1
|
Nain S, Mukhopadhyaya A, Ali ME. Unravelling the Highest Magnetic Anisotropy Among all the nd-Shells in [WCp2]0 Metallocene. Inorg Chem 2024; 63:7401-7411. [PMID: 38578709 DOI: 10.1021/acs.inorgchem.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Single-molecule magnets (SMMs) with a large magnetization reversal barrier are predominated by the lanthanide systems due to their strong spin-orbit coupling (SOC). However, the transition metals have also emerged as potential contenders and the largest magnetic anisotropy has been identified for a cobalt system among any d-series-based SMMs (Bunting et al. Science 2018, 362, eaat7319). In this work, we have explored the magnetic anisotropy in highly axial ligand field systems of metallocene, having different d-subshell (3d4, 4d4, and 5d4). The wave function-based multireference methods including static and dynamic electron correlations have been employed to investigate the zero-field splitting (ZFS) parameters. Here, we report exceptionally large magnetic anisotropy for a 5d complex of [WCp2]0 with the highest energy barrier that is nearly twice as high as the previous record value for the Co complex. We have also observed that the axial ZFS parameter (D) is increasing down the group in the order of 3d < 4d < 5d, pertaining to a large SOC.
Collapse
Affiliation(s)
- Sakshi Nain
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Aritra Mukhopadhyaya
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
2
|
Dey A, Ali J, Moorthy S, Gonzalez JF, Pointillart F, Singh SK, Chandrasekhar V. Field induced single ion magnet behavior in Co II complexes in a distorted square pyramidal geometry. Dalton Trans 2023; 52:14807-14821. [PMID: 37791680 DOI: 10.1039/d3dt01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report three CoII-based complexes with the general formula [CoII(L)(X)2] by changing the halide/pseudo-halide ions [X = NCSe (1SeCN); Cl (2Cl) and Br (3Br)]. The obtained τ5 and CShM values confirm a distorted square pyramidal geometry around the CoII ion in all these complexes. In these three complexes, the central CoII ion is situated above the basal plane of the square pyramidal geometry. The extent of distortion from the ideal SPY-5 geometry differs upon changing the coordinating halide/pseudo-halide ion in these complexes. This essentially results in the alteration of the anisotropic parameter D and hence impacts the magnetic properties in these complexes. This phenomenon has been corroborated with the aid of theoretical investigations. All these complexes display field-induced SIM behaviour with magnetic relaxation occurring through a combination of processes depending on the applied dc magnetic field values and dilution.
Collapse
Affiliation(s)
- Atanu Dey
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru 561203, India.
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Junaid Ali
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
3
|
Yin X, Deng L, Ruan L, Wu Y, Luo F, Qin G, Han X, Zhang X. Recent Progress for Single-Molecule Magnets Based on Rare Earth Elements. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093568. [PMID: 37176451 PMCID: PMC10180339 DOI: 10.3390/ma16093568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Single-molecule magnets (SMMs) have attracted much attention due to their potential applications in molecular spintronic devices. Rare earth SMMs are considered to be the most promising for application owing to their large magnetic moment and strong magnetic anisotropy. In this review, the recent progress in rare earth SMMs represented by mononuclear and dinuclear complexes is highlighted, especially for the modulation of magnetic anisotropy, effective energy barrier (Ueff) and blocking temperature (TB). The terbium- and dysprosium-based SMMs have a Ueff of 1541 cm-1 and an increased TB of 80 K. They break the boiling point temperature of liquid nitrogen. The development of the preparation technology of rare earth element SMMs is also summarized in an overview. This review has important implications and insights for the design and research of Ln-SMMs.
