1
|
Tian JS, Yi-Gong, Wu ZW, Yu JS, Zhou J. H-Bond Donor-Directed Switch of Diastereoselectivity in the Enantioselective Intramolecular Aza-Henry Reaction of Ketimines. Chemistry 2024:e202402488. [PMID: 39120485 DOI: 10.1002/chem.202402488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/10/2024]
Abstract
We report an H-bond donor controlled diastereoselective switchable intramolecular aza-Henry reaction of ketimines derived from α-ketoesters and 2-(2-nitroethyl)anilines, allowing facile access to chiral tetrahydroquinolines bearing an aza-quaternary carbon stereocenter, which are privileged scaffold for medicinal researches. While newly developed cinchona alkaloid derived phosphoramide-bearing quaternary ammonium salt C2 selectively give cis-adducts in up to 20 : 1 dr and 99 % ee, the corresponding urea-bearing analogue C8 preferentially give trans-adducts in up to 20 : 1 dr and 99 % ee.
Collapse
Affiliation(s)
- Jun-Song Tian
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi-Gong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Zhong-Wei Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jin-Sheng Yu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jian Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
Sharma S, Monga Y, Gupta A, Singh S. 2-Oxindole and related heterocycles: synthetic methodologies for their natural products and related derivatives. RSC Adv 2023; 13:14249-14267. [PMID: 37179999 PMCID: PMC10173257 DOI: 10.1039/d3ra02217j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Natural goods, medications, and pharmaceutically active substances all contain substituted oxindoles. Generally, the C-3 stereocenter of the substituents of oxindoles and their absolute arrangement have a substantial impact on the bioactivity of these substances. In this case, the desire for contemporary probe and drug-discovery programs for the synthesis of chiral compounds using desirable scaffolds with high structural diversity further drives research in this field. Also, the new synthetic techniques are generally simple to apply for the synthesis of other similar scaffolds. Herein, we review the distinct approaches for the synthesis of diverse useful oxindole scaffolds. Specifically, the research findings on the naturally existing 2-oxindole core and a variety of synthetic compounds having a 2-oxindole core are discussed. We present an overview of the construction of oxindole-based synthetic and natural products. In addition, the chemical reactivity of 2-oxindole and its related derivatives in the presence of chiral and achiral catalysts are thoroughly discussed. The data compiled herein provides broad information related to the bioactive product design, development, and applications of 2-oxindoles and the reported techniques will be helpful for the investigation of novel reactions in the future.
Collapse
Affiliation(s)
- Shivangi Sharma
- Department of Applied Chemistry, Amity School of Engineering and Technology, Amity University Madhya Pradesh Gwalior Madhya Pradesh-474 005 India
| | - Yukti Monga
- Shyamlal College, Department of Chemistry, University of Delhi Delhi-110032 India
| | - Ashu Gupta
- Shyamlal College, Department of Chemistry, University of Delhi Delhi-110032 India
| | - Shivendra Singh
- Department of Applied Chemistry, Amity School of Engineering and Technology, Amity University Madhya Pradesh Gwalior Madhya Pradesh-474 005 India
| |
Collapse
|
3
|
Cui XY, Ye ZT, Wu HH, Ji CG, Zhou F, Zhou J. Au(I)-Catalyzed Formal Intermolecular Carbene Insertion into Vinylic C(sp 2)–H Bonds and Allylic C(sp 3)–H Bonds. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiao-Yuan Cui
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Hai-Hong Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Chang-Ge Ji
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| |
Collapse
|
4
|
Cui XY, Zhao YL, Chen YM, Dong SZ, Zhou F, Wu HH, Zhou J. Au-Catalyzed Formal Allylation of Diazo(thio)oxindoles: Application to Tandem Asymmetric Synthesis of Quaternary Stereocenters. Org Lett 2021; 23:4864-4869. [PMID: 34080874 DOI: 10.1021/acs.orglett.1c01399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report an efficient Au(I)-catalyzed formal allylation of diazo(thio)oxindoles using allyltrimethylsilane to give 3-allyl (thio)oxindoles, which are difficult to access by using traditional alkylation methods under basic conditions. The approach enables a highly stereoselective synthesis of quaternary (thio)oxindoles via a formal allylation-asymmetric Michael addition sequence. These adducts are versatile synthons for spirocyclic (thio)oxindoles. Initial biological studies reveal that chiral thiooxindoles show promising antiproliferation activity that is better than that of the corresponding oxindoles.
