1
|
Pramanik S, Steinert RM, Mitchell-Koch KR, Bowman-James K. Structural Insight on Supramolecular Polyion Salts: Inositol Hexaphosphate Enclosed in Cationic Macrocyclic Clusters. Chemistry 2023; 29:e202301764. [PMID: 37544911 DOI: 10.1002/chem.202301764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Supramolecular macrocyclic forces have been used to trap phytate, myo-inositol-1,2,3,4,5,6-hexakisphosphate, a key bioanion with multiple roles in metabolic processes. Due to the complex chemistry of six multivalent phosphates surrounding the small, cyclic inositol framework, crystallographic information of simple phytate salts has been elusive. This report represents a combined crystallographic, theoretical, and solution binding investigation of a supramolecular macrocyclic complex of phytate. Together, the results provide significant insight to phytate's intramolecular and intermolecular interactions at the microenvironment level. The macrocycle-phytate aggregates consist of phytate anionic pairs, each partly sandwiched by two 24-membered, amide/amine-based cationic macrocycles. The phytate ion pairs hold the tetrameric macrocyclic array together by six strong intermolecular hydrogen bonds. Both phytates crystallize in 1a5e phosphate conformations (one axial (P2) and five equatorial phosphates). Solution NMR binding studies in 1 : 1 DMSO-d6 : D2 O indicate 2 : 1 macrocycle:phytate associations, suggesting that the sandwich-like nature of the complex holds together in solution. DFT studies indicate the likely occurrence of dynamic intramolecular interchange of phosphate protons, as well as important roles for the axial (P2) phosphate in both intramolecular and intermolecular hydrogen bonding interactions.
Collapse
Affiliation(s)
- Subhamay Pramanik
- Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045, USA
| | - Ryan M Steinert
- Department of Chemistry, Wichita State University, Wichita, Kansas, 67260, USA
| | | | | |
Collapse
|
2
|
Shipton ML, Jamion FA, Wheeler S, Riley AM, Plasser F, Potter BVL, Butler SJ. Expedient synthesis and luminescence sensing of the inositol pyrophosphate cellular messenger 5-PP-InsP 5. Chem Sci 2023; 14:4979-4985. [PMID: 37206391 PMCID: PMC10189900 DOI: 10.1039/d2sc06812e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/07/2023] [Indexed: 05/21/2023] Open
Abstract
Inositol pyrophosphates are important biomolecules associated with apoptosis, cell growth and kinase regulation, yet their exact biological roles are still emerging and probes do not exist for their selective detection. We report the first molecular probe for the selective and sensitive detection of the most abundant cellular inositol pyrophosphate 5-PP-InsP5, as well as an efficient new synthesis. The probe is based on a macrocyclic Eu(iii) complex bearing two quinoline arms providing a free coordination site at the Eu(iii) metal centre. Bidentate binding of the pyrophosphate group of 5-PP-InsP5 to the Eu(iii) ion is proposed, supported by DFT calculations, giving rise to a selective enhancement in Eu(iii) emission intensity and lifetime. We demonstrate the use of time-resolved luminescence as a bioassay tool for monitoring enzymatic processes in which 5-PP-InsP5 is consumed. Our probe offers a potential screening methodology to identify drug-like compounds that modulate the activity of enzymes of inositol pyrophosphate metabolism.
Collapse
Affiliation(s)
- Megan L Shipton
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford Mansfield Road Oxford OX1 3QT UK
| | - Fathima A Jamion
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - Simon Wheeler
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford Mansfield Road Oxford OX1 3QT UK
| | - Felix Plasser
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford Mansfield Road Oxford OX1 3QT UK
| | - Stephen J Butler
- Department of Chemistry, Loughborough University Epinal Way, Loughborough LE11 3TU UK
| |
Collapse
|
3
|
Dong YQ, Bai WB, Zhang W, Lin YC, Jian RK. Bio-based phytic acid@polyurushiol‑titanium complex coated cotton fabrics with durable flame retardancy for oil-water separation. Int J Biol Macromol 2023; 235:123782. [PMID: 36822294 DOI: 10.1016/j.ijbiomac.2023.123782] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Bio-based hydrophobic coating modified cotton fabrics with durable flame retardancy are of high interest in the application of oil-water separation for not only avoiding the use of hazardous substances but also improving the fire safety during use. Herein, phytic acid@Polyurushiol‑titanium complex coated cotton fabric was developed using the facile dip-coating method involving the sequential immersion in the solution of poly(ethyleneimine), phytic acid, titanium oxide, and urushiol. The underlying coating accommodated abundance of phytic acid, which imparted excellent flame retardancy to cotton fabric, and the top coating composed of the polyurushiol‑titanium complex endowed cotton fabric with high hydrophobicity that the water contact angle (WCA) was up to 149.8°. The hydrophobicity also guaranteed effective protection of the underlying phytic acid against chemical solvents and abrasion. Besides, the hydrophobic coating allowed cotton fabric for good self-cleaning and effective oil-water separation. Therefore, the preparation of phytic acid@polyurushiol‑titanium complex coated cotton fabric offers a promising approach to construct durable biomass-coated cellulose-based fabric with multifunctionality.
