1
|
Kumar R. Decennary Update on Oxidative-Rearrangement Involving 1,2-Aryl C-C Migration Around Alkenes: Synthetic and Mechanistic Insights. Chem Asian J 2024; 19:e202400053. [PMID: 38741472 DOI: 10.1002/asia.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In recent years, numerous methodologies on oxidative rearrangements of alkenes have been investigated, that produce multipurpose synthons and heterocyclic scaffolds of potential applications. The present review focused on recently established methodologies for oxidative transformation via 1,2-aryl migration in alkenes (2013-2023). Special emphasis has been placed on mechanistic pathways to understand the reactivity pattern of different substrates, challenges to enhance selectivity, the key role of different reagents, and effect of different substituents, and how they affect the rearrangement process. Moreover, synthetic limitations and future direction also have been discussed. We believe, this review offers new synthetic and mechanistic insight to develop elegant precursors and approaches to explore the utilization of alkene-based compounds for natural product synthesis and functional materials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (India
| |
Collapse
|
2
|
Wei X, Zhang Y, Zhang JJ, Fang W, Chen Z. Solvent-Controllable C-F Bond Activation for Masked Formylation of α-Trifluoromethyl Alkenes via Organo-Photoredox Catalysis. J Org Chem 2024; 89:624-632. [PMID: 38115588 DOI: 10.1021/acs.joc.3c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A solvent-controllable organo-photoredox-catalyzed C-F bond activation for masked formylation of α-trifluoromethyl alkenes with low-priced 1,3-dioxolane as masked formyl radical equivalent has been described. Consequently, a diversity of masked formylated gem-difluoroalkenes and monofluoroalkenes are constructed in moderate to high yields. This approach merits readily available starting materials, mild reaction conditions, and broad substrate scope. The feasibility of this approach has been highlighted by the one-pot masked formylation/hydrolysis sequence to form γ,γ-difluoroallylic aldehydes and late-stage modification of pharmaceutical and natural product derivatives.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
3
|
Ma S, Guo Y, Liu L, Shi L, Lei X, Duan X, Jiao P. gem-Bromonitroalkane Involved Radical 1,2-Aryl Migration of α,α-Diaryl Allyl Alcohol TMS Ether via Visible-Light Photoredox Catalysis. J Org Chem 2023; 88:4743-4756. [PMID: 36971723 DOI: 10.1021/acs.joc.3c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
A mild and efficient coupling method concerning the reactions of gem-bromonitroalkanes with α,α-diaryl allyl alcohol trimethylsilyl ethers was reported. A cascade consisting of visible-light-induced generation of an α-nitroalkyl radical and a subsequent neophyl-type rearrangement was key to realize the coupling reactions. Structurally diverse α-aryl-γ-nitro ketones, especially those bearing a nitrocyclobutyl structure, were prepared in moderate to high yields, which could be converted into spirocyclic nitrones and imines.
Collapse
|
4
|
Ikemoto Y, Chiba S, Li Z, Chen Q, Mori H, Nishihara Y. Carboazidation of Terminal Alkenes with Trimethylsilyl Azide and Cyclic Ethers Catalyzed by Copper Powder under Oxidative Conditions. J Org Chem 2023; 88:4472-4480. [PMID: 36947875 DOI: 10.1021/acs.joc.2c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Copper-catalyzed carboazidation of alkenes with trimethylsilyl azide and cyclic ethers has been achieved. The employment of naturally abundant copper catalysts allowed cyclic ethers to be used as alkylating reagents under oxidative conditions. The use of styrene derivatives and 1,1-diaryl alkenes afforded carboazidation products. In addition, application of five- and six-membered cyclic ethers to the present reaction gave target organic molecules bearing azide and cyclic ether groups with perfect regioselectivity. Radical trapping and clock experiments revealed that the present reaction proceeded via the radical pathway. To further demonstrate the utility of this carboazidation reaction, transformations from the azide group to the related nitrogen-containing compounds were also performed.