Collapse
Affiliation(s)
| | - Yu-Lei Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | | | | | | | | | - Jian Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| |
Collapse
|
5
|
Das T, Mohapatra S, Mishra NP, Nayak S, Raiguru BP. Recent Advances in Organocatalytic Asymmetric Michael Addition Reactions to α, β‐Unsaturated Nitroolefins. ChemistrySelect 2021. [DOI: 10.1002/slct.202100679] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tapaswini Das
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Nilima P. Mishra
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Bishnu P. Raiguru
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| |
Collapse
|
6
|
Xiao X, Shao B, Lu Y, Cao Q, Xia C, Chen F. Recent Advances in Asymmetric Organomulticatalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiao Xiao
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Bing‐Xuan Shao
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Yin‐Jie Lu
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Qian‐Qian Cao
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Chun‐Nian Xia
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Fen‐Er Chen
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University Shanghai 200433 People's Republic China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic China
| |
Collapse
|
7
|
Ding PG, Hu XS, Yu JS, Zhou J. Diastereodivergent Synthesis of α-Chiral Tertiary Azides through Catalytic Asymmetric Michael Addition. Org Lett 2020; 22:8578-8583. [DOI: 10.1021/acs.orglett.0c03178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pei-Gang Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Xiao-Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, People’s Republic of China
| |
Collapse
|
8
|
Ye X, Pan Y, Chen Y, Yang X. Enantioselective Construction of Sulfur‐Containing Tetrasubstituted Stereocenters via Asymmetric Functionalizations of α‐Sulfanyl Cyclic Ketones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xueqian Ye
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yongkai Pan
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| | - Yunrong Chen
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| | - Xiaoyu Yang
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| |
Collapse
|
9
|
Formánek B, Tauchman J, Císařová I, Veselý J. Access to Spirocyclic Benzothiophenones with Multiple Stereocenters via an Organocatalytic Cascade Reaction. J Org Chem 2020; 85:8510-8521. [DOI: 10.1021/acs.joc.0c00882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bedřich Formánek
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Jiří Tauchman
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| |
Collapse
|
10
|
Zhang Y, Wong HN, Wu XY, Han J. Chiral iminophosphorane catalyzed asymmetric sulfenylation of 2-substituted alkylcyanoacetates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Ding PG, Zhou F, Wang X, Zhao QH, Yu JS, Zhou J. H-bond donor-directed switching of diastereoselectivity in the Michael addition of α-azido ketones to nitroolefins. Chem Sci 2020; 11:3852-3861. [PMID: 34122853 PMCID: PMC8152593 DOI: 10.1039/d0sc00475h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of catalyst-controlled stereodivergent asymmetric catalysis is important for providing facile access to all stereoisomers of chiral products with multiple stereocenters from the same starting materials. Despite progress, new design strategies for diastereodivergent asymmetric catalysis are still highly desirable. Here we report the potency of H-bond donors as the governing factor to tune diastereoselectivity in a highly diastereoselective switchable enantioselective Michael addition of α-azido ketones to nitroolefins. While a newly developed bifunctional tertiary amine, phosphoramide, preferentially afforded syn-adducts, an analogous squaramide catalyst selectively gave anti-adducts. The resulting multifunctional tertiary azides can be converted to spiro-pyrrolidines with four continuous stereocenters in a one-pot operation. Mechanistic studies cast light on the control of diastereoselectivity by H-bond donors. While the squaramide-catalyzed reaction proceeded with a transition state with both squaramide N–H bonds binding to an enolate intermediate, an unprecedented model was proposed for the phosphoramide-mediated reaction wherein an amide N–H bond and an alkylammonium ion formed in situ interact with nitroolefins, with the enolate stabilized by nonclassical C–H⋯O hydrogen-bonding interactions. We report the successful reversal of the diastereoselectivity in an unprecedented Michael addition of α-azido ketones to nitroolefins catalyzed by bifunctional tertiary amines, simply by varying the H-bond donor from phosphoramide to squaramide.![]()
