1
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| |
Collapse
|
2
|
McCool JD, Zhang S, Cheng I, Zhao X. Rational development of molecular earth-abundant metal complexes for electrocatalytic hydrogen production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Chapman A, Ertekin E, Kubota M, Nagao A, Bertsch K, Macadre A, Tsuchiyama T, Masamura T, Takaki S, Komoda R, Dadfarnia M, Somerday B, Staykov AT, Sugimura J, Sawae Y, Morita T, Tanaka H, Yagi K, Niste V, Saravanan P, Onitsuka S, Yoon KS, Ogo S, Matsushima T, Tumen-Ulzii G, Klotz D, Nguyen DH, Harrington G, Adachi C, Matsumoto H, Kwati L, Takahashi Y, Kosem N, Ishihara T, Yamauchi M, Saha BB, Islam MA, Miyawaki J, Sivasankaran H, Kohno M, Fujikawa S, Selyanchyn R, Tsuji T, Higashi Y, Kirchheim R, Sofronis P. Achieving a Carbon Neutral Future through Advanced Functional Materials and Technologies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Andrew Chapman
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Elif Ertekin
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Masanobu Kubota
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Akihide Nagao
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Kaila Bertsch
- Lawrence Livermore National Laboratory, California, USA
| | - Arnaud Macadre
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Yamaguchi University, Yamaguchi, Japan
| | - Toshihiro Tsuchiyama
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Materials Science and Engineering, Kyushu University, Fukuoka, Japan
| | - Takuro Masamura
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Materials Science and Engineering, Kyushu University, Fukuoka, Japan
| | - Setsuo Takaki
- Netsuren Co., Ltd., Hyogo, Japan
- Emeritus Professor, Kyushu University, Fukuoka, Japan
| | - Ryosuke Komoda
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Fukuoka University, Fukuoka, Japan
| | - Mohsen Dadfarnia
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Seattle University, Washington, USA
| | - Brian Somerday
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Illinois, USA
- Somerday Consulting LLC, Pennsylvania, USA
| | - Alexander Tsekov Staykov
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Joichi Sugimura
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Research Center for Hydrogen Industrial Use and Storage, Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Fukuoka University, Fukuoka, Japan
| | - Yoshinori Sawae
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Fukuoka University, Fukuoka, Japan
| | - Takehiro Morita
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Fukuoka University, Fukuoka, Japan
| | - Hiroyoshi Tanaka
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Research Center for Hydrogen Industrial Use and Storage, Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Fukuoka University, Fukuoka, Japan
| | - Kazuyuki Yagi
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Research Center for Hydrogen Industrial Use and Storage, Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Fukuoka University, Fukuoka, Japan
| | | | - Prabakaran Saravanan
- Department of Mechanical Engineering, Birla Institute of Technology & Science - Pilani, Hyderabad, Telangana, India
| | - Shugo Onitsuka
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Ki-Seok Yoon
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Seiji Ogo
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Toshinori Matsushima
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Ganbaatar Tumen-Ulzii
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Dino Klotz
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Dinh Hoa Nguyen
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - George Harrington
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Chihaya Adachi
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Hiroshige Matsumoto
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Leonard Kwati
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Yukina Takahashi
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Nuttavut Kosem
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Tatsumi Ishihara
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Miho Yamauchi
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Bidyut Baran Saha
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Md. Amirul Islam
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Jin Miyawaki
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Harish Sivasankaran
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Masamichi Kohno
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Shigenori Fujikawa
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Roman Selyanchyn
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Takeshi Tsuji
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Yukihiro Higashi
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
| | - Reiner Kirchheim
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Institute of Materials Physics, University of Gottingen, Germany
| | - Petros Sofronis
- International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka, Japan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Illinois, USA
| |
Collapse
|
4
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
5
|
Wang XZ, Meng SL, Xiao H, Feng K, Wang Y, Jian JX, Li XB, Tung CH, Wu LZ. Identifying a Real Catalyst of [NiFe]-Hydrogenase Mimic for Exceptional H 2 Photogeneration. Angew Chem Int Ed Engl 2020; 59:18400-18404. [PMID: 32667116 DOI: 10.1002/anie.202006593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Indexed: 11/09/2022]
Abstract
Inspired by the natural [NiFe]-H2 ase, we designed mimic 1, (dppe)Ni(μ-pdt)(μ-Cl)Ru(CO)2 Cl to realize effective H2 evolution under photocatalytic conditions. However, a new species 2 was captured in the course of photo-, electro-, and chemo- one-electron reduction. Experimental studies of in situ IR spectroscopy, EPR, NMR, X-ray absorption spectroscopy, and DFT calculations corroborated a dimeric structure of 2 as a closed-shell, symmetric structure with a RuI center. The isolated dimer 2 showed the real catalytic role in photocatalysis with a benchmark turnover frequency (TOF) of 1936 h-1 for H2 evolution, while mimic 1 worked as a pre-catalyst and evolved H2 only after being reduced to 2. The remarkably catalytic activity and unique dimer structure of 2 operated in photocatalysis unveiled a broad research prospect in hydrogenases mimics for advanced H2 evolution.
