1
|
Mossayebi Z, Shabani S, Easton CD, Gurr PA, Simons R, Qiao GG. Amphiphilic Nanoscale Antifog Coatings: Improved Chemical Robustness by Continuous Assembly of Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402114. [PMID: 38989698 DOI: 10.1002/smll.202402114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Designing effective antifog coatings poses challenges in resisting physical and chemical damage, with persistent susceptibility to decomposition in aggressive environments. As their robustness is dictated by physicochemical structural features, precise control through unique fabrication strategies is crucial. To address this challenge, a novel method for crafting nanoscale antifog films with simultaneous directional growth and cross-linking is presented, utilizing solid-state continuous assembly of polymers via ring-opening metathesis polymerization (ssCAPROMP). A new amphiphilic copolymer (specified as macrocross-linker) is designed by incorporating polydimethylsiloxane, poly(2-(methacryloyloxy)ethyl) trimethylammonium chloride (PMETAC), and polymerizable norbornene (NB) pendant groups, allowing ssCAPROMP to produce antifog films under ambient conditions. This novel approach results in distinctive surface and molecular characteristics. Adjusting water-absorption and nanoscale assembly parameters produced ultra-thin (≤100 nm) antifog films with enhanced durability, particularly against strong acidic and alkaline environments, surpassing commercial antifog glasses. Thickness loss analysis against external disturbances further validated the stable surface-tethered chemistries introduced through ssCAPROMP, even with the incorporation of minimal content of cross-linkable NB moieties (5 mol%). Additionally, a potential zwitter-wettability mechanism elucidates antifog observations. This work establishes a unique avenue for exploring nanoengineered antifog coatings through facile and robust surface chemistries.
Collapse
Affiliation(s)
- Zahra Mossayebi
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
- CSIRO Manufacturing, Melbourne, Victoria, 3169, Australia
| | - Sadegh Shabani
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | - Paul A Gurr
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Ranya Simons
- CSIRO Manufacturing, Melbourne, Victoria, 3169, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
2
|
Chan NJ, Lentz S, Gurr PA, Tan S, Scheibel T, Qiao GG. Crosslinked Polypeptide Films via RAFT-Mediated Continuous Assembly of Polymers. Angew Chem Int Ed Engl 2022; 61:e202112842. [PMID: 34861079 PMCID: PMC9305155 DOI: 10.1002/anie.202112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/08/2022]
Abstract
Polypeptide coatings are a cornerstone in the field of surface modification due to their widespread biological potential. As their properties are dictated by their structural features, subsequent control thereof using unique fabrication strategies is important. Herein, we report a facile method of precisely creating densely crosslinked polypeptide films with unusually high random coil content through continuous assembly polymerization via reversible addition-fragmentation chain transfer (CAP-RAFT). CAP-RAFT was fundamentally investigated using methacrylated poly-l-lysine (PLLMA) and methacrylated poly-l-glutamic acid (PLGMA). Careful technique refinement resulted in films up to 36.1±1.1 nm thick which could be increased to 94.9±8.2 nm after using this strategy multiple times. PLLMA and PLGMA films were found to have 30-50 % random coil conformations. Degradation by enzymes present during wound healing reveals potential for applications in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Nicholas J. Chan
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Sarah Lentz
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Paul A. Gurr
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
| | - Shereen Tan
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
| | - Thomas Scheibel
- Lehrstuhl BiomaterialienUniversität BayreuthProf.-Rüdiger-Bormann-Str. 195447BayreuthGermany
| | - Greg G. Qiao
- Polymer Science GroupDepartment of Chemical EngineeringUniversity of MelbourneParkvilleMelbourneVictoria3010Australia
| |
Collapse
|
3
|
Chan NJ, Lentz S, Gurr PA, Tan S, Scheibel T, Qiao GG. Vernetzte Polypeptide durch RAFT‐vermittelte Polymerisation zum kontinuierlichen Aufbau von Polymerfilmen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas J. Chan
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann-Str. 1 95447 Bayreuth Deutschland
| | - Sarah Lentz
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann-Str. 1 95447 Bayreuth Deutschland
| | - Paul A. Gurr
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
| | - Shereen Tan
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.-Rüdiger-Bormann-Str. 1 95447 Bayreuth Deutschland
| | - Greg G. Qiao
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville, Melbourne Victoria 3010 Australien
| |
Collapse
|
4
|
Polyrotaxane-based thin film composite membranes for enhanced nanofiltration performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Liu S, Zhong C, Wang W, Jia Y, Wang L, Ren L. α-Cyclodextrins Polyrotaxane Loading Silver Sulfadiazine. Polymers (Basel) 2018; 10:E190. [PMID: 30966226 PMCID: PMC6415174 DOI: 10.3390/polym10020190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 11/16/2022] Open
Abstract
As a drug carrier, polyrotaxane (PR) has been used for targeted delivery and sustained release of drugs, whereas silver sulfadiazine (SD-Ag) is an emerging antibiotic agent. PR was synthesized by the use of α-cyclodextrin (CD) and poly(ethylene glycol) (PEG), and a specific antibacterial material (PR-(SD-Ag)) was then prepared by loading SD-Ag onto PR with different mass ratios. The loading capacity and the encapsulation efficiency were 90% at a mass ratio of 1:1 of PR and SD-Ag. SD-Ag was released stably and slowly within 6 d in vitro, and its cumulative release reached more than 85%. The mechanism of PR loading SD-Ag might be that SD-Ag attached to the edge of α-CD through hydrogen bonding. PR-(SD-Ag) showed a higher light stability than SD-Ag and held excellent antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus).
