclonal antibody that specifically distinguishes between human normal and tumor epithelial cells was thus generated.
Collapse
Affiliation(s)
- Björn Palitzsch
- Institut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Nikola Gaidzik
- Institut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Natascha Stergiou
- Institut für Immunologie, Universitätsmedizin der Universität Mainz, Langenbeckstrasse 1, G. 708, 55101, Mainz, Germany
| | - Sonja Stahn
- Fakultät für Naturwissenschaften, Technische Hochschule Köln, Kaiser-Wilhelm-Allee, G. E39, 51373, Leverkusen, Germany
| | - Sebastian Hartmann
- Institut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Bastian Gerlitzki
- Institut für Immunologie, Universitätsmedizin der Universität Mainz, Langenbeckstrasse 1, G. 708, 55101, Mainz, Germany
| | - Nicole Teusch
- Fakultät für Naturwissenschaften, Technische Hochschule Köln, Kaiser-Wilhelm-Allee, G. E39, 51373, Leverkusen, Germany
| | - Peer Flemming
- Pathologisches Institut Celle, Wittinger Strasse 14, 29223, Celle, Germany
| | - Edgar Schmitt
- Institut für Immunologie, Universitätsmedizin der Universität Mainz, Langenbeckstrasse 1, G. 708, 55101, Mainz, Germany
| | - Horst Kunz
- Institut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
36
|
Palitzsch B, Gaidzik N, Stergiou N, Stahn S, Hartmann S, Gerlitzki B, Teusch N, Flemming P, Schmitt E, Kunz H. Ein durch eine synthetische Glycopeptid-Vakzine induzierter monoklonaler Antiköper unterscheidet normale von malignen Brustzellen und ermöglicht die Diagnose von humanen Pankreaskarzinomen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Björn Palitzsch
- Institut für Organische Chemie; Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Nikola Gaidzik
- Institut für Organische Chemie; Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Natascha Stergiou
- Institut für Immunologie; Universitätsmedizin der Universität Mainz; Langenbeckstraße 1, G. 708 55101 Mainz Deutschland
| | - Sonja Stahn
- Fakultät für Naturwissenschaften; Technische Hochschule Köln; Kaiser-Wilhelm-Allee, G. E39 51373 Leverkusen Deutschland
| | - Sebastian Hartmann
- Institut für Organische Chemie; Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Bastian Gerlitzki
- Institut für Immunologie; Universitätsmedizin der Universität Mainz; Langenbeckstraße 1, G. 708 55101 Mainz Deutschland
| | - Nicole Teusch
- Fakultät für Naturwissenschaften; Technische Hochschule Köln; Kaiser-Wilhelm-Allee, G. E39 51373 Leverkusen Deutschland
| | - Peer Flemming
- Pathologisches Institut Celle; Wittinger Straße 14 29223 Celle Deutschland
| | - Edgar Schmitt
- Institut für Immunologie; Universitätsmedizin der Universität Mainz; Langenbeckstraße 1, G. 708 55101 Mainz Deutschland
| | - Horst Kunz
- Institut für Organische Chemie; Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| |
Collapse
|
37
|
Liu Y, Zhang W, He Q, Yu F, Song T, Liu T, Zhang Z, Zhou J, Wang PG, Zhao W. Fully synthetic self-adjuvanting MUC1-fibroblast stimulating lipopeptide 1 conjugates as potential cancer vaccines. Chem Commun (Camb) 2016; 52:10886-9. [DOI: 10.1039/c6cc04623a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have designed and synthesized MUC1-fibroblast stimulating lipopeptide 1 conjugates as potential self-adjuvanting cancer vaccines using a linear solid phase peptide synthesis strategy.