Collapse
Affiliation(s)
- Xiang Yin
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Li Deng
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Liuxia Ruan
- Research Center for Humanoid Sensing, Zhejiang Laboratory, Hangzhou 311100, China
| | - Yanzhao Wu
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Feifei Luo
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaoli Han
- Taian Weiye Electromechanical Technology Co., Ltd., Taian 271000, China
| | - Xianmin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
4
|
Swain A, Sharma T, Rajaraman G. Strategies to quench quantum tunneling of magnetization in lanthanide single molecule magnets. Chem Commun (Camb) 2023; 59:3206-3228. [PMID: 36789911 DOI: 10.1039/d2cc06041h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Enhancing blocking temperature (TB) is one of the holy grails in Single Molecule Magnets(SMMs), as any future potential application in this class of molecules is directly correlated to this parameter. Among many factors contributing to a reduction of TB value, Quantum Tunnelling of Magnetisation (QTM), a phenomenon that is a curse or a blessing based on the application sought after, tops the list. Theoretical tools based on density functional and ab initio CASSCF/RASSI-SO methods have played a prominent role in estimating various spin Hamiltonian parameters and establishing the mechanism of magnetization relaxation in this class of molecules. Particularly, various strategies to quench QTM effects go hand-in-hand with experiments, and different methods proposed to quell QTM effects are scattered in the literature. In this perspective, we have explored various approaches that are proposed in the literature to quench QTM effects, and these include the role of (i) local symmetry of lanthanides, (ii) super-exchange interaction in {3d-4f} complexes, (iii) direct-exchange interaction in {radical-4f} and metal-metal bonded complexes to suppress the QTM, (iv) utilizing external stimuli such as an electric field or pressure to modulate the QTM and (v) avoiding QTM effects by stabilising toroidal states in 4f and {3d-4f} clusters. We believe the strategies summarized here will help to design new-generation SMMs.
Collapse
Affiliation(s)
- Abinash Swain
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| | - Tanu Sharma
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| | | |
Collapse
|
5
|
Lunghi A, Sanvito S. Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nat Rev Chem 2022; 6:761-781. [PMID: 37118096 DOI: 10.1038/s41570-022-00424-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
Having served as a playground for fundamental studies on the physics of d and f electrons for almost a century, magnetic molecules are now becoming increasingly important for technological applications, such as magnetic resonance, data storage, spintronics and quantum information. All of these applications require the preservation and control of spins in time, an ability hampered by the interaction with the environment, namely with other spins, conduction electrons, molecular vibrations and electromagnetic fields. Thus, the design of a novel magnetic molecule with tailored properties is a formidable task, which does not only concern its electronic structures but also calls for a deep understanding of the interaction among all the degrees of freedom at play. This Review describes how state-of-the-art ab initio computational methods, combined with data-driven approaches to materials modelling, can be integrated into a fully multiscale strategy capable of defining design rules for magnetic molecules.
Collapse
|
6
|
Dais TN, Takano R, Ishida T, Plieger PG. Self-assembly of non-macrocyclic triangular Ni 3Ln clusters. Dalton Trans 2022; 51:1446-1453. [PMID: 34985086 DOI: 10.1039/d1dt03742k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and structural characterisation of four new heterometallic tetranuclear complexes is reported. Three L3Ni3Ln type complexes, where Ln = La (C1), Eu (C2), and Gd (C3), have been fully characterised including DC and AC magnetic measurements. A fourth complex featuring a diamagnetic BaII ion at its centre is also reported with structural characterisation. Structural elucidation showed that all four complexes successfully self-assembled from a stoichiometric mixture of the acyclic ligand, 1,4-diformylnaphthalene-2,3-diol, with nickel(II) nitrate and the appropriate heavy metal salt to produce the same near planar Ni3MO12 core. Ferromagnetic interactions were found to dominate the ground state of C3, exhibiting a maximal spin ground state of 13/2. The exchange coupling is quantitatively discussed along with the nickel(II) zero-field splitting effect. AC magnetic susceptibility experiments were carried out, but no frequency dependent signals were observed and thus no observable slow relaxation of magnetisation.