Collapse
Affiliation(s)
- Yuichi Ikemoto
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Sho Chiba
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Zhenyao Li
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Qiang Chen
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Mori
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Roy S, Panja S, Sahoo SR, Chatterjee S, Maiti D. Enroute sustainability: metal free C-H bond functionalisation. Chem Soc Rev 2023; 52:2391-2479. [PMID: 36924227 DOI: 10.1039/d0cs01466d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The term "C-H functionalisation" incorporates C-H activation followed by its transformation. In a single line, this can be defined as the conversion of carbon-hydrogen bonds into carbon-carbon or carbon-heteroatom bonds. The catalytic functionalisation of C-H bonds using transition metals has emerged as an atom-economical technique to engender new bonds without activated precursors which can be considered as a major drawback while attempting large-scale synthesis. Replacing the transition-metal-catalysed approach with a metal-free strategy significantly offers an alternative route that is not only inexpensive but also environmentally benign to functionalize C-H bonds. Recently metal free synthetic approaches have been flourishing to functionalize C-H bonds, motivated by the search for greener, cost-effective, and non-toxic catalysts. In this review, we will highlight the comprehensive and up-to-date discussion on recent examples of ground-breaking research on green and sustainable metal-free C-H bond functionalisation.
Collapse
Affiliation(s)
- Sayan Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Sagnik Chatterjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
6
|
Zhang J, Deng Y, Mo N, Chen L. Advances in Radical Mediated 1,2-Aryl Migration Reactions of α, α-Diarylallyl Alcohols. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
7
|
Wang X, Lei J, Guo S, Zhang Y, Ye Y, Tang S, Sun K. Radical selenation of C(sp 3)-H bonds to asymmetric selenides and mechanistic study. Chem Commun (Camb) 2022; 58:1526-1529. [PMID: 35050276 DOI: 10.1039/d1cc06323e] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenides are important structural motifs with a broad range of biological activities and versatile transformational abilities. In this study, a novel and mild method was developed for the facile synthesis of asymmetric selenides under metal-free conditions. The key features of this reaction include good functional-group tolerance, the use of readily available reagents and cheap, low-toxicity solvent, and amenability to gram-scale synthesis. The results of preliminary radical-trapping experiments and a kinetic isotope effect study support a radical process.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| | - Jia Lei
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| | - Sa Guo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| | - Yong Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| |
Collapse
|
8
|
Abstract
Radical aryl migrations are powerful techniques to forge new bonds in aromatic compounds. The growing popularity of photoredox catalysis has led to an influx of novel strategies to initiate and control aryl migration starting from widely available radical precursors. This review encapsulates progress in radical aryl migration enabled by photochemical methods─particularly photoredox catalysis─since 2015. Special attention is paid to descriptions of scope, mechanism, and synthetic applications of each method.
Collapse
Affiliation(s)
- Anthony R. Allen
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Efrey A. Noten
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corey R. J. Stephenson
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Zhang K, Wang Y, He C, Zhou Y, Wang D, Hu M, Duan XH, Liu L. Halogen bond promoted aryl migration of allylic alcohols under visible light irradiation. Org Chem Front 2022. [DOI: 10.1039/d2qo01035f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and catalyst-free radical addition/1,2-aryl migration cascade process of ally alcohol driven by halogen bond was developed under visible light irradiation, featuring mild conditions, practical procedures, and broad substrate scope.
Collapse
Affiliation(s)
- Keyuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yulong Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chonglong He
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youkang Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Danning Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Niu B, Blackburn BG, Sachidanandan K, Cooke MV, Laulhé S. Metal-free visible-light-promoted C(sp 3)-H functionalization of aliphatic cyclic ethers using trace O 2. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:9454-9459. [PMID: 37180766 PMCID: PMC10181853 DOI: 10.1039/d1gc03482k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Presented is a light-promoted C-C bond forming reaction yielding sulfone and phosphate derivatives at room temperature in the absence of metals or photoredox catalyst. This transformation proceeds in neat conditions through an auto-oxidation mechanism which is maintained through the leaching of trace amounts of O2 as sole green oxidant.
Collapse
Affiliation(s)
- Ben Niu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Bryan G Blackburn
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Krishnakumar Sachidanandan
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Maria Victoria Cooke
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Sébastien Laulhé
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Luo YY, Deng W, Xiang J, Qin YQ, Chen D, Liu L, Zhang JJ, Peng XJ. Methylation Alkynylation of Terminal Alkenes via 1,2-Alkynyl Migration Using Dicumyl Peroxide as the Methyl Source. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1528-8357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe metal-free oxidative alkene methylation/alkynylation of 1,4-enyn-3-ols with an organic peroxide as the methyl source has been developed, which provides straightforward and practical access to the challenging quaternary-carbon-containing but-3-yn-1-ones. The method is reasoned to go through methylation of functional alkenes utilizing dicumyl peroxide as the methylating reagent and subsequent intermolecular cyclization/1,2-alkynyl migration. This reaction has an excellent functional group tolerance, broad substrate scope, and exquisite selectivity.