Collapse
Affiliation(s)
- Pei-Gang Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Xin Wang
- College of Chemistry, Sichuan University Chengdu Sichuan 610064 China
| | - Qiu-Hua Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
12
|
Wang Y, Cao Z, Li Q, Lin G, Zhou J, Tian P. Activating Pronucleophiles with High p
K
a
Values: Chiral Organo‐Superbases. Angew Chem Int Ed Engl 2020; 59:8004-8014. [DOI: 10.1002/anie.201913484] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Yu‐Hui Wang
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Zhong‐Yan Cao
- College of Chemical EngineeringZhejiang University of Technology 18 Chaowang Road Hangzhou 310014 China
| | - Qing‐Hua Li
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Guo‐Qiang Lin
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Jian Zhou
- School of Chemistry and Molecular EngineeringEast China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Ping Tian
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| |
Collapse
|
13
|
Wang Y, Cao Z, Li Q, Lin G, Zhou J, Tian P. Activating Pronucleophiles with High p
K
a
Values: Chiral Organo‐Superbases. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu‐Hui Wang
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Zhong‐Yan Cao
- College of Chemical EngineeringZhejiang University of Technology 18 Chaowang Road Hangzhou 310014 China
| | - Qing‐Hua Li
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Guo‐Qiang Lin
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| | - Jian Zhou
- School of Chemistry and Molecular EngineeringEast China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Ping Tian
- The Research Center of Chiral DrugsInnovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 China
| |
Collapse
|
14
|
Niu B, Wu XY, Wei Y, Shi M. Palladium-Catalyzed Diastereoselective Formal [5 + 3] Cycloaddition for the Construction of Spirooxindoles Fused with an Eight-Membered Ring. Org Lett 2019; 21:4859-4863. [DOI: 10.1021/acs.orglett.9b01748] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ben Niu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People’s Republic of China
| | - Xiao-Yun Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People’s Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, People’s Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People’s Republic of China
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, People’s Republic of China
| |
Collapse
|
15
|
Huang H, Wang Y, Zong H, Song L. Catalytic asymmetric 1,2-Addition/Lactonization tandem reactions for the syntheses of chiral 3-Substituted phthalides using organozinc reagents. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huayin Huang
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 China
| | - Yabai Wang
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 China
| | - Hua Zong
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 China
| | - Ling Song
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou Fujian 350002 China
| |
Collapse
|
16
|
Cao ZY, Zhou F, Zhou J. Development of Synthetic Methodologies via Catalytic Enantioselective Synthesis of 3,3-Disubstituted Oxindoles. Acc Chem Res 2018; 51:1443-1454. [PMID: 29808678 DOI: 10.1021/acs.accounts.8b00097] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
3,3-Disubstituted oxindoles are widely distributed in natural products, drugs, and pharmaceutically active compounds. The absolute configuration and the substituents on the fully substituted C3 stereocenter of the oxindole often significantly influence the biological activity. Therefore, tremendous efforts have made to develop catalytic enantioselective syntheses of this prominent structural motif. Research in this area is further fueled by the ever-increasing demand for modern probe- and drug-discovery programs for synthetic libraries of chiral compounds that are derived from privileged scaffolds with high structural diversity. Notably, the efficient construction of fully substituted C3 stereocenters of oxindole, tetrasubstituted or all-carbon quaternary, spirocyclic or not, also becomes a test ground for new synthetic methodologies. We have been engaged in developing efficient methods for diversity-oriented synthesis of chiral 3,3-disubstituted oxindoles from readily available starting materials. We have systematically developed catalytic enantioselective methods to prepare 3-substituted 3-hydroxyoxindoles, 3-aminooxindoles, and 