Collapse
Affiliation(s)
- Ying-Qi Dong
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Wei-Bin Bai
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Wen Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yu-Cai Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Rong-Kun Jian
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
4
|
Quiñone D, Veiga N, Savastano M, Torres J, Bianchi A, Kremer C, Bazzicalupi C. Supramolecular interaction of inositol phosphates with Cu(II): comparative study InsP6-InsP3. CrystEngComm 2022. [DOI: 10.1039/d1ce01733k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
myo-inositol phosphates are an important group of biomolecules that are present in all eukaryotic cells. The most abundant member of this family in nature is InsP6 (H12L1), which interacts strongly...
Collapse
|
5
|
Synthesis, optical and magnetic studies of cerium and europium phytate complexes - new microporous materials. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Kremer C, Torres J, Bianchi A, Savastano M, Bazzicalupi C. myo-inositol hexakisphosphate: Coordinative versatility of a natural product. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Pramanik S, Day VW, Bowman-James K. Supramolecular traps for highly phosphorylated inositol sources of phosphorus. Chem Commun (Camb) 2020; 56:3269-3272. [PMID: 32073044 DOI: 10.1039/c9cc09321d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structurally elusive inositol hexakisphosphates have been trapped in host-guest sandwiches between two picolinamide macrocycles that remain intact in solution, aided by hydrogen bonds and electrostatic interactions. This first report of macrocyclic complexes of inositol hexakisphosphates provides structural insight to significant biosources of phosphorus that impact the global phosphorus cycle.
Collapse
Affiliation(s)
- Subhamay Pramanik
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.
| | - Victor W Day
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
8
|
Quiñone D, Martínez S, Bozoglián F, Bazzicalupi C, Torres J, Veiga N, Bianchi A, Kremer C. Solution Studies and Crystal Structures of Heteropolynuclear Potassium/Copper Complexes with Phytate and Aromatic Polyamines: Self-Assembly through Coordinative and Supramolecular Interactions. Chempluschem 2020; 84:540-552. [PMID: 31943896 DOI: 10.1002/cplu.201900141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Indexed: 02/03/2023]
Abstract
Phytate (L12- ) is a relevant natural product. It interacts strongly with biologically relevant cations, due to the high negative charge exhibited in a wide pH range. The synthesis and crystal structures of the mixed-ligand Cu(II) polynuclear complexes K(H2 tptz)0.5 [Cu(H8 L)(tptz)] ⋅ 3.6H2 O (1), K(H2 O)3 {[Cu(H2 O)(bpca)]3 (H8 L)} ⋅ 1.75H2 O (2), and K1.5 (H2 O)2 [Cu(bpca)](H9.5 L) ⋅ 8H2 O (3) (tptz=2,4,6-tri(pyridin-2-yl)-1,3,5-triazine; Hbpca=bis(2-pyridylcarbonyl) amine) are reported herein. They were obtained by the use of an aromatic rigid amine, which satisfies some of the metal coordination sites and promotes the hierarchical assembly of 2D polymeric structures. Speciation of phytate-Cu(II)-Hbpca system and determination of complex stability constants were performed by means of potentiometric titrations, in 0.15 M NMe4 Cl at 37.0 °C, showing that, even in solution, this system is able to produce highly aggregated complexes, such as [Cu3 (bpca)3 (H7 L)]2- . Furthermore, the Cu(II)-mediated tptz hydrolysis was studied by UV-vis spectroscopy at room temperature in 0.15 M NMe4 Cl. Based on the equilibrium results and with the aid of molecular modelling tools, a plausible self-assembly process for 2 and 3 could be proposed.
