1
|
Danielsen MB, Wengel J. Cationic oligonucleotide derivatives and conjugates: A favorable approach for enhanced DNA and RNA targeting oligonucleotides. Beilstein J Org Chem 2021; 17:1828-1848. [PMID: 34386102 PMCID: PMC8329367 DOI: 10.3762/bjoc.17.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Antisense oligonucleotides (ASOs) have the ability of binding to endogenous nucleic acid targets, thereby inhibiting the gene expression. Although ASOs have great potential in the treatment of many diseases, the search for favorable toxicity profiles and distribution has been challenging and consequently impeded the widespread use of ASOs as conventional medicine. One strategy that has been employed to optimize the delivery profile of ASOs, is the functionalization of ASOs with cationic amine groups, either by direct conjugation onto the sugar, nucleobase or internucleotide linkage. The introduction of these positively charged groups has improved properties like nuclease resistance, increased binding to the nucleic acid target and improved cell uptake for oligonucleotides (ONs) and ASOs. The modifications highlighted in this review are some of the most prevalent cationic amine groups which have been attached as single modifications onto ONs/ASOs. The review has been separated into three sections, nucleobase, sugar and backbone modifications, highlighting what impact the cationic amine groups have on the ONs/ASOs physiochemical and biological properties. Finally, a concluding section has been added, summarizing the important knowledge from the three chapters, and examining the future design for ASOs.
Collapse
Affiliation(s)
- Mathias B Danielsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
2
|
Zhu L, Bi J, Zheng L, Zhao Q, Shu X, Guo G, Liu J, Yang G, Liu J, Yin G. In vitro inhibition of porcine reproductive and respiratory syndrome virus replication by short antisense oligonucleotides with locked nucleic acid modification. BMC Vet Res 2018; 14:109. [PMID: 29580234 PMCID: PMC5870238 DOI: 10.1186/s12917-018-1432-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome (PRRS), which is currently insufficiently controlled. From a previous small-scale screen we identified an effective DNA-based short antisense oligonucleotide (AS-ON) targeting viral NSP9, which could inhibit PRRSV replication in both Marc-145 cells and pulmonary alveolar macrophages (PAMs). The objective of this study was to explore the strategy of incorporating locked nucleic acids (LNAs) to achieve better inhibition of PRRSV replication in vitro. Methods The effective DNA-based AS-ON (YN8) was modified with LNAs at both ends as gap-mer (LNA-YN8-A) or as mix-mer (LNA-YN8-B). Marc-145 cells or PAMs were infected with PRRSV and subsequently transfected. Results Compared with the DNA-based YN8 control, the two AS-ONs modified with LNAs were found to be significantly more effective in decreasing the cytopathic effect (CPE) induced by PRRSV and thus in maintaining cell viability. LNA modifications conferred longer lifetimes to the AS-ON in the cell culture model. Viral ORF7 levels were more significantly reduced at both RNA and protein levels as shown by quantitative PCR, western blot and indirect immunofluorescence staining. Moreover, transfection with LNA modified AS-ON reduced the PRRSV titer by 10-fold compared with the YN8 control. Conclusion Taken together, incorporation of LNA into AS-ON technology holds higher therapeutic promise for PRRS control.
Collapse
Affiliation(s)
- Lingyun Zhu
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China
| | - Junlong Bi
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China.,Present address: Center for Animal Disease Control and Prevention, City, 675000, Yunnan province, Chuxiong, China
| | - Longlong Zheng
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China.,Present address: College of Animal Science and Technology, Shanxi Agricultural University, Shanxi province, Taigu, 030801, China
| | - Qian Zhao
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China
| | - Xianghua Shu
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China
| | - Gang Guo
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, People's Republic of China
| | - Jia Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China
| | - Guishu Yang
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China
| | - Jianping Liu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, -17177, Stockholm, SE, Sweden.
| | - Gefen Yin
- Department of Veterinary Medicine, College of Animal Science and Technology, Yunnan Agricultural University, Yunnan province, Kunming, 650201, China.