Collapse
Affiliation(s)
- Yong-yue Luo
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences
| | - Wei Deng
- Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University
| | - Jiannan Xiang
- Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University
| | - Yi-qun Qin
- Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University
| | - De Chen
- Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University
| | - Liang Liu
- Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University
| | - Jia-jia Zhang
- Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University
| | - Xin-ju Peng
- Advanced Catalytic Engineer Research Center of Education, College of Chemistry and Chemical Engineering, Hunan University
| |
Collapse
|
12
|
Rapid alkenylation of quinoxalin-2(1H)-ones enabled by the sequential Mannich-type reaction and solar photocatalysis. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Wu X, Ma Z, Feng T, Zhu C. Radical-mediated rearrangements: past, present, and future. Chem Soc Rev 2021; 50:11577-11613. [PMID: 34661216 DOI: 10.1039/d1cs00529d] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rearrangement reactions, one of the most significant transformations in organic chemistry, play an irreplaceable role in improving synthetic efficiency and molecular complexity. Concomitant cleavage and reconstruction of chemical bonds can display the great artistry and the glamour of synthetic chemistry. Over the past century, ionic rearrangement reactions, in particular those involving cationic pathways, have represented most of the research. Alongside the renaissance of radical chemistry, radical-mediated rearrangements have recently seen a rapid increase of attention from the chemical community. Many new radical rearrangements that extensively reveal the migratory behaviour of functional groups have been unveiled in the last decade. This Review provides a comprehensive perspective on the area from the past to present achievements, and brings up the prospects that may inspire colleagues to develop more useful synthetic tools based on radical rearrangements.
Collapse
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Zhigang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Tingting Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
14
|
Hu L, Gao T, Deng Q, Xiong Y. Organoiodine-induced hydroxylation as well as enantioselective alkoxylation/hydroxylation of allylic alcohols via 1,2- aryl migration. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Wang D, Mück-Lichtenfeld C, Daniliuc CG, Studer A. Radical Aryl Migration from Boron to Carbon. J Am Chem Soc 2021; 143:9320-9326. [PMID: 34151559 PMCID: PMC8251698 DOI: 10.1021/jacs.1c04217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Radical aryl migration
reactions represent a unique type of organic
transformations that involve the intramolecular migration of an aryl
group from a carbon or heteroatom to a C- or heteroatom-centered radical
through a spirocyclic intermediate. Various elements, including N,
O, Si, P, S, Sn, Ge, and Se, have been reported to participate in
radical aryl migrations. However, radical aryl migration from a boron
center has not been reported to date. In this communication, radical
1,5-aryl migration from boron to carbon in aryl boronate complexes
is presented. C-radicals readily generated through radical addition
onto alkenyl aryl boronate complexes are shown to engage in 1,5-aryl
migration reactions to provide 4-aryl-alkylboronic esters. As boronate
complexes can be generated in situ by the reaction
of alkenylboronic acid esters with aryl lithium reagents, the aryl
moiety is readily varied, providing access to a series of arylated
products starting from the same alkenylboronic acid ester via divergent
chemistry. Reactions proceed with high diastereoselectivity under
mild conditions, and also the analogous 1,4-aryl shifts are feasible.
The suggested mechanism is supported by DFT calculations.
Collapse
Affiliation(s)
- Dinghai Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
16
|
Xing Y, Li C, Meng J, Zhang Z, Wang X, Wang Z, Ye Y, Sun K. Recent Advances in the Synthetic Use of Migration Reactions of Allyl Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100446] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yun Xing
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Chen Li
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Jianping Meng
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Zhen Zhang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Zhichuan Wang
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| |
Collapse
|
17
|
Hayakawa M, Shirota H, Hirayama S, Yamada R, Aoyama T, Ouchi A. Sunlight-induced C C bond formation reaction: Radical addition of alcohols/ethers/acetals to olefins. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Difluoroalkylation/1,2-aryl migration of allylic alcohols under transition metal-free conditions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Ge D, Luo XL, Tang X, Pang CB, Wang X, Chu XQ. Metal-free [3 + 2 + 1] annulation of allylic alcohols, ketones, and ammonium acetate: radical-involving synthesis of 2,3-diarylpyridine derivatives. Org Biomol Chem 2021; 19:2277-2283. [PMID: 33624664 DOI: 10.1039/d0ob02593c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A three-component [3 + 2 + 1] annulation strategy for the synthesis of biologically and pharmaceutically active 2,3-diarylpyridine derivatives by using a series of allylic alcohols, ketones, and ammonium acetate as substrates has been developed. The method proceeds efficiently under metal-free conditions, and the desired heterocycles could be obtained in a site-specific selectivity manner with good functional group tolerance.