Collapse
Affiliation(s)
- Delfina Quiñone
- Facultad de Química, Universidad de la República, Avenida Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Sebastián Martínez
- Facultad de Química, Universidad de la República, Avenida Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Fernando Bozoglián
- Institut Català d'Investigació Química, 16, Avinguda dels Països Catalans, 43007, Tarragona, Spain
| | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3, 50019, Sesto Fiorentino, Italy
| | - Julia Torres
- Facultad de Química, Universidad de la República, Avenida Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Nicolás Veiga
- Facultad de Química, Universidad de la República, Avenida Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Antonio Bianchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3, 50019, Sesto Fiorentino, Italy
| | - Carlos Kremer
- Facultad de Química, Universidad de la República, Avenida Gral. Flores 2124, 11800, Montevideo, Uruguay
| |
Collapse
|
9
|
Reinmuth M, Pramanik S, Douglas JT, Day VW, Bowman-James K. Structural Impact of Chelation on Phytate, a Highly Phosphorylated Biomolecule. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Molly Reinmuth
- Department of Chemistry; University of Kansas; 1567 Irving Hill Road Lawrence 66045 KS USA
| | - Subhamay Pramanik
- Department of Chemistry; University of Kansas; 1567 Irving Hill Road Lawrence 66045 KS USA
| | - Justin T. Douglas
- Department of Chemistry; University of Kansas; 1567 Irving Hill Road Lawrence 66045 KS USA
| | - Victor W. Day
- Department of Chemistry; University of Kansas; 1567 Irving Hill Road Lawrence 66045 KS USA
| | - Kristin Bowman-James
- Department of Chemistry; University of Kansas; 1567 Irving Hill Road Lawrence 66045 KS USA
| |
Collapse
|
10
|
Crea F, De Stefano C, Milea D, Sammartano S. Phytate–molybdate( vi) interactions in NaCl (aq)at different ionic strengths: unusual behaviour of the protonated species. NEW J CHEM 2018. [DOI: 10.1039/c7nj04651k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stepwise stability constants of phytate/molybdate(vi) complexes regularly increase with the number of protons in the species, affecting their speciation and sequestration.
Collapse
Affiliation(s)
- Francesco Crea
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina
- 31-98166 Messina
- Italy
| | - Concetta De Stefano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina
- 31-98166 Messina
- Italy
| | - Demetrio Milea
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina
- 31-98166 Messina
- Italy
| | - Silvio Sammartano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina
- 31-98166 Messina
- Italy
| |
Collapse
|
11
|
Wu W, Chen A, Tong L, Qing Z, Langone KP, Bernier WE, Jones WE. Facile Synthesis of Fluorescent Conjugated Polyelectrolytes Using Polydentate Sulfonate as Highly Selective and Sensitive Copper(II) Sensors. ACS Sens 2017; 2:1337-1344. [PMID: 28795572 DOI: 10.1021/acssensors.7b00400] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescent conjugated polyelectrolytes represent an exciting area of research into new chemosensors. By virtue of their rapid electron and energy transfer paths, these highly correlated, one-dimensional systems have been depicted as "molecular wires" and show "million-fold" sensitivity compared to monomolecular sensor analogs. In this paper, a novel polyelectrolyte sensor, the ttp-PPESO3, has been designed by incorporating terpyridine and sulfonate functional groups into the polyelectrolyte. This specifically tailored sensor has displayed remarkable quenching response toward copper(II) with a detection limit of 14.7 nM (0.93 ppb). It is capable of selectively screening copper without interference from 12 common cations. Molecular modeling suggests that binding occurs through a coordination interaction of the terpyridine and sulfonate. The additional multidentate nature from the sulfonate offers extraordinary chelating ability to the analyte. We anticipate that this unique binding mode will provide insight for the design of future more sensitive and selective systems.