Collapse
Affiliation(s)
- Tyson N Dais
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Rina Takano
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Takayuki Ishida
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Paul G Plieger
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| |
Collapse
|
7
|
Three hetero-tri-spin Ln2CuNIT complexes based on a 1-methyl-3-pyrazole nitronyl nitroxide radical: Syntheses, structures and magnetic properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Swain A, Sen A, Rajaraman G. Are lanthanide-transition metal direct bonds a route to achieving new generation {3d-4f} SMMs? Dalton Trans 2021; 50:16099-16109. [PMID: 34647556 DOI: 10.1039/d1dt02256c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide based single-molecule magnets are gaining wide attention due to their potential applications in emerging technologies. One of the main challenges in this area is quenching quantum tunnelling of magnetisation (QTM), which often undercuts the magnetisation reversal barrier. Among the several strategies employed, enhancing exchange coupling has been studied in detail, with large exchanges resulting in stronger quenching of QTM effects. Lanthanides, however, suffer from weak exchanges offered by the deeply buried 4f orbitals and the numerous attempts to enhance the exchange coupling in the {3d-4f} pairs have not exceeded values larger than 30 cm-1. In this work, using a combination of DFT and the ab initio CASSCF/RASSI-SO method, we have explored lanthanide-transition metal direct bonds as a tool to quench QTM effects. In this direction, we have modelled [PyCp2LnMCp(CO)2] (Ln = Gd(III), Dy(III), and Er(III) and M = V(0), Mn(0), Co(0) and Fe(I) and here PyCp2 = [2,6-(CH2C5H3)2C5H3N]2- using [PyCp2DyFeCp(CO)2] as an example as reported by Nippe et al. (C. P. Burns, X. Yang, J. D. Wofford, N. S. Bhuvanesh, M. B. Hall and M. Nippe, Angew. Chem., Int. Ed. 2018, 57, 8144). Bonding analysis reveals a dative Ln-TM bond with a donation of π(V/Mndxy-π*CO) to 5dz2 (Gd) in the case of Gd-V and Gd-Mn and 4s(Co) to 5dxy/5dyz (Gd) for Gd-Co with the transition metal ion being found in the low-spin S = ½ configurations in all the cases. B3LYP/TZV (Gd;CSDZ) calculations on [PyCp2GdMCp(CO)2] yield JGd-V = -46.1 cm-1, JGd-Mn = -57.1 cm-1, JGd-Co = +55.3 cm-1, JGd-Fe+ = +13.9 cm-1, JGd-Vhs = -162.1 cm-1 and JGd-Mnhs = -343.9 cm-1 and unveiling record-high J values for {3d-4f} complexes. The mechanism of magnetic coupling is developed, which discloses the dominating presence of strong 3d-4f orbital overlaps in most of the cases studied, leading to antiferromagnetic exchange. When these overlaps are weaker and 3d to Gd(5dz2), charge transfer dominates, yielding a ferromagnetic coupling for the Gd-Co/Gd-Fe+ complexes. Calculations performed on the anisotropic Dy(III) and Er(III) complexes reveal that the ground state gzz axis lies along the Cp-Ln-Cp axis and the Ln-TM bonds, respectively. Thus the Ln-TM bond hinders the single-ion anisotropy of Dy(III) by offering equatorial ligation and lowering the mJ = ±½ state energy, and at the same time, helping in enhancing the axiality of Er(III). When strong {3d-4f} exchange couplings are introduced, record-high barrier heights as high as 229 cm-1 were accomplished. Furthermore, the exchange coupling annihilates the QTM effects and suggests the lanthanide-transition metal direct bond as a viable alternative to enhance exchange coupling to bring {3d-4f} complexes back in the race for high-blocking SMMs.
Collapse
Affiliation(s)
- Abinash Swain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| |
Collapse
|
9
|
Swain A, Martin R, Vignesh KR, Rajaraman G, Murray KS, Langley SK. Enhancing the barrier height for magnetization reversal in 4d/4f RuIII2LnIII2 "butterfly" single molecule magnets (Ln = Gd, Dy) via targeted structural alterations. Dalton Trans 2021; 50:12265-12274. [PMID: 34519749 DOI: 10.1039/d1dt01770e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of 4d-4f {RuIII2DyIII2} and {RuIII2GdIII2} 'butterfly' (rhombohedral) complexes have been synthesized and characterized and their magnetic properties investigated. Earlier, we have reported the first 4d/4f SMM - [RuIII2DyIII2(OMe)2(O2CPh)4(mdea)2(NO3)2] (1Dy) with a Ueff value of 10.7 cm-1. As the structural distortion around the DyIII centres and the RuIII⋯DyIII exchange interactions are key to enhancing the anisotropy, in this work we have