Collapse
Affiliation(s)
- Danhua Ge
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xin-Long Luo
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xi Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Chao-Bin Pang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xin Wang
- Hubei Province Geological Experimental Testing Center, Wuhan Hubei 430034, China
| | - Xue-Qiang Chu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
20
|
Zhang P, Zhang T, Cai P, Jiang B, Tu S. Study on tert-Butyl Radical-Initiated 1,2-Alkynyl Migration. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Ge D, Wang X, Chu XQ. SOMOphilic alkynylation using acetylenic sulfones as functional reagents. Org Chem Front 2021. [DOI: 10.1039/d1qo00798j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advancements in SOMOphilic alkynylation reactions by using acetylenic sulfones as functional reagents are summarized.
Collapse
Affiliation(s)
- Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin Wang
- Hubei Province Geological Experimental Testing Center, Wuhan Hubei 430034, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
22
|
Hayakawa M, Shimizu R, Omori H, Shirota H, Uchida K, Mashimo H, Xu H, Yamada R, Niino S, Wakame Y, Liu C, Aoyama T, Ouchi A. Photochemical addition of cyclic ethers/acetals to olefins using BuOO Bu: Synthesis of masked ketones/aldehydes and diols. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Zhao S, Cai S, Wang M, Rao W, Xu H, Zhang L, Chu X, Shen Z. Selective C(
sp
3
)−H Functionalization of Alkyl Esters with
N
‐/
S
‐/
O
‐Nucleophiles Using Perfluoroalkyl Iodide as Oxidant. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shi‐Wen Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Song‐Zhou Cai
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Mao‐Lin Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical EngineeringNanjing Forestry University Nanjing 210037 People's Republic of China
| | - Haiyan Xu
- School of Environmental and Chemical EngineeringJiangsu University of Science and Technology, Zhenjiang Jiangsu 212003 People's Republic of China
| | - Lei Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Xue‐Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Zhi‐Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| |
Collapse
|
24
|
Dong Z, Liu Y, Zhou CW, Huang JJ, Guo T, Wang Y. Direct cross-dehydrogenative coupling reactions of imidazopyridines and 1-naphthylamines with ethers under metal-free conditions. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1761394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Zhe Dong
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, P.R. China
- Institute for Food Control, National Institutes for Food and Drug Control, Beijing, P.R. China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P.R. China
| | - Chen-Wei Zhou
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P.R. China
| | - Jun-Jian Huang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P.R. China
| | - Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P.R. China
| | - Yun Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
25
|
Transition-metal-free direct cross-dehydrogenative coupling reactions of quinolinones with ethers. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Bismuth-catalyzed methylation and alkylation of quinone derivatives with tert-butyl peroxybenzoate as an oxidant. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Zhao Q, Hao WJ, Shi HN, Xu T, Tu SJ, Jiang B. Photocatalytic Annulation–Alkynyl Migration Strategy for Multiple Functionalization of Dual Unactivated Alkenes. Org Lett 2019; 21:9784-9789. [DOI: 10.1021/acs.orglett.9b04018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Hao-Nan Shi
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ting Xu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
28
|
Sarkar S, Banerjee A, Yao W, Patterson EV, Ngai MY. Photocatalytic Radical Aroylation of Unactivated Alkenes: Pathway to β-Functionalized 1,4-, 1,6-, and 1,7-Diketones. ACS Catal 2019; 9:10358-10364. [PMID: 34040817 DOI: 10.1021/acscatal.9b03570] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the development of a photocatalytic strategy for the synthesis of β-functionalized unsymmetrical 1,4-, 1-6 and 1,7-diketones from aroyl chlorides and unactivated alkenes at room temperature. The mild reaction conditions not only tolerate a wide range of functional groups and structural moieties, but also enable migration of a variety of distal groups including (hetero)arenes, nitrile, aldehyde, oxime-derivative, and alkene. The efficiency of chirality transfer, factors that control the distal-group migration, and synthesis of carbo- and heterocycles from the diketones are also described. Mechanistic studies suggest a reaction pathway involving a photocatalytic radical aroylation of unactivated alkenes followed by a distal-group migration, oxidation, and deprotonation to afford the desired diketones.
