1
|
Tilly DP, Morris DTJ, Clayden J. Anion-Dependent Hydrogen-Bond Polarity Switching in Ethylene-bridged Urea Oligomers. Chemistry 2023; 29:e202302210. [PMID: 37589333 PMCID: PMC10946793 DOI: 10.1002/chem.202302210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
The reversible coordination of anions to an N,N'-disubstituted 3,5-bis(trifluoromethyl)phenylurea located at a terminus of a linear chain of ethylene-bridged hydrogen-bonded ureas triggers a cascade of conformational changes. A series of hydrogen-bond polarity reversals propagates along the oligomer, leading to a global switch of its hydrogen-bond directionality. The induced polarity switch, transmitted through four reversible urea groups, results in a change in emission and excitation wavelengths of a fluorophore located at the opposite terminus of the oligomer. The molecule thus behaves as a chemical sensor with a relayed remote spectroscopic response to variations in anion concentration. The polarity switch induced by anion concentration constitutes an artificial communication mechanism for conveying information through oligomeric structures.
Collapse
Affiliation(s)
- David P. Tilly
- School of ChemistryUniversity of Bristol Cantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - David T. J. Morris
- School of ChemistryUniversity of Bristol Cantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Jonathan Clayden
- School of ChemistryUniversity of Bristol Cantock's CloseBristolBS8 1TSUK
| |
Collapse
|
2
|
Nag R, Okazaki Y, Scalabre A, Anfar Z, Nlate S, Buffeteau T, Oda R, Pouget E. Cooperative interaction between organic and inorganic moieties in hybrid silica nanohelices for enantioselective interaction. Chem Commun (Camb) 2022; 58:13515-13518. [PMID: 36385323 DOI: 10.1039/d2cc03916h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hybrid nanometric helical structures formed by the molecular assemblies of dicationic gemini surfactants with tartrate counterions covered with helical silica walls interact differently with matching or mismatching enantiomers of the tartrate. The difference of the interaction is based on the cooperativity between the chiral crystalline gemini surfactant molecular organization/conformation and the rigid chiral nanospace formed by the helical silica wall.
Collapse
Affiliation(s)
- Rahul Nag
- CNRS, Univ. Bordeaux, Bordeaux INP, Chimie et Biologie des Membranes et des Nanoobjets, UMR 5248, Allée St Hilaire, Bat B14, Pessac 33607, France.
| | - Yutaka Okazaki
- Graduate School of Energy Science, Kyoto University, Kyoto, Japan
| | - Antoine Scalabre
- CNRS, Univ. Bordeaux, Bordeaux INP, Chimie et Biologie des Membranes et des Nanoobjets, UMR 5248, Allée St Hilaire, Bat B14, Pessac 33607, France.
| | - Zakaria Anfar
- CNRS, Univ. Bordeaux, Bordeaux INP, Chimie et Biologie des Membranes et des Nanoobjets, UMR 5248, Allée St Hilaire, Bat B14, Pessac 33607, France.
| | - Sylvain Nlate
- CNRS, Univ. Bordeaux, Bordeaux INP, Chimie et Biologie des Membranes et des Nanoobjets, UMR 5248, Allée St Hilaire, Bat B14, Pessac 33607, France.
| | - Thierry Buffeteau
- Institut des Sciences Moléculaires (UMR5255 ISM), CNRS - Université de Bordeaux, 351 Cours de la Libération, Talence 33405, France
| | - Reiko Oda
- CNRS, Univ. Bordeaux, Bordeaux INP, Chimie et Biologie des Membranes et des Nanoobjets, UMR 5248, Allée St Hilaire, Bat B14, Pessac 33607, France.
| | - Emilie Pouget
- CNRS, Univ. Bordeaux, Bordeaux INP, Chimie et Biologie des Membranes et des Nanoobjets, UMR 5248, Allée St Hilaire, Bat B14, Pessac 33607, France.
| |
Collapse
|
3
|
Wang K, Xiao Y. Chirality in polythiophenes: A review. Chirality 2021; 33:424-446. [PMID: 34165198 DOI: 10.1002/chir.23333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/11/2021] [Accepted: 06/06/2021] [Indexed: 11/10/2022]
Abstract
Chiroptical polythiophene (PTh), as one of the most important chiral conductive polymers, is an emerging and hot topic in chiral materials, which shows great application potentials in fields as diverse as chiral sensing and separation, asymmetry catalysis, chiroptoelectronics, and even chiro-spintronics. This review summarizes progress in chiral polythiophenes (PThs) in the past 10 years, including the synthesis, properties and applications. Main focus is placed on the manner in which chirality is implemented and the optical activity of the chiral PThs. We showcase examples in which the chirality of PThs is induced by side chain substituents with point, planar, and axial chirality or arises from external chiral media. Application of chiral PThs is also included. Finally, perspectives for further development are offered.