synthesised three more {Ru2Dy2} butterfly complexes where structural alteration around the DyIII centres and alterations to the bridging groups are performed with an aim to improve the magnetic properties. The new complexes reported here are [Ru2Dy2(OMe)2(O2C(4-Me-Ph)4(mdea)2(MeOH)4], 2Dy, [Ru2Dy2(OMe)2(O2C(2-Cl,4,5-F-Ph)4(mdea)2(NO3)2], 3Dy, and an acac derivative [Ru2Dy2(OMe)2(acac)4(NO3)2(edea)2], 4Dy, where acac- = acetylacetonate, edea2- = N-ethyldiethanolamine dianion. Complex 2Dy describes alteration in the DyIII centers, while complexes 3Dy and 4Dy are aimed to alter the RuIII⋯DyIII exchange pathways. To ascertain the 4d-4f exchange, the Gd-analogues of 1Dy and 4Dy were synthesised [Ru2Gd2(OMe)2(O2CPh)4(mdea)2(NO3)2], 1Gd, [Ru2Gd2(OMe)2(acac)4(NO3)2(edea)2], 4Gd. Both ac and dc susceptibility studies were performed on all these complexes, and out-of-phase signals were observed for 3Dy in zero-field while 2Dy and 4Dy show out-of-phase signals in the presence of an applied field. Complex 3Dy reveals a barrier height Ueff of 45 K. To understand the difference in the magnetic dynamic behavior compared to our earlier reported {RuIII2DyIII2} analogue, detailed theoretical calculations based on ab initio CASSCF/RASSI-SO calculations have been performed. Calculations reveal that the JRu⋯Dy value varies from -1.8 cm-1 (4Dy) to -2.4 cm-1 (3Dy). These values are also affirmed by DFT calculations performed on the corresponding GdIII analogues. The origin of the largest barrier and observation of slow magnetic relaxation in 3Dy is routed back to the stronger single-ion anisotropy and stronger JRu⋯Dy exchange which quenches the QTM effects more efficiently. This study thus paves the way forward to tune local structure around the LnIII center and the exchange pathway to enhance the SMM characteristics in other {3d-4f}/{4d-4f} SMMs.
Collapse
Affiliation(s)
- Abinash Swain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Robert Martin
- School of Science and the Environment, Division of Chemistry, Manchester Metropolitan University, Manchester, M15 6BH, UK.
| | - Kuduva R Vignesh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Keith S Murray
- School of Chemistry, 17 Rainforest Walk, Monash University, Clayton, Victoria 3800, Australia.
| | - Stuart K Langley
- School of Science and the Environment, Division of Chemistry, Manchester Metropolitan University, Manchester, M15 6BH, UK.
| |
Collapse
|
10
|
Darago LE, Boshart MD, Nguyen BD, Perlt E, Ziller JW, Lukens WW, Furche F, Evans WJ, Long JR. Strong Ferromagnetic Exchange Coupling and Single-Molecule Magnetism in MoS 43--Bridged Dilanthanide Complexes. J Am Chem Soc 2021; 143:8465-8475. [PMID: 34029482 DOI: 10.1021/jacs.1c03098] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the synthesis and characterization of the trinuclear 4d-4f compounds [Co(C5Me5)2][(C5Me5)2Ln(μ-S)2Mo(μ-S)2Ln(C5Me5)2], 1-Ln (Ln = Y, Gd, Tb, Dy), containing the highly polarizable MoS43- bridging unit. UV-Vis-NIR diffuse reflectance spectra and DFT calculations of 1-Ln reveal a low-energy metal-to-metal charge transfer transition assigned to charge transfer from the singly occupied 4dz2 orbital of MoV to the empty 5d orbitals of the lanthanides (4d in the case of 1-Y), mediated by sulfur-based 3p orbitals. Electron paramagnetic resonance spectra collected for 1-Y in a tetrahydrofuran solution show large 89Y hyperfine coupling constants of A⊥ = 23 MHz and A|| = 26 MHz, indicating the presence of significant yttrium-localized unpaired electron density. Magnetic susceptibility data support similar electron delocalization and ferromagnetic Ln-Mo exchange for 1-Gd, 1-Tb, and 1-Dy. This ferromagnetic exchange gives rise to an S = 15/2 ground state for 1-Gd and one of the largest magnetic exchange constants involving GdIII observed to date, with JGd-Mo = +16.1(2) cm-1. Additional characterization of 1-Tb and 1-Dy by ac magnetic susceptibility measurements reveals that both compounds exhibit slow magnetic relaxation. Although a Raman magnetic relaxation process is dominant for both 1-Tb and 1-Dy, an extracted thermal relaxation barrier of Ueff = 68 cm-1 for 1-Dy is the largest yet reported for a complex containing a paramagnetic 4d metal center. Together, these results provide a potentially generalizable route to enhanced nd-4f magnetic exchange, revealing opportunities for the design of new nd-4f single-molecule magnets and bulk magnetic materials.