Collapse
Affiliation(s)
- Wei Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| | - Anting Chen
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| | - Linyue Tong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| | - Ziqi Qing
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| | - Kevin P. Langone
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| | - William E. Bernier
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| | - Wayne E. Jones
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| |
Collapse
|
12
|
Quiñone D, Veiga N, Torres J, Bazzicalupi C, Bianchi A, Kremer C. Self-Assembly of Manganese(II)-Phytate Coordination Polymers: Synthesis, Crystal Structure, and Physicochemical Properties. Chempluschem 2017; 82:721-731. [DOI: 10.1002/cplu.201700027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/14/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Delfina Quiñone
- Departamento Estrella Campos; Facultad de Química; Universidad de la República; General Flores 2124 Montevideo Uruguay
| | - Nicolás Veiga
- Departamento Estrella Campos; Facultad de Química; Universidad de la República; General Flores 2124 Montevideo Uruguay
| | - Julia Torres
- Departamento Estrella Campos; Facultad de Química; Universidad de la República; General Flores 2124 Montevideo Uruguay
| | - Carla Bazzicalupi
- Dipartimento di Chimica “Ugo Schiff”; Universitá degli Studi di Firenze; Via della Lastruccia, 3 50019 Sesto Fiorentino Italy
| | - Antonio Bianchi
- Dipartimento di Chimica “Ugo Schiff”; Universitá degli Studi di Firenze; Via della Lastruccia, 3 50019 Sesto Fiorentino Italy
| | - Carlos Kremer
- Departamento Estrella Campos; Facultad de Química; Universidad de la República; General Flores 2124 Montevideo Uruguay
| |
Collapse
|
13
|
Quiñone D, Veiga N, Torres J, Castiglioni J, Bazzicalupi C, Bianchi A, Kremer C. Synthesis, solid-state characterization and solution studies of new phytate compounds with Cu(ii) and 1,10-phenanthroline: progress in the structural elucidation of phytate coordinating ability. Dalton Trans 2016; 45:12156-66. [PMID: 27402248 DOI: 10.1039/c6dt01460g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
myo-Inositol hexakisphosphate(phytate) forms highly structured complexes with Cu(ii) and ammonium cations.
Collapse
Affiliation(s)
- D. Quiñone
- Departamento Estrella Campos
- Facultad de Química
- Universidad de la República
- Montevideo
- Uruguay
| | - N. Veiga
- Departamento Estrella Campos
- Facultad de Química
- Universidad de la República
- Montevideo
- Uruguay
| | - J. Torres
- Departamento Estrella Campos
- Facultad de Química
- Universidad de la República
- Montevideo
- Uruguay
| | - J. Castiglioni
- LAFIDESU
- DETEMA
- Facultad de Química
- Universidad de la República
- Montevideo
| | - C. Bazzicalupi
- Dipartimento di Chimica “Ugo Schiff”
- Universitá degli Studi di Firenze
- Firenze
- Italy
| | - A. Bianchi
- Dipartimento di Chimica “Ugo Schiff”
- Universitá degli Studi di Firenze
- Firenze
- Italy
| | - C. Kremer
- Departamento Estrella Campos
- Facultad de Química
- Universidad de la República
- Montevideo
- Uruguay
| |
Collapse
|
14
|
Lee YH, Kim JY, Kim Y, Hayami S, Shin JW, Harrowfield J, Stefankiewicz AR. Lattice interactions of terpyridines and their derivatives – free terpyridines and their protonated forms. CrystEngComm 2016. [DOI: 10.1039/c6ce01435f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Veiga N, Macho I, Gómez K, González G, Kremer C, Torres J. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Torres J, Giorgi C, Veiga N, Kremer C, Bianchi A. Interaction of myo-inositol hexakisphosphate with biogenic and synthetic polyamines. Org Biomol Chem 2015; 13:7500-12. [DOI: 10.1039/c5ob00900f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
myo-Inositol hexakisphosphate (phytate) forms very stable adducts with biogenic and synthetic polyamines in aqueous solution.
Collapse
Affiliation(s)
- Julia Torres
- Cátedra de Química Inorgánica
- Departamento Estrella Campos
- Facultad de Química
- Universidad de la República
- Montevideo
| | - Claudia Giorgi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Nicolás Veiga
- Cátedra de Química Inorgánica
- Departamento Estrella Campos
- Facultad de Química
- Universidad de la República
- Montevideo
| | - Carlos Kremer
- Cátedra de Química Inorgánica
- Departamento Estrella Campos
- Facultad de Química
- Universidad de la República
- Montevideo
| | - Antonio Bianchi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| |
Collapse
|