Collapse
Affiliation(s)
- Kun Wang
- School of Chemical Engineering and Technology, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin, China
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Liang J, Hao A, Xing P, Zhao Y. Inverse Evolution of Helicity from the Molecular to the Macroscopic Level Based on N-Terminal Aromatic Amino Acids. ACS NANO 2021; 15:5322-5332. [PMID: 33683099 DOI: 10.1021/acsnano.0c10876] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Precise control of the emergence of macroscopic helicity with specific handedness is promising in rationally designing chiral nanomaterials, but it is rather challenging. Herein, we present a protocol to address the transmission of helicity at a molecularly resolved level to a macroscopically resolved level, in which process supramolecular chirality undergoes an inversion. A series of N-terminal aromatic amino acids could self-assemble in water, enabling the occurrence of helicity at the molecularly resolved scale, evidenced by the single crystal structure and chiroptical responses. While it failed to transmit the helicity to the macroscopic scale for individual self-assembly, the coassembly with small organic binder through hydrogen bonding interactions allows for the emergence of helical structures at the nano/micrometer scale. Experimental and theoretical results demonstrate that the introduction of extra hydrogen bonds enables a moderate crystallinity of coassemblies with remaining one-dimensional orientation to enhance the helical growth. The transmission of helicity to higher levels by coassembly is accompanied by the helicity inversion, resulting from the exchange of hydrogen bonds. This study presents a rational protocol to precisely control the emergence of macroscopic helicity from molecularly resolved helicity with finely tailored handedness, providing a deeper understanding of the chirality origin in the assembled systems in order to facilitate the design and construction of functional chiral nanomaterials.
Collapse
Affiliation(s)
- Juncong Liang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
5
|
Liu J, Yuan F, Ma X, Auphedeous DY, Zhao C, Liu C, Shen C, Feng C. The Cooperative Effect of Both Molecular and Supramolecular Chirality on Cell Adhesion. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinying Liu
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Feng Yuan
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Xiaoyu Ma
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Dang‐i Y. Auphedeous
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Changli Zhao
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing TechnologiesZhengzhou University Zhengzhou China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing TechnologiesZhengzhou University Zhengzhou China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
6
|
Liu J, Yuan F, Ma X, Auphedeous DIY, Zhao C, Liu C, Shen C, Feng C. The Cooperative Effect of Both Molecular and Supramolecular Chirality on Cell Adhesion. Angew Chem Int Ed Engl 2018; 57:6475-6479. [PMID: 29644777 DOI: 10.1002/anie.201801462] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/04/2018] [Indexed: 11/11/2022]
Abstract
Although helical nanofibrous structures have great influence on cell adhesion, the role played by chiral molecules in these structures on cells behavior has usually been ignored. The chirality of helical nanofibers is inverted by the odd-even effect of methylene units from homochiral l-phenylalanine derivative during assembly. An increase in cell adhesion on left-handed nanofibers and weak influence of cell behaviors on right-handed nanofibers are observed, even though both were derived from l-phenylalanine derivatives. Weak and negative influences on cell behavior was also observed for left- and right-handed nanofibers derived from d-phenylalanine, respectively. The effect on cell adhesion of single chiral molecules and helical nanofibers may be mutually offset.