Collapse
Affiliation(s)
- Lucy E Darago
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Monica D Boshart
- Department of Chemistry, University of California, Irvine, California 94697, United States
| | - Brian D Nguyen
- Department of Chemistry, University of California, Irvine, California 94697, United States
| | - Eva Perlt
- Department of Chemistry, University of California, Irvine, California 94697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 94697, United States
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 94697, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 94697, United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
|
12
|
A new mononuclear terbium and copper cocrystalline nitronyl nitroxide complex: synthesis, structure and magnetic properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Acharya J, Ahmed N, Flores Gonzalez J, Kumar P, Cador O, Singh SK, Pointillart F, Chandrasekhar V. Slow magnetic relaxation in a homo dinuclear Dy(iii) complex in a pentagonal bipyramidal geometry. Dalton Trans 2020; 49:13110-13122. [PMID: 32930277 DOI: 10.1039/d0dt02881a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We hereby report a dinuclear Dy(iii) complex, [Dy(LH3)Cl2]2·2Et2O (1) (LH4 = 2,3-dihydroxybenzylidene)-2-(hydroxyimino)propanehydrazide where both the metal centres are in a pentagonal bipyramidal (PBP) geometry with the axial positions being occupied by negatively charged Cl- ions. The complex as well as it's 10% diluted analogue (110) do not show zero-field SMM behaviour. However, in the presence of small optimum dc fields the slow relaxation of magnetization was displayed. The effective energy barrier for 110 at 800 Oe of applied field was extracted as 83(17) K with τ0 = 2(4) × 10-12 s. Through a combined experimental and ab initio electronic structure calculations studies we have thoroughly analysed the role of the ligand field around the Dy(iii), present in pentagonal bipyramidal geometry, in contributing to the slow relaxation of magnetization.
Collapse
Affiliation(s)
- Joydev Acharya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dey A, Acharya J, Chandrasekhar V. Heterometallic 3d–4f Complexes as Single‐Molecule Magnets. Chem Asian J 2019; 14:4433-4453. [DOI: 10.1002/asia.201900897] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Atanu Dey
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad- 500107 India
| | - Joydev Acharya
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur- 208016 India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad- 500107 India
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur- 208016 India
| |
Collapse
|
15
|
Shi JY, Chen PY, Wu MZ, Tian L, Liu ZY. Synthesis of a series of hetero-multi-spin Ln 2Cu 3 complexes based on a methyl-pyrazole nitronyl nitroxide radical with slow magnetic relaxation behaviors. Dalton Trans 2019; 48:9187-9193. [PMID: 31150027 DOI: 10.1039/c9dt00981g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multinuclear hetero-tri-spin complexes based on a methyl-pyrazole nitronyl nitroxide radical, namely, [Ln2Cu3(hfac)12(4-NIT-MePyz)4] (Ln = Gd(1), Tb(2), Dy(3); hfac = hexafluoroacetylacetone; 4-NIT-MePyz = 2-{4-(1-methyl)-pyrazolyl}-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been successfully obtained through a one-pot reaction of the radical ligand (4-NIT-MePyz) with Cu(hfac)2 and Ln(hfac)3. These 2p-3d-4f complexes exhibit five-nuclear structures with the sequence [Cu-Rad-Ln-Rad-Cu-Rad-Ln-Rad-Cu], in which each 4-NIT-MePyz radical acting as a bidentate bridging ligand is coordinated to one Ln(hfac)3 unit through one oxygen atom of the NO groups and to one Cu(hfac)2 unit with one nitrogen atom from the pyrazole ring. For complex 1, based on the spin Hamiltonian calculations and MAGPACK program, it is concluded that there exist ferromagnetic couplings between GdIII and NIT radicals, as well as between CuII and free radicals with J1 = 6.8(1) and J3 = 1.3(2) cm-1, respectively, and antiferromagnetic interactions between radical and radical with J2 = -2.8(5) cm-1. Complex 2 shows frequency-dependent out-of-phase signals under a zero or 2000 Oe dc field indicating single-molecule magnetic behavior.