Collapse
Affiliation(s)
- Xu-Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu-Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Xin Jian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Wang X, Meng S, Xiao H, Feng K, Wang Y, Jian J, Li X, Tung C, Wu L. Identifying a Real Catalyst of [NiFe]‐Hydrogenase Mimic for Exceptional H
2
Photogeneration. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xu‐Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing‐Xin Jian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Xu‐Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
7
|
Kariyawasam Pathirana KD, Ghosh P, Hsieh CH, Elrod LC, Bhuvanesh N, Darensbourg DJ, Darensbourg MY. Synthetic Metallodithiolato Ligands as Pendant Bases in [Fe IFe I], [Fe I[Fe(NO)] II], and [(μ-H)Fe IIFe II] Complexes. Inorg Chem 2020; 59:3753-3763. [PMID: 32083850 DOI: 10.1021/acs.inorgchem.9b03409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of ligands with specific stereo- and electrochemical requirements that are necessary for catalyst design challenges synthetic chemists in academia and industry. The crucial aza-dithiolate linker in the active site of [FeFe]-H2ase has inspired the development of synthetic analogues that utilize ligands which serve as conventional σ donors with pendant base features for H+ binding and delivery. Several MN2S2 complexes (M = Ni2+, [Fe(NO)]2+, [Co(NO)]2+, etc.) utilize these cis-dithiolates to bind low valent metals and also demonstrate the useful property of hemilability, i.e., alternate between bi- and monodentate ligation. Herein, synthetic efforts have led to the isolation and characterization of three heterotrimetallics that employ metallodithiolato ligand binding to di-iron scaffolds in three redox levels, (μ-pdt)[Fe(CO)3]2, (μ-pdt)[Fe(CO)3][(Fe(NO))II(IMe)(CO)]+, and (μ-pdt)(μ-H)[FeII(CO)2(PMe3)]2+ to generate (μ-pdt)[(FeI(CO)3][FeI(CO)2·NiN2S2] (1), (μ-pdt)[FeI(CO)3][(Fe(NO))II(IMe)(CO)]+ (2), and (μ-pdt)(μ-H)[FeII(CO)2(PMe3)][FeII(CO)(PMe3)·NiN2S2]+ (3) complexes (pdt = 1,3-propanedithiolate, IMe = 1,3-dimethylimidazole-2-ylidene, NiN2S2 = [N,N'-bis(2-mercaptidoethyl)-1,4-diazacycloheptane] nickel(II)). These complexes display efficient metallodithiolato binding to the di-iron scaffold with one thiolate-S, which allows the free unbound thiolate to potentially serve as a built-in pendant base to direct proton binding, promoting a possible Fe-H-···+H-S coupling mechanism for the electrocatalytic hydrogen evolution reaction (HER) in the presence of acids. Ligand substitution studies on 1 indicate an associative/dissociative type reaction mechanism for the replacement of the NiN2S2 ligand, providing insight into the Fe-S bond strength.