| |
Collapse
|
3
|
Ries A, Kumar R, Lou C, Kosbar T, Vengut-Climent E, Jørgensen PT, Morales JC, Wengel J. Synthesis and Biophysical Investigations of Oligonucleotides Containing Galactose-Modified DNA, LNA, and 2'-Amino-LNA Monomers. J Org Chem 2016; 81:10845-10856. [PMID: 27736097 DOI: 10.1021/acs.joc.6b01917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Galactose-modified thymidine, LNA-T, and 2'-amino-LNA-T nucleosides were synthesized, converted into the corresponding phosphoramidite derivatives and introduced into short oligonucleotides. Compared to the unmodified control strands, the galactose-modified oligonucleotides in general, and the N2'-functionalized 2'-amino-LNA derivatives in particular, showed improved duplex thermal stability against DNA and RNA complements and increased ability to discriminate mismatches. In addition, the 2'-amino-LNA-T derivatives induced remarkable 3'-exonuclease resistance. These results were further investigated using molecular modeling studies.
Collapse
Affiliation(s)
- Annika Ries
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - Rajesh Kumar
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - Chenguang Lou
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - Tamer Kosbar
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - Empar Vengut-Climent
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark.,Department of Bioorganic Chemistry, Instituto de Investigaciones Químicas, CSIC Universidad de Sevilla , Americo Vespucio 49, 41092 Sevilla, Spain
| | - Per T Jørgensen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - Juan C Morales
- Department of Bioorganic Chemistry, Instituto de Investigaciones Químicas, CSIC Universidad de Sevilla , Americo Vespucio 49, 41092 Sevilla, Spain.,Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine López Neyra , CSIC Avenida del conocimiento 17, 18016 Granada, Spain
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
4
|
Abstract
Oligonucleotide-based therapeutics have made rapid progress in the clinic for treatment of a variety of disease indications. Unmodified oligonucleotides are polyanionic macromolecules with poor drug-like properties. Over the past two decades, medicinal chemists have identified a number of chemical modification and conjugation strategies which can improve the nuclease stability, RNA-binding affinity, and pharmacokinetic properties of oligonucleotides for therapeutic applications. In this perspective, we present a summary of the most commonly used nucleobase, sugar and backbone modification, and conjugation strategies used in oligonucleotide medicinal chemistry.
Collapse
Affiliation(s)
- W Brad Wan
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Punit P Seth
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
5
|
Morihiro K, Hasegawa O, Mori S, Tsunoda S, Obika S. C5-azobenzene-functionalized locked nucleic acid uridine: isomerization properties, hybridization ability, and enzymatic stability. Org Biomol Chem 2016; 13:5209-14. [PMID: 25853508 DOI: 10.1039/c5ob00477b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligonucleotides (ONs) modified with a locked nucleic acid (LNA) are widely used in the fields of therapeutics, diagnosis, and nanotechnology. There have been significant efforts towards developing LNA analogues bearing modified bridges to improve their hybridization ability, nuclease resistance, and pharmacokinetic profiles. Moreover, nucleobase modifications of LNA are useful strategies for the functionalization of ONs. Modifications of the C5-position of pyrimidine nucleobases are particularly interesting because they enable predictable positioning of functional groups in the major groove of the duplex. Here we report the synthesis of C5-azobenzene-functionalized LNA uridine (LNA-U(Az)) and properties of LNA-U(Az)-modified ONs, including isomerization properties, hybridization ability, and enzyme stability. LNA-U(Az) in ON is photo-isomerized effectively and reversibly by irradiation at 365 nm (trans to cis) and 450 nm (cis to trans). LNA-U(Az)-modified ONs show RNA-selective hybridization ability despite the large hydrophobic azobenzene moiety extending into the major groove of the duplex. The enzymatic stability of LNA-U(Az)-modified ONs is higher than that of natural and LNA-modified ONs with or without photo-irradiation. Our results indicate that LNA-U(Az) holds promise for RNA targeting and photo-switchable technologies.