Collapse
Affiliation(s)
- Jinying Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng Yuan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyu Ma
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dang-I Y Auphedeous
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technologies, Zhengzhou University, Zhengzhou, China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing Technologies, Zhengzhou University, Zhengzhou, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Choi H, Cho KJ, Seo H, Ahn J, Liu J, Lee SS, Kim H, Feng C, Jung JH. Transfer and Dynamic Inversion of Coassembled Supramolecular Chirality through 2D-Sheet to Rolled-Up Tubular Structure. J Am Chem Soc 2017; 139:17711-17714. [DOI: 10.1021/jacs.7b09760] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Heekyoung Choi
- Department
of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kang Jin Cho
- Department
of Chemistry and Graduate School of EEWS, KAIST, Daejeon 34141, Republic of Korea
| | - Hyowon Seo
- Department
of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Junho Ahn
- Department
of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinying Liu
- School
of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shim Sung Lee
- Department
of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyungjun Kim
- Department
of Chemistry and Graduate School of EEWS, KAIST, Daejeon 34141, Republic of Korea
| | - Chuanliang Feng
- School
of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jong Hwa Jung
- Department
of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
8
|
He Y, Yang Y. Helical Mesoporous Tantalum Oxide Nanotubes: Formation, Optical Activity, and Applications. CHEM REC 2017; 17:1146-1155. [PMID: 28480626 DOI: 10.1002/tcr.201700012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/10/2022]
Abstract
Nanomaterials with helical morphologies have attracted much attention owing to their potential applications as nanosprings, chirality sensors and in chiral optics. Single-handed helical Ta2 O5 nanotubes prepared through a supramolecular templating approach are described. The handedness is controlled by that of the organic self-assemblies of chiral low-molecular-weight gelators (LMWGs). The chiral LMWGs self-assemble into single-handed twisted nanoribbons through H-bonding, hydrophobic association, and π-π stacking. The Ta2 O5 nanotubes are formed by the adsorption and polycondensation of Ta2 O5 oligomers on the surfaces and edges of the twisted organic nanoribbons followed by removal of the template. The optical activity of the nanotubes is proposed to originate from the chiral defects on the inner surfaces of the tubular structures. Single-handed twisted LiTaO3 nanotubes can also be prepared using Ta2 O5 nanotubes.
Collapse
Affiliation(s)
- Yangyang He
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
9
|
Parveen R, Sravanthi B, Dastidar P. Rationally Developed Organic Salts of Tolfenamic Acid and Its β-Alanine Derivatives for Dual Purposes as an Anti-Inflammatory Topical Gel and Anticancer Agent. Chem Asian J 2017; 12:792-803. [PMID: 28150904 DOI: 10.1002/asia.201700049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 01/31/2017] [Indexed: 12/15/2022]
Abstract
A new series of primary ammonium monocarboxylate (PAM) salts of a nonsteroidal anti-inflammatory drug (NSAID), namely, tolfenamic acid (TA), and its β-alanine derivatives were generated. Nearly 67 % of the salts in the series showed gelling abilities with various solvents, including water (biogenic solvent) and methyl salicylate (typically used for topical gel formulations). Gels were characterized by rheology, electron microscopy, and so forth. Structure-property correlations based on single-crystal and powder XRD data of several gelator and nongelator salts revealed intriguing insights. Studies (in vitro) on an aggressive human breast cancer cell line (MDA-MB-231) with the l-tyrosine methyl ester salt of TA (S7) revealed that the hydrogelator salt was more effective at killing cancer cells than the mother drug TA (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay); displayed better anti-inflammatory activity compared with that of TA (prostaglandin E2 assay); could be internalized within the cancer cells, as revealed by fluorescence microscopy; and inhibited effectively migration of the cancer cells. Thus, the easily accessible ambidextrous gelator salt S7 can be used for two purposes: as an anti-inflammatory topical gel and as an anticancer agent.
Collapse
Affiliation(s)
- Rumana Parveen
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, 2A&2B Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India), Fax: (+91) 33-2473-2805
| | - Bommagani Sravanthi
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, 2A&2B Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India), Fax: (+91) 33-2473-2805
| | - Parthasarathi Dastidar
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, 2A&2B Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India), Fax: (+91) 33-2473-2805
| |
Collapse
|
10
|
Raghavan V, Polavarapu PL. First Room Temperature Chiral Anionic Liquid Forming Micelles and Reverse Micelles. J Phys Chem B 2017; 121:1629-1639. [DOI: 10.1021/acs.jpcb.6b11964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vijay Raghavan
- Department of Chemistry, Vanderbilt University, Nashville, Tennesse 37235, United States
| | - Prasad L Polavarapu
- Department of Chemistry, Vanderbilt University, Nashville, Tennesse 37235, United States
| |
Collapse
|
11
|
Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem Rev 2016; 116:13752-13990. [PMID: 27754649 DOI: 10.1021/acs.chemrev.6b00354] [Citation(s) in RCA: 1230] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this review, we describe the recent advances in supramolecular helical assemblies formed from chiral and achiral small molecules, oligomers (foldamers), and helical and nonhelical polymers from the viewpoints of their formations with unique chiral phenomena, such as amplification of chirality during the dynamic helically assembled processes, properties, and specific functionalities, some of which have not been observed in or achieved by biological systems. In addition, a brief historical overview of the helical assemblies of small molecules and remarkable progress in the synthesis of single-stranded and multistranded helical foldamers and polymers, their properties, structures, and functions, mainly since 2009, will also be described.
