1
|
Li H, Qu H, Zhang X, Chen M, Wang J. Coordination-assembled phosphorescent microstructure from RTP HOF and Eu 3+-doping ZGO:Mn phosphors for cancer biomarker amplification detection and information encryption. J Colloid Interface Sci 2024; 653:220-228. [PMID: 37713920 DOI: 10.1016/j.jcis.2023.09.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The ultra-long room temperature phosphorescent hydrogen-bonded organic framework (RTP HOF) materials can achieve long afterglow via ligand hydrogen bond interaction and water implement to suppress the non-radiative decays by matrices rigidification, and its electron donor conjugated structure is first developed as a phosphorescent quencher. The Eu3+/Mn2+ co-doped Zn2GeO4 phosphors (ZGO:Mn, Eu) with abundant metal sites and enhanced phosphorescence were synthesized as response factors and electron acceptors, combined with RTP HOFs to form microstructures featuring multi-color modulation, as an high-level anti-counterfeiting platform and lysophosphatidic acid (LPA) detection unit. LPA is an ideal plasma biomarker for early diagnosis of ovarian and other gynecologic cancers. This detection strategy relies on the differential coordination substitution to restore ZGO:Mn, Eu phosphorescence through synergistic coordination of LPA and the hydrophobic assistance of LPA, and dual functional groups identification of LPA achieve specific detection at the nanomolar level. The anti-counterfeiting platform can fetch specific information by controlling the afterglow distinction and excited light from ZGO:Mn, Eu and RTP HOF. This study not only provides a typical case of the preparation of two phosphors with heterogeneous optical properties, but also expands the application field of combined phosphors as intelligent luminescent materials.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Hongli Qu
- Analytical and Testing Center, Northeastern University, Box 115, Shenyang 110819, China
| | - Xinyue Zhang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Mingli Chen
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China; Analytical and Testing Center, Northeastern University, Box 115, Shenyang 110819, China.
| | - Jianhua Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
2
|
Huang X, Feng B, Liu M, Liu Z, Li S, Zeng W. Preclinical detection of lysophosphatidic acid: A new window for ovarian cancer diagnostics. Talanta 2022; 247:123561. [DOI: 10.1016/j.talanta.2022.123561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 12/17/2022]
|
3
|
Wahalathantrige Don R, Dowell TJ, Simms BL, Watkins DL, Wipf DO, Scott CN. Polyrhodamine: a redox stable conducting polyelectrolyte. Polym Chem 2022. [DOI: 10.1039/d1py01474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First example of a redox stable conducting polymer with a rhodamine backbone.
Collapse
Affiliation(s)
| | - Timothy J. Dowell
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Briana L. Simms
- Department of Chemistry, University of Mississippi, MS 38677, USA
| | | | - David O. Wipf
- Department of Chemistry, Mississippi State University, MS 39762, USA
| | - Colleen N. Scott
- Department of Chemistry, Mississippi State University, MS 39762, USA
| |
Collapse
|
4
|
Zhang H, Li Q, Yang Y, Ji X, Sessler JL. Unlocking Chemically Encrypted Information Using Three Types of External Stimuli. J Am Chem Soc 2021; 143:18635-18642. [PMID: 34719924 DOI: 10.1021/jacs.1c08558] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Encryption is critical to information security; however, existing chemical-based information encryption strategies are still in their infancy. We report here a new approach to chemical encryption involving a supramolecular gel QR (quick response) code with multiple encryption functions. Three color "turn-on" supramolecular polymer gels, G1-G3, were prepared that produce pink, purple, and yellow colors when subject to treatment with acetic acid vapor, UV light, and methanolic FeCl3, respectively. As the result of hydrogen-bonding interactions at the gel interfaces, the three gels can be assembled to produce gel G4. Engraving a QR code pattern onto G4 then gave gel G5. When one or two stimuli are applied to the individual pieces corresponding to the QR engraved versions of the gels G1-G3 making up G5, a complete scannable pattern is not displayed, and the stored information cannot be recognized. Only when three different stimuli are applied at the same time does G5 give a complete recognizable pattern allowing the stored information to be retrieved. This strategy was applied to the decryption-based opening of a coded lock.