Collapse
Affiliation(s)
- Satavisha Sarkar
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| | - Arghya Banerjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| | - Wang Yao
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| | - Eric V. Patterson
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| | - Ming-Yu Ngai
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, The State University of New York, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
29
|
Jin S, Sun S, Yu JT, Cheng J. The Silver-Promoted Phosphonation/Alkynylation of Alkene Proceeding with Radical 1,2-Alkynyl Migration. J Org Chem 2019; 84:11177-11185. [DOI: 10.1021/acs.joc.9b01088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shengnan Jin
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Song Sun
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiang Cheng
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
30
|
Gao LH, Zhang JY, Song SZ, Cao TT, Ge GP, Li Q, Wei WT. Base-promoted domino radical cyclization of 1,6-enynes. Org Biomol Chem 2019; 17:7674-7678. [PMID: 31384880 DOI: 10.1039/c9ob01550g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A good regioselective, high atom-economical and transition-metal-free method for the synthesis of α-functionalized ether derivatives via the domino radical cyclization of 1,6-enynes is described. A series of α-functionalized ether derivatives could be easily obtained in good yields with wide functional group tolerance by using less toxic and inexpensive Cs2CO3 as the base. The control experiment results show that the reaction involves a radical process. This strategy provides a regioselective way toward the formation of dual C-C bonds in one step.
Collapse
Affiliation(s)
- Le-Han Gao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Jun-Yao Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Si-Zhe Song
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Ting-Ting Cao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Guo-Ping Ge
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
31
|
Ding R, Lu W, Ci H, Mao Y, Liu L. Copper‐Catalyzed Oxidative Alkylation of Vinylic C
β
‐H of Enamides with Cyclic Ethers. ChemistrySelect 2019. [DOI: 10.1002/slct.201901837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| | - Wang‐Gang Lu
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| | - Hao Ci
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| | - Yue‐Yuan Mao
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| | - Lei Liu
- College of Chemistry and Materials EngineeringAnhui Science and Technology University, Bengbu Anhui 233000 P. R.China
| |
Collapse
|
32
|
Yang S, Zhu S, Lu D, Gong Y. Formylation of Fluoroalkyl Imines through Visible-Light-Enabled H-Atom Transfer Catalysis: Access to Fluorinated α-Amino Aldehydes. Org Lett 2019; 21:2019-2024. [DOI: 10.1021/acs.orglett.9b00128] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sen Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Shuangyu Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Dengfu Lu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| |
Collapse
|
33
|
Yan Z, Wang NX, Gao XW, Li JL, Wu YH, Zhang T, Chen SL, Xing Y. A Copper (II) Acetate Mediated Oxidative-Coupling of Styrenes and Ethers Through an Unactivated C(sp
3
)−H Bond Functionalization. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhan Yan
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
- Chemistry and Material Science College; Northwest University, Xi'an; 710127 People's Republic of China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Xue-Wang Gao
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Jian-Li Li
- Chemistry and Material Science College; Northwest University, Xi'an; 710127 People's Republic of China
| | - Yue-Hua Wu
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Tong Zhang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Shi-Lu Chen
- School of Chemistry; Beijing Institute of Technology; Beijing 100081 People's Republic of China
| | - Yalan Xing
- Department of Chemistry; William Paterson University of New Jersey; 300 Pompton Road, Wayne New Jersey 07470 United States
| |
Collapse
|
34
|
Zhang J, Song C, Sheng L, Liu P, Sun P. Annulation of 1-(2-Aminoaryl)pyrroles, Ethers with Elemental Sulfur To Give 1,3,6-Benzothiadiazepine Derivatives through Double C–S Bond Formation and C–O Cleavage of Ethers. J Org Chem 2019; 84:2191-2199. [DOI: 10.1021/acs.joc.8b03187] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Zhang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Chuwen Song
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Linfeng Sheng
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
35
|
Zhang H, Xu J, Zhou M, Zhao J, Zhang P, Li W. The visible-light-triggered regioselective alkylation of quinoxalin-2(1H)-ones via decarboxylation coupling. Org Biomol Chem 2019; 17:10201-10208. [DOI: 10.1039/c9ob02203a] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient protocol to synthesize 3-alkylated quinoxalin-2(1H)-ones through photocatalytic decarboxylation coupling reactions of quinoxalin-2(1H)-ones with N-hydroxyphthalimide ester was developed.