Collapse
Affiliation(s)
- Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Kouhei Shimomura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
12
|
Chekini M, Guénée L, Marchionni V, Sharma M, Bürgi T. Twisted and tubular silica structures by anionic surfactant fibers encapsulation. J Colloid Interface Sci 2016; 477:166-75. [PMID: 27267039 DOI: 10.1016/j.jcis.2016.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Organic molecules imprinting can be used for introducing specific properties and functionalities such as chirality to mesoporous materials. Particularly organic self-assemblies can work as a scaffold for templating inorganic materials such as silica. During recent years chiral imprinting of anionic surfactant for fabrication of twisted rod-like silica structures assisted by co-structuring directing agent were thoroughly investigated. The organic self-assemblies of anionic surfactants can also be used for introducing other shapes in rod-like silica structures. Here we report the formation of amphiphilic N-miristoyl-l-alanine self-assemblies in aqueous solution upon stirring and at presence of l-arginine. These anionic surfactant self-assemblies form fibers that grow by increasing the stirring duration. The fibers were studied using transmission electron microscopy, infra-red spectroscopy and vibrational circular dichroism. Addition of silica precursor 1,2-bis(triethoxysilyl)ethylene and co-structuring directing agent N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride at different stages of fibers' growth leads to formation of different silica structures. By controlling stirring duration, we obtained twisted tubular silica structures as a result of fibers encapsulation. We decorated these structures with gold nanoparticles by different methods and measured their optical activity.
Collapse
Affiliation(s)
- Mahshid Chekini
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Laure Guénée
- Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | | | - Manish Sharma
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
13
|
Parveen R, Dastidar P. Supramolecular Gels by Design: Towards the Development of Topical Gels for Self-Delivery Application. Chemistry 2016; 22:9257-66. [PMID: 27226393 DOI: 10.1002/chem.201600105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 01/18/2023]
Abstract
Following a supramolecular synthon approach, simple salt formation has been employed to gain access to a series of supramolecular gelators derived from the well-known non-steroidal anti-inflammatory drug (NSAID) ibuprofen. A well-studied gel-inducing supramolecular synthon, namely primary ammonium monocarboxylate (PAM), has been exploited to generate a series of PAM salts by reacting ibuprofen with various primary amines. Remarkably, all of the salts (S1-S7) thus synthesized proved to be good to moderate gelators of various polar and nonpolar solvents. Single-crystal and powder X-ray diffraction studies established the existence of the PAM synthons in the gel network, confirming the efficacy of the supramolecular synthon approach employed. Most importantly, the majority of the salts (S2, S3, S6, and S7) were capable of gelling methyl salicylate (MS), an important ingredient found in many commercial topical gels. In vitro experiments (MTT and PGE2 assays) revealed that all of the salts (except S3 and S7) were biocompatible (up to 0.5 mm concentration), and the most suited one, S6, displayed anti-inflammatory ability as good as that of the parent drug ibuprofen. A topical gel of S6 with methyl salicylate and menthol was found to be suitable for delivering the gelator drug in a self-delivery fashion in treating skin inflammation in mice. Histological studies, including immunohistology, were performed to further probe the role of the gelator drug S6 in treating inflammation. Cell imaging studies supported cellular uptake of the gelator drug in such biomedical application.
Collapse
Affiliation(s)
- Rumana Parveen
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Parthasarathi Dastidar
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
14
|
Ryu N, Okazaki Y, Hirai K, Takafuji M, Nagaoka S, Pouget E, Ihara H, Oda R. Memorized chiral arrangement of gemini surfactant assemblies in nanometric hybrid organic–silica helices. Chem Commun (Camb) 2016; 52:5800-3. [DOI: 10.1039/c6cc01219a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The chiral arrangement of non-chiral gemini surfactant molecules induced by enantiomeric tartrate counterions was maintained by hybridization with silica matrices even after the removal of the counterions as chiral sources.