3-thiooxindoles, quaternary oxindoles, and spirocyclic oxindoles. These protocols can be classified into six approaches: (1) enantioselective addition of nucleophiles to isatins or isatin ketimines; (2) unprotected 3-substituted oxindoles as nucleophiles; (3) functionalization of oxindole-derived tetrasubstituted alkenes; (4) desymmetrization of oxindole-based diynes; (5) spirocyclopropyl oxindoles as donor-acceptor (D-A) cyclopropanes; and (6) elaboration of diazooxindoles. By the use of these methods, chiral oxindoles with rich structural diversity are readily accessed with high to excellent enantioselectivity. Some methods have been used for the enantioselective formal or total synthesis of natural products, bioactive compounds, or their analogues. On the basis of these studies, we developed synthetic methodologies that have potential application. We designed phosphoramide-based bifunctional catalysts for the efficient construction of quaternary oxindoles: a cinchona-alkaloid-derived phosphoramide for the Michael addition of unprotected 3-substituted oxindoles to nitroolefins with broad substrate scope and a chiral 1,2-cyclohexanediamine-derived bifunctional phosphoramide for the activation of fluorinated enol silyl ethers for the addition to isatylidene malononitrile. The phosphoramide-based catalysts achieved better enantiofacial control than the analogous H-bond-donor-derived catalysts in these reactions, suggesting the potential of the former in new chiral catalyst development. We identified chiral Au(I) and Hg(II) catalysts for olefin cyclopropanation of diazooxindoles. We further disclosed the effective activation of spirocyclopropyl oxindoles by using electron-withdrawing N-protecting groups for enantioselective [3 + 3] cycloaddition, offering the promise of constructing a diverse range of spirocyclic oxindoles by the use of such monoactivated D-A cyclopropanes. We developed tandem sequences that allow the facile synthesis of 3,3-disubstituted oxindoles from simple starting materials in a one-pot operation, including a tandem Morita-Baylis-Hillman/bromination/[3 + 2] annulation sequence, a hydrogenation/ketimine formation/asymmetric 6π electrocyclization sequence, a C-H functionalization/Michael addition or amination sequence, and an aza-Wittig/Strecker sequence. We designed oxindole-based diynes to realize a highly enantioselective Cu-catalyzed alkyne-azide cycloaddition (CuAAC), outlining the desymmetrization of prochiral diynes as an effective strategy to exploit asymmetric CuAAC. This Account focuses on the synthetic methodologies developed in our group for the catalytic enantioselective synthesis of 3,3-disubstituted oxindoles and provides an overview of our research on the design, development, and applications of these methods that will provide useful insights for the exploration of new reactions.
Collapse
Affiliation(s)
| | | | - Jian Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
17
|
Sengoku T, Hayashi D, Takahashi M, Yoda H. Electrophilic Amide Allylation of 3-Heterosubstituted Oxindoles: A Route to Spirocyclic 2-Oxindoles Containing the α-Methylene-γ-butyrolactam Structure. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tetsuya Sengoku
- Department of Applied Chemistry; Faculty of Engineering; Shizuoka University; 3-5-1 Johoku, Naka-ku 432-8561 Hamamatsu Japan
| | - Daichi Hayashi
- Department of Applied Chemistry; Faculty of Engineering; Shizuoka University; 3-5-1 Johoku, Naka-ku 432-8561 Hamamatsu Japan
| | - Masaki Takahashi
- Department of Applied Chemistry; Faculty of Engineering; Shizuoka University; 3-5-1 Johoku, Naka-ku 432-8561 Hamamatsu Japan
| | - Hidemi Yoda
- Department of Applied Chemistry; Faculty of Engineering; Shizuoka University; 3-5-1 Johoku, Naka-ku 432-8561 Hamamatsu Japan
| |
Collapse
|
18
|
Wang S, Guo Z, Chen S, Jiang Y, Zhang F, Liu X, Chen W, Sheng C. Organocatalytic Asymmetric Synthesis of Spiro-Tetrahydrothiophene Oxindoles Bearing Four Contiguous Stereocenters by One-Pot Michael-Henry-Cascade-Rearrangement Reactions. Chemistry 2017; 24:62-66. [PMID: 28940858 DOI: 10.1002/chem.201703837] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy; Fourth Military Medical University; 169 Changle West Road Xi'an 710032 P. R. China
| | - Zhongjie Guo
- Department of Medicinal Chemistry, School of Pharmacy; Fourth Military Medical University; 169 Changle West Road Xi'an 710032 P. R. China
| | - Shuqiang Chen
- Department of Medicinal Chemistry, School of Pharmacy; Second Military Medical University; 325 Guohe Road Shanghai 200433 P. R. China
| | - Yan Jiang