Collapse
Affiliation(s)
- Hongdou Zhang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Jun Xu
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Min Zhou
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Jianming Zhao
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Pengfei Zhang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Wanmei Li
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
36
|
Sivaguru P, Wang Z, Zanoni G, Bi X. Cleavage of carbon–carbon bonds by radical reactions. Chem Soc Rev 2019; 48:2615-2656. [DOI: 10.1039/c8cs00386f] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review provides insights into the in situ generated radicals triggered carbon–carbon bond cleavage reactions.
Collapse
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
37
|
Feng S, Li J, He F, Li T, Li H, Wang X, Xie X, She X. A copper-catalyzed radical coupling/fragmentation reaction: efficient access to β-oxophosphine oxides. Org Chem Front 2019. [DOI: 10.1039/c9qo00006b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of a novel copper-catalyzed three-component radical coupling/fragmentation cascade reaction to generate diverse β-oxophosphine oxides is reported.
Collapse
Affiliation(s)
- Shangbiao Feng
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Jinlai Li
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Feifei He
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Tao Li
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|
38
|
Visible-light-induced 1,2-alkylarylation of alkenes with a-C(sp3)–H bonds of acetonitriles involving neophyl rearrangement under transition-metal-free conditions. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Liu M, Huang H, Chen Y. Cyclic Iodine Reagents Enable Allylic Alcohols for Alkyl Boronate Addition/Rearrangement by Photoredox Catalysis. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800461] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mingshang Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road, Shanghai 200032 China
- School of Physical Science and Technology, ShanghaiTech University; 100 Haike Road, Shanghai 201210 China
| | - Hanchu Huang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road, Shanghai 200032 China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Road, Shanghai 200032 China
- School of Physical Science and Technology, ShanghaiTech University; 100 Haike Road, Shanghai 201210 China
| |
Collapse
|
40
|
Khatun N, Kim MJ, Woo SK. Visible-Light Photoredox-Catalyzed Hydroalkoxymethylation of Activated Alkenes Using α-Silyl Ethers as Alkoxymethyl Radical Equivalents. Org Lett 2018; 20:6239-6243. [DOI: 10.1021/acs.orglett.8b02721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nilufa Khatun
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Korea
| | - Myeong Jun Kim
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Korea
| | - Sang Kook Woo
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Korea
| |
Collapse
|
41
|
He Y, Wang Y, Gao J, Zeng L, Li S, Wang W, Zheng X, Zhang S, Gu L, Li G. Catalytic, metal-free alkylheteroarylation of alkenes via distal heteroaryl ipso-migration. Chem Commun (Camb) 2018; 54:7499-7502. [PMID: 29923554 DOI: 10.1039/c8cc03911a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new direct alkylheteroarylation of alkenes with simple alkylnitriles via distal heteroaryl ipso-migration has been accomplished under metal-free conditions, in which inexpensive alkylnitriles served as radical precursors, which together with ease of operation makes this process a very practical protocol.
Collapse
Affiliation(s)
- Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan Province 650500, P. R. China.
| | - Yaqi Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan Province 650500, P. R. China.
| | - Jun Gao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan Province 650500, P. R. China.
| | - Liang Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan Province 650500, P. R. China.
| | - Shusheng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan Province 650500, P. R. China.
| | - Wei Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan Province 650500, P. R. China.
| | - Xiaohui Zheng
- College of Life Science, Northwest University, Xi'an, Shanxi Province 710069, P. R. China
| | - Shengyong Zhang
- School of Pharmacy, Fourth Military Medical University, Xi'an, Shanxi Province 710032, P. R. China
| | - Lijun Gu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan Province 650500, P. R. China.