Collapse
Affiliation(s)
| | - Pokhraj Ghosh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Chung-H Hsieh
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Lindy Chase Elrod
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Donald J Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Marcetta Y Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
8
|
Zimmermann P, Hoof S, Braun-Cula B, Herwig C, Limberg C. A Biomimetic Nickel Complex with a Reduced CO2
Ligand Generated by Formate Deprotonation and Its Behaviour towards CO2. Angew Chem Int Ed Engl 2018; 57:7230-7233. [DOI: 10.1002/anie.201802655] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Philipp Zimmermann
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Santina Hoof
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Beatrice Braun-Cula
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian Herwig
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian Limberg
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
9
|
Zimmermann P, Hoof S, Braun-Cula B, Herwig C, Limberg C. Ein biomimetischer Nickelkomplex mit einem reduzierten, durch Formiatdeprotonierung erzeugten CO2
-Liganden und sein Verhalten gegenüber CO2. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Philipp Zimmermann
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Santina Hoof
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Beatrice Braun-Cula
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Christian Herwig
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Christian Limberg
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
10
|
Perotto CU, Sodipo CL, Jones GJ, Tidey JP, Blake AJ, Lewis W, Davies ES, McMaster J, Schröder M. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN - Ligands: Analogs of the Active Site of the [NiFe] Hydrogenases. Inorg Chem 2018; 57:2558-2569. [PMID: 29465237 DOI: 10.1021/acs.inorgchem.7b02905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of synthetic analogs of the active sites of [NiFe] hydrogenases remains challenging, and, in spite of the number of complexes featuring a [NiFe] center, those featuring CO and CN- ligands at the Fe center are under-represented. We report herein the synthesis of three bimetallic [NiFe] complexes [Ni( N2 S2)Fe(CO)2(CN)2], [Ni( S4)Fe(CO)2(CN)2], and [Ni( N2 S3)Fe(CO)2(CN)2] that each contain a Ni center that bridges through two thiolato S donors to a {Fe(CO)2(CN)2} unit. X-ray crystallographic studies on [Ni( N2 S3)Fe(CO)2(CN)2], supported by DFT calculations, are consistent with a solid-state structure containing distinct molecules in the singlet ( S = 0) and triplet ( S = 1) states. Each cluster exhibits irreversible reduction processes between -1.45 and -1.67 V vs Fc+/Fc and [Ni( N2 S3)Fe(CO)2(CN)2] possesses a reversible oxidation process at 0.17 V vs Fc+/Fc. Spectroelectrochemical infrared (IR) and electron paramagnetic resonance (EPR) studies, supported by density functional theory (DFT) calculations, are consistent with a NiIIIFeII formulation for [Ni( N2 S3)Fe(CO)2(CN)2]+. The singly occupied molecular orbital (SOMO) in [Ni( N2 S3)Fe(CO)2(CN)2]+ is based on Ni 3dz2 and 3p S with the S contributions deriving principally from the apical S-donor. The nature of the SOMO corresponds to that proposed for the Ni-C state of the [NiFe] hydrogenases for which a NiIIIFeII formulation has also been proposed. A comparison of the experimental structures, and the electrochemical and spectroscopic properties of [Ni( N2 S3)Fe(CO)2(CN)2] and its [Ni( N2 S3)] precursor, together with calculations on the oxidized [Ni( N2 S3)Fe(CO)2(CN)2]+ and [Ni( N2 S3)]+ forms suggests that the binding of the {Fe(CO)(CN)2} unit to the {Ni(CysS)4} center at the active site of the [NiFe] hydrogenases suppresses thiolate-based oxidative chemistry involving the bridging thiolate S donors. This is in addition to the role of the Fe center in modulating the redox potential and geometry and supporting a bridging hydride species between the Ni and Fe centers in the Ni-C state.
Collapse
Affiliation(s)
- Carlo U Perotto
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Charlene L Sodipo
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Graham J Jones
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Jeremiah P Tidey
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Alexander J Blake
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - William Lewis
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - E Stephen Davies
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Jonathan McMaster
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , United Kingdom
| | - Martin Schröder
- The University of Manchester , Oxford Road , Manchester , M13 9PL , United Kingdom
| |
Collapse
|
11
|
Ghosh P, Quiroz M, Wang N, Bhuvanesh N, Darensbourg MY. Complexes of MN 2S 2·Fe(η 5-C 5R 5)(CO) as platform for exploring cooperative heterobimetallic effects in HER electrocatalysis. Dalton Trans 2018; 46:5617-5624. [PMID: 28174781 DOI: 10.1039/c6dt04666e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The control of aggregation at sulfur by metallodithiolates (MN2S2) has made them prime candidates as building blocks for the synthesis of biomimetics of various bimetallic enzyme active sites, with reactivity consequences implicating redox control by both metal centers. Recent studies of MN2S2 (M = Ni2+, Fe(NO)2+) bound to [(η5-C5H5)Fe(CO)]+ as electrocatalysts for proton reduction, the hydrogen evolution reaction, demonstrated reduction-induced hemi-lability of the bridging cis-dithiolates as a key step in the electrochemical proton reduction process (Ding, et al., J. Am. Chem. Soc., 2016, 138, 12920-12927). The