Collapse
Affiliation(s)
- Yonghui Liu
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Haihe Education Park
- Tianjin 300353
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
- P. R. China
| | - Qianqian He
- College of Life Sciences
- Nankai University
- Tianjin 300071
- P. R. China
| | - Fan Yu
- College of Life Sciences
- Nankai University
- Tianjin 300071
- P. R. China
| | - Tianbang Song
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Haihe Education Park
- Tianjin 300353
| | - Tingting Liu
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Haihe Education Park
- Tianjin 300353
| | - Zhenqing Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
- P. R. China
| | - Jun Zhou
- College of Life Sciences
- Nankai University
- Tianjin 300071
- P. R. China
| | - Peng George Wang
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Haihe Education Park
- Tianjin 300353
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Haihe Education Park
- Tianjin 300353
| |
Collapse
|
38
|
Zhou Z, Liao G, Mandal SS, Suryawanshi S, Guo Z. A Fully Synthetic Self-Adjuvanting Globo H-Based Vaccine Elicited Strong T Cell-Mediated Antitumor Immunity. Chem Sci 2015; 6:7112-7121. [PMID: 26918109 PMCID: PMC4762603 DOI: 10.1039/c5sc01402f] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/09/2015] [Indexed: 11/21/2022] Open
Abstract
Therapeutic cancer vaccines based on the abnormal glycans expressed on cancer cells, such as the globo H antigen, have witnessed great progress in recent years. For example, the keyhole limpet hemocyanin (KLH) conjugate of globo H has been on clinical trials as a cancer vaccine. However, such vaccines have intrinsic problems, such as inconsistence in eliciting T cell-mediated immunity in cancer patients and difficult quality control. To address the issue, a structurally defined fully synthetic glycoconjugate vaccine composed of globo H and monophosphoryl lipid A (MPLA) was developed. The new vaccine was shown to elicit robust IgG1 antibody responses and T cell-dependent immunity, which is desired for anticancer vaccine, and induce significantly faster and stronger immune responses than the globo H-KLH conjugate. Moreover, it was self-adjuvanting, namely, inducing immune responses without the use of an external adjuvant, thus MPLA was not only a vaccine carrier but also a build-in adjuvant. It was also found that antibodies induced by the new vaccine could selectively bind to and mediate strong complement-dependent cytotoxicity to globo H-expressing MCF-7 cancer cell. All of the results have demonstrated that the globo H-MPLA conjugate is a better cancer vaccine than the globo H-KLH conjugate under experimental conditions and is worth further investigation and development.
Collapse
Affiliation(s)
- Zhifang Zhou
- Department of Chemistry , Wayne State University , 1501 Cass Avenue , Detroit , Michigan 48202 , USA . ; Tel: +1-313-577-2557
| | - Guochao Liao
- Department of Chemistry , Wayne State University , 1501 Cass Avenue , Detroit , Michigan 48202 , USA . ; Tel: +1-313-577-2557
| | - Satadru S. Mandal
- Department of Chemistry , Wayne State University , 1501 Cass Avenue , Detroit , Michigan 48202 , USA . ; Tel: +1-313-577-2557
| | - Sharad Suryawanshi
- Department of Chemistry , Wayne State University , 1501 Cass Avenue , Detroit , Michigan 48202 , USA . ; Tel: +1-313-577-2557
| | - Zhongwu Guo
- Department of Chemistry , Wayne State University , 1501 Cass Avenue , Detroit , Michigan 48202 , USA . ; Tel: +1-313-577-2557
| |
Collapse
|
39
|
McDonald DM, Byrne SN, Payne RJ. Synthetic self-adjuvanting glycopeptide cancer vaccines. Front Chem 2015; 3:60. [PMID: 26557640 PMCID: PMC4615963 DOI: 10.3389/fchem.2015.00060] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/07/2015] [Indexed: 12/05/2022] Open
Abstract
Due to changes in glycosyltransferase expression during oncogenesis, the glycoproteins of cancer cells often carry highly truncated carbohydrate chains compared to those on healthy cells. These glycans are known as tumor-associated carbohydrate antigens (TACAs), and are prime targets for use in vaccines for the prevention and treatment of cancer. Herein, we review the state-of-the-art in targeting the immune system toward tumor-associated glycopeptide antigens via synthetic self-adjuvanting vaccines, in which the antigenic and adjuvanting moieties of the vaccines are present in the same molecule. The majority of the self-adjuvanting glycopeptide cancer vaccines reported to date employ antigens from mucin 1, a protein which is highly over-expressed and aberrantly glycosylated in many forms of cancer. The adjuvants used in these vaccines predominantly include lipopeptide- or lipoamino acid-based TLR2 agonists, although studies investigating stimulation of TLR9 and TLR4 are also discussed. Many of these adjuvants are highly lipophilic, and, upon conjugation to antigenic peptides, provide amphiphilic vaccine molecules. The amphiphilic nature of these vaccine constructs can lead to the formation of higher-order structures by vaccines in solution, which are likely to be important for their efficacy in vivo.
Collapse
Affiliation(s)
- David M. McDonald
- School of Chemistry, The University of SydneySydney, NSW, Australia
- Discipline of Infectious Diseases and Immunology, The University of SydneySydney, NSW, Australia
| | - Scott N. Byrne
- Discipline of Infectious Diseases and Immunology, The University of SydneySydney, NSW, Australia
| | - Richard J. Payne
- School of Chemistry, The University of SydneySydney, NSW, Australia
| |
Collapse
|
40
|
Malins LR, Mitchell NJ, McGowan S, Payne RJ. Oxidative Deselenization of Selenocysteine: Applications for Programmed Ligation at Serine. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504639] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Malins LR, Mitchell NJ, McGowan S, Payne RJ. Oxidative Deselenization of Selenocysteine: Applications for Programmed Ligation at Serine. Angew Chem Int Ed Engl 2015; 54:12716-21. [DOI: 10.1002/anie.201504639] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/08/2015] [Indexed: 12/22/2022]
|