Collapse
Affiliation(s)
- Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Chunting Zhong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Weiwei Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Yongguang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| |
Collapse
|
6
|
Tardy BL, Tan S, Dam HH, Suma T, Guo J, Qiao GG, Caruso F. Formation of Polyrotaxane Particles via Template Assembly. Biomacromolecules 2017; 18:2118-2127. [DOI: 10.1021/acs.biomac.7b00450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Blaise L. Tardy
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, and §Polymer Science
Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shereen Tan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, and §Polymer Science
Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Henk H. Dam
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, and §Polymer Science
Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tomoya Suma
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, and §Polymer Science
Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Junling Guo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, and §Polymer Science
Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Greg G. Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, and §Polymer Science
Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, and §Polymer Science
Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Tardy BL, Tan S, Dam HH, Ejima H, Blencowe A, Qiao GG, Caruso F. Nanoparticles assembled via pH-responsive reversible segregation of cyclodextrins in polyrotaxanes. NANOSCALE 2016; 8:15589-15596. [PMID: 27509868 DOI: 10.1039/c6nr04841b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Supramolecular polymers with monomers bound together by secondary interactions, such as polyrotaxanes (PRXs), consisting of alpha cyclodextrin (αCD) threaded onto poly(ethylene glycol) (PEG), have attracted interest as a result of their ability to overcome physical limitations present in conventional, covalently structured polymers. Herein, we describe the formation of pH-responsive supramolecular assemblies from carboxyethylester bearing αCD and PEG PRXs. These PRXs were formed using PEG of Mw 20 kDa and a threading degree of 28%. Upon charge neutralisation the threaded αCDs co-localise, resulting in aggregation of the PRXs and the formation of a suspension by self-assembly. This process is shown to be reversible and possible via the mobility of CDs along the PEG guest chain. As a result of the inherent properties of PRXs, such as enhanced multivalent interactions and degradation, these responsive supramolecular polymers are expected to be of interest in fields where PRX-based materials have already found application, including paints, self-healing materials, surface coatings, and polymer therapeutics.
Collapse
Affiliation(s)
- Blaise L Tardy
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Shereen Tan
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Henk H Dam
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Hirotaka Ejima
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Anton Blencowe
- School of Pharmacy and Medical Sciences, Division of Health Sciences, The University of South Australia, Adelaide, SA 5001, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
9
|
Tan S, Cui J, Fu Q, Nam E, Ladewig K, Ren JM, Wong EHH, Caruso F, Blencowe A, Qiao GG. Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6219-28. [PMID: 26862769 DOI: 10.1021/acsami.5b11186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents.
Collapse
Affiliation(s)
- Shereen Tan
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Qiang Fu
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Eunhyung Nam
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Katharina Ladewig
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jing M Ren
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Edgar H H Wong
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Anton Blencowe
- School of Pharmacy and Medical Sciences, Division of Health Sciences, The University of South Australia , Adelaide, South Australia 5001, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Nam E, Wong EHH, Tan S, Guntari SN, Fu Q, Kim J, Delalat B, Blencowe A, Qiao GG. Spatial-controlled nanoengineered films prepared via rapid catalyst induced cross-linking. Polym Chem 2016. [DOI: 10.1039/c6py00530f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|