MN2S2·Fe(η5-C5R5)(CO) platform offers numerous possibilities for tuning the electronic character of the M(μ-S2)Fe core. As well as modifying M within the metallodithiolate ligand, replacing H by CH3 at the η5-C5R5 moiety increases the electron density at the Fe center, which might facilitate the reductive Fe-S bond cleavage. Although release of a free thiolate in these hemi-labile ligands creates a needed internal pendant base, this benefit might be countered by the increase in over-potential for addition of the first electron. Herein we report the preparation and characterization of four bimetallic aggregates with the (η5-C5R5)Fe(CO) (R = H, CH3; Fe' or Fe*', respectively) or the dicarbonyl (η5-C5R5)Fe(CO)2 scaffold (R = H, CH3; Fe'' or Fe*'', respectively) bound to redox active MN2S2 ligands (M = Ni2+, Co(NO)2+; N2S2 = bismercaptoethane diazacycloheptane) Co-Fe*', Ni-Fe*', Co-Fe' and Co-Fe*'' complexes. The bidentate complexes were found to be electrocatalysts for proton reduction, although at high over-potential, especially for the derivatives of the electron-rich (η5-C5(CH3)5)Fe(CO)+. The turnover (TON) and turnover frequencies (TOF) were determined and found to be comparable to the previously reported MN2S2·Fe(η5-C5H5)(CO)+ analogues.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | | | | | | | | |
Collapse
|
12
|
Fukuzumi S, Lee YM, Nam W. Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.07.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Neary MC, Quinlivan PJ, Parkin G. Zerovalent Nickel Compounds Supported by 1,2-Bis(diphenylphosphino)benzene: Synthesis, Structures, and Catalytic Properties. Inorg Chem 2017; 57:374-391. [DOI: 10.1021/acs.inorgchem.7b02636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michelle C. Neary
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Patrick J. Quinlivan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
14
|
Ghosh P, Ding S, Chupik RB, Quiroz M, Hsieh CH, Bhuvanesh N, Hall MB, Darensbourg MY. A matrix of heterobimetallic complexes for interrogation of hydrogen evolution reaction electrocatalysts. Chem Sci 2017; 8:8291-8300. [PMID: 29619175 PMCID: PMC5858031 DOI: 10.1039/c7sc03378h] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Experimental and computational studies address key questions in a structure-function analysis of bioinspired electrocatalysts for the HER. Combinations of NiN2S2 or [(NO)Fe]N2S2 as donors to (η5-C5H5)Fe(CO)+ or [Fe(NO)2]+/0 generate a series of four bimetallics, gradually "softened" by increasing nitrosylation, from 0 to 3, by the non-innocent NO ligands. The nitrosylated NiFe complexes are isolated and structurally characterized in two redox levels, demonstrating required features of electrocatalysis. Computational modeling of experimental structures and likely transient intermediates that connect the electrochemical events find roles for electron delocalization by NO, as well as Fe-S bond dissociation that produce a terminal thiolate as pendant base well positioned to facilitate proton uptake and transfer. Dihydrogen formation is via proton/hydride coupling by internal S-H+···-H-Fe units of the "harder" bimetallic arrangements with more localized electron density, while softer units convert H-···H-via reductive elimination from two Fe-H deriving from the highly delocalized, doubly reduced [Fe2(NO)3]- derivative. Computational studies also account for the inactivity of a Ni2Fe complex resulting from entanglement of added H+ in a pinched -S δ-···H+··· δ-S- arrangement.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Shengda Ding
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Rachel B Chupik
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Manuel Quiroz
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Chung-Hung Hsieh
- Department of Chemistry , Tamkang University , New Taipei City , Taiwan 25157
| | - Nattami Bhuvanesh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Michael B Hall
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | | |
Collapse
|
15
|
Möller F, Piontek S, Miller RG, Apfel UP. From Enzymes to Functional Materials-Towards Activation of Small Molecules. Chemistry 2017; 24:1471-1493. [PMID: 28816379 DOI: 10.1002/chem.201703451] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Indexed: 12/12/2022]
Abstract
The design of non-noble metal-containing heterogeneous catalysts for the activation of small molecules is of utmost importance for our society. While nature possesses very sophisticated machineries to perform such conversions, rationally designed catalytic materials are rare. Herein, we aim to raise the awareness of the overall common design and working principles of catalysts incorporating aspects of biology, chemistry, and material sciences.
Collapse
Affiliation(s)
- Frauke Möller
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| | - Stefan Piontek
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| | - Reece G Miller
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| |
Collapse
|
16
|
Tokunaga T, Yatabe T, Matsumoto T, Ando T, Yoon KS, Ogo S. Mechanistic investigation of the formation of H 2 from HCOOH with a dinuclear Ru model complex for formate hydrogen lyase. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2017; 18:870-876. [PMID: 29152019 PMCID: PMC5678451 DOI: 10.1080/14686996.2017.1379857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 05/08/2023]
Abstract
We report the mechanistic investigation of catalytic H2 evolution from formic acid in water using a formate-bridged dinuclear Ru complex as a formate hydrogen lyase model. The mechanistic study is based on isotope-labeling experiments involving hydrogen isotope exchange reaction.