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan Province 650500, P. R. China.
| |
Collapse
|
42
|
Li Y, Leng Y, Wang S, Gao Y, Lv H, Chang J, Wu Y, Wu Y. Oxidative acylation of α,α-diarylallylic alcohols: Synthesis of 1,2,4-triarylbutane-1,4-diones. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yong Li
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
| | - Yuting Leng
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation; Zhengzhou University; Zhengzhou 450001 People's Republic of China
| | - Shiwei Wang
- School of Mechanics and Engineering Science; Zhengzhou University; Zhengzhou Henan 450001 People's Republic of China
| | - Yuhui Gao
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
| | - Huiyan Lv
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation; Zhengzhou University; Zhengzhou 450001 People's Republic of China
| | - Yusheng Wu
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
- Tetranov Biopharm LLC; Zhengzhou 450052 People's Republic of China
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering, Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University; Zhengzhou 450001 People's Republic of China
| |
Collapse
|
43
|
Zhu X, Han Y, Li M, Li X, Liang Y. Copper‐Catalyzed Radical Sulfonylation of
N
‐Propargylindoles with Concomitant 1,2‐Aryl Migration. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800414] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xin‐Yu Zhu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Ya‐Ping Han
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Ming Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xue‐Song Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Yong‐Min Liang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
44
|
Weng WZ, Zhang B. Recent Advances in the Synthesis of β-Functionalized Ketones by Radical-Mediated 1,2-Rearrangement of Allylic Alcohols. Chemistry 2018; 24:10934-10947. [DOI: 10.1002/chem.201800004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Wei-Zhi Weng
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjia Xiang Nanjing 210009 China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjia Xiang Nanjing 210009 China
| |
Collapse
|
45
|
Abstract
An electrochemical bisindolylation of ethers was developed. Carried out under ambient conditions and in the absence of any chemical oxidants, this reaction exhibits a broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Ke-Si Du
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| |
Collapse
|
46
|
Wu X, Wu S, Zhu C. Radical-mediated difunctionalization of unactivated alkenes through distal migration of functional groups. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.053] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Zhang H, Wu X, Zhao Q, Zhu C. Copper-Catalyzed Heteroarylsilylation of Unactivated Olefins through Distal Heteroaryl Migration. Chem Asian J 2018; 13:2453-2457. [DOI: 10.1002/asia.201800150] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/09/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Hong Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Qian Zhao
- Jiangsu Key Laboratory of Chiral Drug Development; Jiangsu Aosaikang Pharmaceutical CO., LTD.; Nanjing Jiangsu 211112 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
48
|
Howard EL, Guzzardi N, Tsanova VG, Stika A, Patel B. Highly Efficient Copper-Catalyzed Amidation of Benzylic Hydrocarbons Under Neutral Conditions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Eva-Louise Howard
- School of Human Sciences; London Metropolitan University; 166-220 Holloway Road N7 8DB London UK
| | - Norman Guzzardi
- School of Human Sciences; London Metropolitan University; 166-220 Holloway Road N7 8DB London UK
| | - Viliyana G. Tsanova
- School of Human Sciences; London Metropolitan University; 166-220 Holloway Road N7 8DB London UK
| | - Angeliki Stika
- School of Human Sciences; London Metropolitan University; 166-220 Holloway Road N7 8DB London UK
| | - Bhaven Patel
- School of Human Sciences; London Metropolitan University; 166-220 Holloway Road N7 8DB London UK
| |
Collapse
|
49
|
Ji M, Yu J, Zhu C. Cyanotrifluoromethylthiolation of unactivated dialkyl-substituted alkynes via cyano migration: synthesis of trifluoromethylthiolated acrylonitriles. Chem Commun (Camb) 2018; 54:6812-6815. [DOI: 10.1039/c8cc01189c] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein a novel, elusive cyanotrifluoromethylthiolation of unactivated dialkyl-substituted alkynes by means of intramolecular distal cyano migration is reported.
Collapse
Affiliation(s)
- Meishan Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Jiajia Yu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
50
|
Chen W, Zhang Y, Li P, Wang L. tert-Butyl peroxybenzoate mediated formation of 3-alkylated quinolines from N-propargylamines via a cascade radical addition/cyclization reaction. Org Chem Front 2018. [DOI: 10.1039/c7qo01052d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel method for constructing 3-alkylated quinolines was developed via tert-butyl peroxybenzoate mediated cycloaddition between N-propargyl aromatic amines and ethers.
Collapse
Affiliation(s)
- Wei Chen
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Yicheng Zhang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
- School of Environmental and Chemical Engineering
| | - Pinhua Li
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Lei Wang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P. R. China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|