Collapse
Affiliation(s)
- Naoya Ryu
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Chuo-ku Kumamoto 860-8555
- Japan
- Materials Development Department
| | - Yutaka Okazaki
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Chuo-ku Kumamoto 860-8555
- Japan
| | - Kana Hirai
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Chuo-ku Kumamoto 860-8555
- Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Chuo-ku Kumamoto 860-8555
- Japan
- Kumamoto Institute for Photo-Electro Organics (PHOENICS)
| | - Shoji Nagaoka
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Chuo-ku Kumamoto 860-8555
- Japan
- Materials Development Department
| | - Emilie Pouget
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN)
- CNRS
- Université de Bordeaux
- Institut Polytechnique Bordeaux
- 33607 Pessac
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Chuo-ku Kumamoto 860-8555
- Japan
- Kumamoto Institute for Photo-Electro Organics (PHOENICS)
| | - Reiko Oda
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN)
- CNRS
- Université de Bordeaux
- Institut Polytechnique Bordeaux
- 33607 Pessac
| |
Collapse
|
15
|
Abdul Rahim NA, Fujiki M. Aggregation-induced scaffolding: photoscissable helical polysilane generates circularly polarized luminescent polyfluorene. Polym Chem 2016. [DOI: 10.1039/c6py00595k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An enantiopair of rigid rod-like helical polysilanes as a photoscissible scaffold allowed the production of CPL- and CD-active dioctylpolyfluorene aggregates associated with complete removal by a polysilane-selective photoscissoring reaction at 313 nm.
Collapse
Affiliation(s)
- Nor Azura Abdul Rahim
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Ikoma
- Japan
- School of Materials Engineering
| | - Michiya Fujiki
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Ikoma
- Japan
| |
Collapse
|
16
|
Parveen R, Dastidar P. Easy Access to Supramolecular Gels of the Nonsteroidal Anti-inflammatory Drug Diflunisal: Synthesis, Characterization, and Plausible Biomedical Applications. Chem Asian J 2015; 10:2427-36. [DOI: 10.1002/asia.201500732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Rumana Parveen
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; 2A & 2B Raja S.C. Mullick Road Kolkata- 700032 West Bengal India
| | - Parthasarathi Dastidar
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; 2A & 2B Raja S.C. Mullick Road Kolkata- 700032 West Bengal India
| |
Collapse
|
17
|
Sato H, Yajima T, Yamagishi A. Chiroptical Studies on Supramolecular Chirality of Molecular Aggregates. Chirality 2015; 27:659-66. [DOI: 10.1002/chir.22482] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Hisako Sato
- Graduated of Science and Engineering; Ehime University; Matsuyama Japan
| | - Tomoko Yajima
- Department of Chemistry; Ochanomizu University; Tokyo Japan
| | | |
Collapse
|
18
|
Brioche J, Pike S, Tshepelevitsh S, Leito I, Morris GA, Webb SJ, Clayden J. Conformational Switching of a Foldamer in a Multicomponent System by pH-Filtered Selection between Competing Noncovalent Interactions. J Am Chem Soc 2015; 137:6680-91. [PMID: 25915163 PMCID: PMC4520694 DOI: 10.1021/jacs.5b03284] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 12/26/2022]
Abstract
Biomolecular systems are able to respond to their chemical environment through reversible, selective, noncovalent intermolecular interactions. Typically, these interactions induce conformational changes that initiate a signaling cascade, allowing the regulation of biochemical pathways. In this work, we describe an artificial molecular system that mimics this ability to translate selective noncovalent interactions into reversible conformational changes. An achiral but helical foldamer carrying a basic binding site interacts selectively with the most acidic member of a suite of chiral ligands. As a consequence of this noncovalent interaction, a global absolute screw sense preference, detectable by (13)C NMR, is induced in the foldamer. Addition of base, or acid, to the mixture of ligands competitively modulates their interaction with the binding site, and reversibly switches the foldamer chain between its left and right-handed conformations. As a result, the foldamer-ligand mixture behaves as a biomimetic chemical system with emergent properties, functioning as a "proton-counting" molecular device capable of providing a tunable, pH-dependent conformational response to its environment.
Collapse
Affiliation(s)
- Julien Brioche
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Sarah
J. Pike
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Sofja Tshepelevitsh
- Institute
of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Ivo Leito
- Institute
of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Gareth A. Morris
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Simon J. Webb
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Jonathan Clayden
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
19
|
Wu N, Suo Q, Wang H, Wang Z, Chai Z, Wang X. Concentration-dependent platinum nanoassemblies with morphology-controlled electroactivity and high durability for direct methanol fuel cells. CrystEngComm 2015. [DOI: 10.1039/c5ce01045d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|