Collapse
Affiliation(s)
- Taisuke Tokunaga
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Takeshi Yatabe
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Takahiro Matsumoto
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Tatsuya Ando
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Ki-Seok Yoon
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka, Japan
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Neary MC, Parkin G. Reactivity of Cyclopentadienyl Molybdenum Compounds towards Formic Acid: Structural Characterization of CpMo(PMe3)(CO)2H, CpMo(PMe3)2(CO)H, [CpMo(μ-O)(μ-O2CH)]2, and [Cp*Mo(μ-O)(μ-O2CH)]2. Inorg Chem 2017; 56:1511-1523. [DOI: 10.1021/acs.inorgchem.6b02606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Michelle C. Neary
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
18
|
Lunsford AM, Goldstein KF, Cohan MA, Denny JA, Bhuvanesh N, Ding S, Hall MB, Darensbourg MY. Comparisons of MN2S2vs. bipyridine as redox-active ligands to manganese and rhenium in (L–L)M′(CO)3Cl complexes. Dalton Trans 2017; 46:5175-5182. [DOI: 10.1039/c7dt00600d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Electronic communication was established for a heterobimetallic complex which upon reduction at one metal center modulates ligand loss and subsequent electron uptake at the second metal.
Collapse
Affiliation(s)
| | | | | | - Jason A. Denny
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Shengda Ding
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Michael B. Hall
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | |
Collapse
|
19
|
Ryding MJ, Fernández I, Uggerud E. Reactions between microhydrated superoxide anions and formic acid. Phys Chem Chem Phys 2017; 19:23176-23186. [DOI: 10.1039/c7cp03820h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Reactions between water clusters containing the superoxide anion, O2˙−(H2O)n (n = 0–4), and formic acid, HCO2H, were studied experimentally in vacuo and modelled using quantum chemical methods.
Collapse
Affiliation(s)
- Mauritz Johan Ryding
- Mass Spectrometry Laboratory and Centre of Theoretical and Computational Chemistry
- Department of Chemistry
- University of Oslo
- P.O. Box 1033 Blindern
- NO-0315 Oslo
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | - Einar Uggerud
- Mass Spectrometry Laboratory and Centre of Theoretical and Computational Chemistry
- Department of Chemistry
- University of Oslo
- P.O. Box 1033 Blindern
- NO-0315 Oslo
| |
Collapse
|
20
|
Ding S, Ghosh P, Lunsford AM, Wang N, Bhuvanesh N, Hall MB, Darensbourg MY. Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H2 Production Electrocatalysts. J Am Chem Soc 2016; 138:12920-12927. [DOI: 10.1021/jacs.6b06461] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shengda Ding
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Pokhraj Ghosh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Allen M. Lunsford
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Ning Wang
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Marcetta Y. Darensbourg
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| |
Collapse
|
21
|
Affiliation(s)
- Nathan A. Eberhardt
- Department
of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Hairong Guan
- Department
of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
22
|
Pinske C, Sargent F. Exploring the directionality of Escherichia coli formate hydrogenlyase: a membrane-bound enzyme capable of fixing carbon dioxide to organic acid. Microbiologyopen 2016; 5:721-737. [PMID: 27139710 PMCID: PMC5061711 DOI: 10.1002/mbo3.365] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 12/31/2022] Open
Abstract
During mixed‐acid fermentation Escherichia coli produces formate, which is initially excreted out the cell. Accumulation of formate, and dropping extracellular pH, leads to biosynthesis of the formate hydrogenlyase (FHL) complex. FHL consists of membrane and soluble domains anchored within the inner membrane. The soluble domain comprises a [NiFe] hydrogenase and a formate dehydrogenase that link formate oxidation directly to proton reduction with the release of CO2 and H2. Thus, the function of FHL is to oxidize excess formate at low pH. FHL subunits share identity with subunits of the respiratory Complex I. In particular, the FHL membrane domain contains subunits (HycC and HycD) that are homologs of NuoL/M/N and NuoH, respectively, which have been implicated in proton translocation. In this work, strain engineering and new assays demonstrate unequivocally the nonphysiological reverse activity of FHL in vivo and in vitro. Harnessing FHL to reduce CO2 to formate is biotechnologically important. Moreover, assays for both possible FHL reactions provide opportunities to explore the bioenergetics using biochemical and genetic approaches. Comprehensive mutagenesis of hycC did not identify any single amino acid residues essential for FHL operation. However, the HycD E199, E201, and E203 residues were found to be critically important for FHL function.
Collapse
Affiliation(s)
- Constanze Pinske
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, United Kingdom
| | - Frank Sargent
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, United Kingdom.
| |
Collapse
|