Collapse
Affiliation(s)
- K Morihiro
- National Institute of Biomedical Innovation (NIBIO), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| | | | | | | | | |
Collapse
|
6
|
Singleton DG, Hussain R, Siligardi G, Kumar P, Hrdlicka PJ, Berova N, Stulz E. Increased duplex stabilization in porphyrin-LNA zipper arrays with structure dependent exciton coupling. Org Biomol Chem 2016; 14:149-57. [PMID: 26416024 PMCID: PMC4766578 DOI: 10.1039/c5ob01681a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/18/2015] [Indexed: 12/23/2022]
Abstract
Porphyrins were attached to LNA uridine building blocks via rigid 5-acetylene or more flexible propargyl-amide linkers and incorporated into DNA strands. The systems show a greatly increased thermodynamic stability when using as little as three porphyrins in a zipper arrangement. Thermodynamic analysis reveals clustering of the strands into more ordered duplexes with both greater negative ΔΔS and ΔΔH values, and less ordered duplexes with small positive ΔΔS differences, depending on the combination of linkers used. The exciton coupling between the porphyrins is dependent on the flanking DNA sequence in the single stranded form, and on the nature of the linker between the nucleobase and the porphyrin in the double stranded form; it is, however, also strongly influenced by intermolecular interactions. This system is suitable for the formation of stable helical chromophore arrays with sequence and structure dependent exciton coupling.
Collapse
Affiliation(s)
- Daniel G. Singleton
- School of Chemistry and Institute for Life Sciences , University of Southampton , Highfield , Southampton , SO17 1BJ , UK . ; http://www.southampton.ac.uk/chemistry/about/staff/est.page?
| | - Rohanah Hussain
- Diamond Light Source , Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 0DE , UK
| | - Giuliano Siligardi
- Diamond Light Source , Harwell Science and Innovation Campus , Didcot , Oxfordshire OX11 0DE , UK
| | - Pawan Kumar
- Department of Chemistry , University of Idaho , Moscow , ID 83844 , USA
| | | | - Nina Berova
- Department of Chemistry , Columbia University , 3000 Broadway , New York , NY 10027 , USA
| | - Eugen Stulz
- School of Chemistry and Institute for Life Sciences , University of Southampton , Highfield , Southampton , SO17 1BJ , UK . ; http://www.southampton.ac.uk/chemistry/about/staff/est.page?
| |
Collapse
|
7
|
Lou C, Vester B, Wengel J. Oligonucleotides containing a piperazino-modified 2'-amino-LNA monomer exhibit very high duplex stability and remarkable nuclease resistance. Chem Commun (Camb) 2015; 51:4024-7. [PMID: 25659978 DOI: 10.1039/c5cc00322a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Incorporation of a piperazino-modified 2'-amino-LNA monomer (PipLNA-T) into oligonucleotides conferred very high affinity and base-pairing selectivity towards complementary DNA and RNA strands. Furthermore, one PipLNA-T modification provided a robust nuclease resistance that safeguarded three neighbouring natural nucleosides from 3'-exonucleolytic degradation. These favourable properties render PipLNA-T a promising oligonucleotide modification for various biological applications.
Collapse
Affiliation(s)
- Chenguang Lou
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | |
Collapse
|
8
|
Oligonucleotide therapeutics: chemistry, delivery and clinical progress. Future Med Chem 2015; 7:2221-42. [PMID: 26510815 DOI: 10.4155/fmc.15.144] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oligonucleotide therapeutics have the potential to become a third pillar of drug development after small molecules and protein therapeutics. However, the three approved oligonucleotide drugs over the past 17 years have not proven to be highly successful in a commercial sense. These trailblazer drugs have nonetheless laid the foundations for entire classes of drug candidates to follow. This review will examine further advances in chemistry that are earlier in the pipeline of oligonucleotide drug candidates. Finally, we consider the possible effect of delivery systems that may provide extra footholds to improve the potency and specificity of oligonucleotide drugs. Our overview focuses on strategies to imbue antisense oligonucleotides with more drug-like properties and their applicability to other nucleic acid therapeutics.