Collapse
Affiliation(s)
- Jian Yun Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | | | | | | | | |
Collapse
|
16
|
Chakraborty A, Goura J, Bag P, Chandrasekhar V. Ni
II
‐Ln
III
Heterometallic Complexes as Single‐Molecule Magnets. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Amit Chakraborty
- Tata Institute of Fundamental Research Hyderabad Gopanpally 500107 Hyderabad India
| | - Joydeb Goura
- Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Prasenjit Bag
- Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad Gopanpally 500107 Hyderabad India
- Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| |
Collapse
|
17
|
Synthesis of five isostructural tetranuclear Fe2Ln2 (Ln = Gd, Tb, Dy, Ho, Er) complexes with an “inverse butterfly” core. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.06.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Chen PY, Wu MZ, Li T, Shi XJ, Tian L, Liu ZY. Lanthanide Tetranuclear Cage and Mononuclear Cocrystalline Nitronyl Nitroxide Complex with Single-Molecule-Magnet Behavior. Inorg Chem 2018; 57:12466-12470. [DOI: 10.1021/acs.inorgchem.8b01923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Gupta T, Rajaraman G. Magnetic Anisotropy, Magneto-Structural Correlations and Mechanism of Magnetic Relaxation in {DyIII
N8
} Complexes: A Theoretical Perspective. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tulika Gupta
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Powai, Mumbai India
| | - Gopalan Rajaraman
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Powai, Mumbai India
| |
Collapse
|
20
|
Tian H, Ungur L, Zhao L, Ding S, Tang J, Chibotaru LF. Exchange Interactions Switch Tunneling: A Comparative Experimental and Theoretical Study on Relaxation Dynamics by Targeted Metal Ion Replacement. Chemistry 2018; 24:9928-9939. [PMID: 29697161 DOI: 10.1002/chem.201801523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 11/12/2022]
Abstract
The magnetic relaxation and magnetization blocking barriers of tailor-made homo- and heterodinuclear compounds [Dy2 (opch)2 (OAc)2 (H2 O)2 ]⋅MeOH (1) and [DyMn(opch)2 (OAc)(MeOH)(H2 O)2 ] (2), where H2 opch is (E)-N'-(2-hydroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide, were systematically investigated and the change in single-molecule magnet behavior originating from targeted replacement of one dysprosium site in the Dy2 compound with manganese was elucidated through a combination of experimental and theoretical studies. A detailed comparative study on these closely related model compounds revealed remarkable changes of the crystal-field splitting and anisotropy of the Dy site and the total exchange spectrum due to the replacement of Dy by Mn. The blocking barriers of these two compounds, which explain their different relaxation behaviors, were analyzed. The two Ising doublets arising from the magnetic interaction in the case of 1 are strongly uniaxial, with tunneling splittings smaller than 10-6 cm-1 , and this leads to magnetic relaxation at temperatures exceeding the exchange energy (2.14 cm-1 ), which involves transition via the excited states corresponding to local transitions on the excited doublet at the Dy site. The third and fourth exchange doublets in 2 (located at 2.16 and 3.25 cm-1 , respectively) show much larger tunneling splittings (of 10-4 and 10-3 cm-1 , respectively), and thus open an important path for magnetic relaxation.
Collapse
Affiliation(s)
- Haiquan Tian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Shandong Provincial Key Laboratory, of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Liviu Ungur
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Lang Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shuai Ding
- Shandong Juye County Coal Board, Juye, 274900, P.R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Liviu F Chibotaru
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
21
|
Kostin GA, Borodin AO, Kuratieva NV, Bogomyakov A, Mikhailov AA. Tetranuclear Ru 2 Ln 2 complexes of heavier lanthanides (Gd, Tb, Dy, Ho, Lu) with [RuNO(NO 2 ) 4 OH] 2− anion, combining SMM properties and photoswitchable Ru-NO group. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Ke H, Wei W, Zhang YQ, Zhang J, Xie G, Chen S. Influence of alcoholic solvent and acetate anion coordination mode variations on structures and magnetic properties of heterometallic Zn2Dy2 tetranuclear clusters. Dalton Trans 2018; 47:16616-16626. [DOI: 10.1039/c8dt03983f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We clarify that slight modifications of the synthetic conditions generate two Zn2Dy2 clusters with acetate anion coordination mode variation and different magnetic behaviors.