- Department of Medicinal Chemistry, School of Pharmacy; Second Military Medical University; 325 Guohe Road Shanghai 200433 P. R. China
| | - Fan Zhang
- Department of Medicinal Chemistry, School of Pharmacy; Fourth Military Medical University; 169 Changle West Road Xi'an 710032 P. R. China
| | - Xueying Liu
- Department of Medicinal Chemistry, School of Pharmacy; Fourth Military Medical University; 169 Changle West Road Xi'an 710032 P. R. China
| | - Weiping Chen
- Department of Medicinal Chemistry, School of Pharmacy; Fourth Military Medical University; 169 Changle West Road Xi'an 710032 P. R. China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy; Second Military Medical University; 325 Guohe Road Shanghai 200433 P. R. China
| |
Collapse
|
19
|
Kaur J, Chauhan P, Singh S, Chimni SS. Journey Heading towards Enantioselective Synthesis Assisted by Organocatalysis. CHEM REC 2017; 18:137-153. [DOI: 10.1002/tcr.201700020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Jasneet Kaur
- Department of Chemistry, U.G.C. Centre of Advanced Studies in Chemistry; Guru Nanak Dev University; Amritsar India
| | - Pankaj Chauhan
- Institute of Organic Chemistry; RWTH Aachen University, Germany
| | - Sarbjit Singh
- Department of Chemistry; University of Texas at Dallas, USA
| | - Swapandeep Singh Chimni
- Department of Chemistry, U.G.C. Centre of Advanced Studies in Chemistry; Guru Nanak Dev University; Amritsar India
| |
Collapse
|
20
|
Abstract
The construction of chiral disubstituted oxindoles is an intriguing challenge for organic chemists.
Collapse
Affiliation(s)
- Renato Dalpozzo
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Arcavacata di Rende (Cs) 87030
- Italy
| |
Collapse
|
21
|
|
22
|
Yu JS, Huang HM, Ding PG, Hu XS, Zhou F, Zhou J. Catalytic Enantioselective Construction of Sulfur-Containing Tetrasubstituted Carbon Stereocenters. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01496] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jin-Sheng Yu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Hong-Mei Huang
- College
of Chemistry and Material Sciences, Sichuan Normal University, Chengdu, Sichuan 610066, P. R. China
| | - Pei-Gang Ding
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Xiao-Si Hu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Feng Zhou
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Jian Zhou
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
23
|
Highly enantioselective Michael addition of α,α-disubstituted aldehydes to nitroolefins. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2468-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Khanal HD, Kim SH, Lee YR. Rhodium(ii)-catalyzed direct sulfenylation of diazooxindoles with disulfides. RSC Adv 2016. [DOI: 10.1039/c6ra12393g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rhodium(ii)-catalyzed reactions for direct sulfenylation of diazooxindoles with disulfides via C–S bond formation was developed.
Collapse
Affiliation(s)
- Hari Datta Khanal
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 712-749
- Republic of Korea
| | - Sung Hong Kim
- Analysis Research Division
- Daegu Center
- Korea Basic Science Institute
- Daegu 702-701
- Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 712-749
- Republic of Korea
| |
Collapse
|
25
|
Yu JS, Wu WB, Zhou F. The first catalytic asymmetric thioacetalization by chiral phosphoric acid catalysis. Org Biomol Chem 2016; 14:2205-9. [DOI: 10.1039/c5ob02495a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report here the first catalytic asymmetric thioacetalization of salicylaldehyde and dithiol. Chiral phosphoric acid STRIP C5 is identified as a powerful catalyst for this reaction to afford various chiral dithioacetals in high to excellent yields and enantioselectivities under mild conditions.
Collapse
Affiliation(s)
- Jin-Sheng Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Wen-Biao Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Feng Zhou
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
| |
Collapse
|
26
|
Cao ZY, Zhao YL, Zhou J. Sequential Au(i)/chiral tertiary amine catalysis: a tandem C–H functionalization of anisoles or a thiophene/asymmetric Michael addition sequence to quaternary oxindoles. Chem Commun (Camb) 2016; 52:2537-40. [DOI: 10.1039/c5cc10096h] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report an unprecedented sequential Au(i)/bifunctional tertiary amine catalysis, which enables a tandem C–H functionalization of weak nucleophiles (anisoles or thiophenes) and asymmetric Michael addition for the highly enantioselective synthesis of quaternary oxindoles.