Collapse
|
9
|
Østergaard ME, Kumar P, Nichols J, Watt A, Sharma PK, Nielsen P, Seth PP. Allele-Selective Inhibition of Mutant Huntingtin with 2-Thio- and C5- Triazolylphenyl-Deoxythymidine-Modified Antisense Oligonucleotides. Nucleic Acid Ther 2015. [PMID: 26222265 DOI: 10.1089/nat.2015.0547] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We report the effect of introducing a single incorporation of 2-thio-deoxythymidine (2S-dT) or C5-Triazolylphenyl-deoxythymidine (5-TrPh-dT) at four positions within the gap region of RNase H gapmer antisense oligonucleotides (ASOs) for reducing wild-type and mutant huntingtin mRNA in human patient fibroblasts. We show that these modifications can modulate processing of the ASO/RNA heteroduplexes by recombinant human RNase H1 in a position-dependent manner. We also created a structural model of the catalytic domain of human RNase H bound to ASO/RNA heteroduplexes to rationalize the activity and selectivity observations in cells and in the biochemical assays. Our results highlight the ability of chemical modifications in the gap region to produce profound changes in ASO behavior.
Collapse
Affiliation(s)
| | - Pawan Kumar
- 2 Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark , Odense, Denmark
| | | | - Andrew Watt
- 1 Isis Pharmaceuticals , Carlsbad, California
| | - Pawan K Sharma
- 3 Department of Chemistry, Kurukshetra University , Kurukshetra, India
| | - Poul Nielsen
- 2 Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark , Odense, Denmark
| | | |
Collapse
|
10
|
Kaura M, Hrdlicka PJ. Locked nucleic acid (LNA) induced effect on the hybridization and fluorescence properties of oligodeoxyribonucleotides modified with nucleobase-functionalized DNA monomers. Org Biomol Chem 2015; 13:7236-47. [PMID: 26055658 DOI: 10.1039/c5ob00860c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
LNA and nucleobase-modified DNA monomers are two types of building blocks that are used extensively in oligonucleotide chemistry. However, there are only very few reports in which these two monomer families are used alongside each other. In the present study we set out to characterize the biophysical properties of oligodeoxyribonucleotides in which C5-modified 2'-deoxyuridine or C8-modified 2'-deoxyadenosine monomers are flanked by LNA nucleotides. We hypothesized that the LNA monomers would alter the sugar rings of the modified DNA monomers toward more RNA-like North-type conformations for maximal DNA/RNA affinity and specificity. Indeed, the incorporation of LNA monomers almost invariably results in increased target affinity and specificity relative to the corresponding LNA-free ONs, but the magnitude of the stabilization varies greatly. Introduction of LNA nucleotides as direct neighbors into C5-pyrene-functionalized pyrimidine DNA monomers yields oligonucleotide probes with more desirable photophysical properties as compared to the corresponding LNA-free probes, including more intense fluorescence emission upon target binding and improved discrimination of single nucleotide polymorphisms (SNPs). These hybrid oligonucleotides are therefore promising probes for diagnostic applications.
Collapse
Affiliation(s)
- Mamta Kaura
- Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA.
| | | |
Collapse
|
11
|
Kaura M, Kumar P, Hrdlicka PJ. Synthesis, hybridization characteristics, and fluorescence properties of oligonucleotides modified with nucleobase-functionalized locked nucleic acid adenosine and cytidine monomers. J Org Chem 2014; 79:6256-68. [PMID: 24933409 DOI: 10.1021/jo500994c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Conformationally restricted nucleotides such as locked nucleic acid (LNA) are very popular as affinity-, specificity-, and stability-enhancing modifications in oligonucleotide chemistry to produce probes for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. Considerable efforts have been devoted in recent years to optimize the biophysical properties of LNA through additional modification of the sugar skeleton. We recently introduced C5-functionalization of LNA uridines as an alternative and synthetically more straightforward approach to improve the biophysical properties of LNA. In the present work, we set out to test the generality of this concept by studying the characteristics of oligonucleotides modified with four different C5-functionalized LNA cytidine and C8-functionalized LNA adenosine monomers. The results strongly suggest that C5-functionalization of LNA pyrimidines is indeed a viable approach for improving the binding affinity, target specificity, and/or enzymatic stability of LNA-modified ONs, whereas C8-functionalization of LNA adenosines is detrimental to binding affinity and specificity. These insights will impact the future design of conformationally restricted nucleotides for nucleic acid targeting applications.
Collapse
Affiliation(s)
- Mamta Kaura
- Department of Chemistry, University of Idaho , Moscow, Idaho 83844-2343, United States
| | | | | |
Collapse
|