Collapse
Affiliation(s)
- Hongshan Ke
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Wen Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering
- Anhui Jianzhu University
- Hefei
- P. R. China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| |
Collapse
|
23
|
Syntheses, crystal structures and magnetic properties of two Ni4(μ3–phenoxido)4 cubanes: Role of additional bridging carboxylates. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Díaz-Ortega IF, Herrera JM, Gupta T, Rajaraman G, Nojiri H, Colacio E. Design of a Family of Ln3 Triangles with the HAT Ligand (1,4,5,8,9,12-Hexaazatriphenylene): Single-Molecule Magnetism. Inorg Chem 2017; 56:5594-5610. [DOI: 10.1021/acs.inorgchem.6b03031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ismael F. Díaz-Ortega
- Departamento de Química Inorgánica, Facultad
de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Juan Manuel Herrera
- Departamento de Química Inorgánica, Facultad
de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Tulika Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Hiroyuki Nojiri
- Institute for Materials Research, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad
de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
25
|
Biswas S, Das S, Acharya J, Kumar V, van Leusen J, Kögerler P, Herrera JM, Colacio E, Chandrasekhar V. Homometallic DyIII
Complexes of Varying Nuclearity from 2 to 21: Synthesis, Structure, and Magnetism. Chemistry 2017; 23:5154-5170. [DOI: 10.1002/chem.201700471] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Sourav Biswas
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Sourav Das
- Department of Chemistry; Institute of Infrastructure Technology Research and Management; Ahmedabad 380026 India
| | - Joydev Acharya
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Vierandra Kumar
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Jan van Leusen
- Institut für Anorganische Chemie; RWTH Aachen University; 52074 Aachen Germany
| | - Paul Kögerler
- Institut für Anorganische Chemie; RWTH Aachen University; 52074 Aachen Germany
| | - Juan Manuel Herrera
- Departamento de Química Inorganica; Facultad de Ciencias; Universidad de Granada; 18071 Granada Spain
| | - Enrique Colacio
- Departamento de Química Inorganica; Facultad de Ciencias; Universidad de Granada; 18071 Granada Spain
| | - Vadapalli Chandrasekhar
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
- National Institute of Science Education and Research; Institute of Physics Campus, Sachivalaya Marg; Bhubaneswar 751 005 India
| |
Collapse
|
26
|
Biswas S, Das S, Gupta T, Singh SK, Pissas M, Rajaraman G, Chandrasekhar V. Observation of Slow Relaxation and Single-Molecule Toroidal Behavior in a Family of Butterfly-Shaped Ln4Complexes. Chemistry 2016; 22:18532-18550. [DOI: 10.1002/chem.201603640] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Sourav Biswas
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Sourav Das
- Department Of Chemistry; Institute of Infrastructure Technology Research and Management; Near Khokhara Circle, Maninagar East Ahmedabad 380026 India
| | - Tulika Gupta
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| | - Saurabh Kumar Singh
- Department of Molecular Theory and Spectroscopy; Max-Planck Institute for Chemical Energy Conversion; Stiftstr 34-36 45470 Mülheim an der Ruhr Germany
| | - Michael Pissas
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems; NCSR Demokritos; 15310 Ag. Paraskevi Attiki Greece
| | - Gopalan Rajaraman
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| | - Vadapalli Chandrasekhar
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
- National Institute of Science Education and Research; Institute of Physics Campus, Sachivalaya Marg, PO: Sainik School; Bhubaneswar 751 005, Orissa India
| |
Collapse
|
27
|
Li XL, Wu J, Tang J, Le Guennic B, Shi W, Cheng P. A planar triangular Dy3 + Dy3 single-molecule magnet with a toroidal magnetic moment. Chem Commun (Camb) 2016; 52:9570-3. [DOI: 10.1039/c6cc05326b] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The modification of the axial coordination ligands of the Dy3 + Dy3 triangles results in a unique Dy6 complex, in which single-molecule magnet behavior and meanwhile a toroidal magnetic moment in the ground state have been observed.
Collapse
Affiliation(s)
- Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jianfeng Wu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Boris Le Guennic
- Institut des Sciences Chimiques de Rennes
- UMR 6226 CNRS-Université de Rennes 1
- 35042 Rennes Cedex
- France
| | - Wei Shi
- Department of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), and Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Peng Cheng
- Department of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), and Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
28
|
Abstract
This review highlights fundamental concepts and synthetic strategies of SMMs and selected examples of 3d, 4f, 5f and mixed 3d–4f, 4d–5d and 3d–5f based SMMs are discussed.
Collapse
Affiliation(s)
| | | | - Sanjit Konar
- Department of Chemistry
- IISER Bhopal
- Bhopal 462066
- India
| |
Collapse
|