Collapse
Affiliation(s)
- Zhong-Yan Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- 3663N
- Shanghai 200062
| | - Yu-Lei Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- 3663N
- Shanghai 200062
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- 3663N
- Shanghai 200062
| |
Collapse
|
27
|
Yu JS, Zhou J. Organocatalytic enantioselective Mukaiyama–Mannich reaction of fluorinated enol silyl ethers and cyclic N-sulfonyl ketimines. Org Chem Front 2016. [DOI: 10.1039/c5qo00407a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first catalytic asymmetric Mukaiyama–Mannich reaction of fluorinated silyl enol ethers and ketimines is developed, allowing highly enantioselective synthesis of benzosultam based β-fluorinated Cα-tetrasubstituted α-amino acid derivatives.
Collapse
Affiliation(s)
- Jin-Sheng Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|
28
|
Huang H, Zong H, Bian G, Song L. Chemo- and Enantioselective Addition and β-Hydrogen Transfer Reduction of Carbonyl Compounds with Diethylzinc Reagent in One Pot Catalyzed by a Single Chiral Organometallic Catalyst. J Org Chem 2015; 80:12614-9. [PMID: 26579727 DOI: 10.1021/acs.joc.5b01871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a single chiral phosphoramide-Zn(II) complex as the catalyst, the asymmetric β-H transfer reduction of aromatic α-trifluoromethyl ketones and enantioselective addition of aromatic aldehydes with Et2Zn in one pot were successfully realized, affording the corresponding additive products of secondary alcohols in high yields (up to 99%) with excellent enantioselectivities (up to 98% ee) and the reduction products of α-trifluoromethyl alcohols in good to excellent yields with up to 77% ee.
Collapse
Affiliation(s)
- Huayin Huang
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, China
| | - Hua Zong
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, China
| | - Guangling Bian
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, China
| | - Ling Song
- The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, China
| |
Collapse
|
29
|
Yu JS, Liao FM, Gao WM, Liao K, Zuo RL, Zhou J. Michael Addition Catalyzed by Chiral Secondary Amine Phosphoramide Using Fluorinated Silyl Enol Ethers: Formation of Quaternary Carbon Stereocenters. Angew Chem Int Ed Engl 2015; 54:7381-5. [DOI: 10.1002/anie.201501747] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/25/2015] [Indexed: 12/24/2022]
|
30
|
Yu JS, Liao FM, Gao WM, Liao K, Zuo RL, Zhou J. Michael Addition Catalyzed by Chiral Secondary Amine Phosphoramide Using Fluorinated Silyl Enol Ethers: Formation of Quaternary Carbon Stereocenters. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501747] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Liao K, Zhou F, Yu JS, Gao WM, Zhou J. Catalytic asymmetric sulfenylation to structurally diverse dithioketals. Chem Commun (Camb) 2015; 51:16255-8. [DOI: 10.1039/c5cc07010d] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the first example of highly enantioselective synthesis of structurally diverse chiral dithioketals via asymmetric sulfenylation of various types of S-based nucleophiles, catalyzed by a cheap cinchona alkaloid derivative, dihydroquinine.
Collapse
Affiliation(s)
- Kui Liao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Feng Zhou
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Jin-Sheng Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Wei-Ming Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|
32
|
Cao ZY, Zhou J. Catalytic asymmetric synthesis of polysubstituted spirocyclopropyl oxindoles: organocatalysis versus transition metal catalysis. Org Chem Front 2015. [DOI: 10.1039/c5qo00092k] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent progress in catalytic asymmetric synthesis of spirocyclopropyl oxindoles via organocatalysis and transition metal catalysis are summarized and discussed.
Collapse
Affiliation(s)
- Zhong-Yan Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- People's Republic of China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- People's Republic of China
| |
Collapse
|
33
|
Bharathiraja G, Sengoden M, Kannan M, Punniyamurthy T. Expedient synthesis of tetrasubstituted pyrroles via a copper-catalyzed cascade inter-/intramolecular cyclization of 1,3-enynes carry a nitro group with amines. Org Biomol Chem 2015; 13:2786-92. [DOI: 10.1039/c4ob02508c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various tetrasubstituted pyrroles/pyrazoles have been prepared from nitro-substituted 1,3-enynes with aromatic amines/hydrazinesviaa copper-catalyzed cascade aza-Michael addition, cyclization and aromatization.
Collapse
Affiliation(s)
- Ganesan Bharathiraja
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | - Mani Sengoden
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | - Masanam Kannan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | | |
Collapse
|