Collapse
Affiliation(s)
- Hanwei Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Qingyun Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yabi Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiaofan Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street A5300, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Farat OK, Ananyev IV, Tatarets AL, Varenichenko SA, Zaliznaya EV, Markov VI. Influence of the amidine fragment on spectral properties of xanthene dyes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
LI NS, CHEN L, XIAO ZX, YANG YQ, AI KL. Progress in Detection of Biomarker of Ovarian Cancer: Lysophosphatidic Acid. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Rhodamine hydrazone as a lysosome-targetable pH biomarker for the selective differentiation of cancer cells from normal cells. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Montaño AR, Wang LG, Barth CW, Shams NA, Kumarapeli KASU, Gibbs SL. In Vivo Nerve-Specificity of Rhodamines and Si-rhodamines. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11222:112220I. [PMID: 32255888 PMCID: PMC7115044 DOI: 10.1117/12.2545311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Accidental nerve damage or transection of vital nerve structures remains an unfortunate reality that is often associated with surgery. Despite the existence of nerve-sparing techniques, the success of such procedures is not only complicated by anatomical variance across patients but is also highly dependent on a surgeon's first-hand experience that is acquired over numerous procedures through trial and error, often with highly variable success rates. Fluorescent small molecules, such as rhodamines and fluoresceins have proven incredibly useful for biological imaging in the life sciences, and they appeared to have potential in illuminating vital nerve structures during surgical procedures. In order to make use of the current clinically relevant imaging systems and to provide surgeons with fluorescent contrast largely free from the interference of hemoglobin and water, it was first necessary to spectrally tune known fluorescent scaffolds towards near infrared (NIR) wavelengths. To determine whether the well-documented Si-substitution strategy could be applied towards developing a NIR fluorophore that retained nerve-specific properties of candidate molecules, an in vivo comparison was made between two compounds previously shown to highlight nervous structures - TMR and Rhodamine B - and their Si-substituted derivatives.
Collapse
Affiliation(s)
- Antonio R. Montaño
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Lei G. Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Connor W. Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Nourhan A. Shams
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | | | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97201
| |
Collapse
|
9
|
Yan F, Sun X, Zhang R, Jiang Y, Xu J, Wei J. Enhanced fluorescence probes based on Schiff base for recognizing Cu 2+ and effect of different substituents on spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117222. [PMID: 31174152 DOI: 10.1016/j.saa.2019.117222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Three enhanced fluorescence probes based on Rhodamine B-Schiff base structure were synthesized for detecting Cu2+. The corresponding detection limits were found to be 0.25 μM, 0.15 μM and 0.18 μM. Binding ratio and binding sites were determined by Job's and nuclear magnetic titration experiments. The binding constants obtained by the Benesi-Hildebrand equation to be 341.0 M-0.5,1.8 × 104 M-1, and 265.4 M-0.5, respectively. As isomers, the different effects of probes on Cu2+ detection were researched. By adjusting the position and the size of the substituent group, the effects of binding sites and steric hindrance on the complexation ratio, response time and detection limit were discussed. Optimal spatial combination structure with Cu2+ was obtained through energy calculation. Detection mechanism of Rhodamine B ring opening based on the complex of the Schiff base with Cu2+ was confirmed. E. coli staining and detection of real water samples had expanded their applications.
Collapse
Affiliation(s)
- Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China.
| | - Xiaodong Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Ruiqi Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Yingxia Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Jinxia Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Junfu Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China.
| |
Collapse
|
10
|
Wang LG, Munhenzva I, Sibrian-Vazquez M, Escobedo JO, Kitts CH, Fronczek FR, Strongin RM. Altering Fundamental Trends in the Emission of Xanthene Dyes. J Org Chem 2019; 84:2585-2595. [PMID: 30719911 DOI: 10.1021/acs.joc.8b03030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fluorescent small molecules enable researchers and clinicians to visualize biological events in living cells, tissues, and organs in real time. Herein, the focus is on the structure and properties of the relatively rare benzo[ a]xanthenes that exhibit enhanced steric and electronic interactions due to their annulated structures. Three types of fluorophores were synthesized: (i) pH- and solvent-dependent seminaphthorhodafluors, (ii) pH- and solvent-independent seminaphthorhodafluors, and (iii) pH-independent but solvent-sensitive seminaphthorhodamines. The probes exhibited promising far-red to near-infrared (NIR) emission, large Stoke shifts, broad full width at half-maximum (fwhm), relatively high quantum yields, and utility in immunofluorescence staining. Deviation of the π-system from planarity due to changes in the fluorophore ionization state resulted in fluorescence properties that are atypical of common xanthene dyes.
Collapse
Affiliation(s)
- Lei G Wang
- Department of Biomedical Engineering , Oregon Health & Science University , 3181 SW Sam Jackson Park Road , Portland , Oregon 97239 , United States
| | - Ian Munhenzva
- Department of Chemistry , Portland State University , 1719 SW 10th Avenue , Portland , Oregon 97201 , United States
| | - Martha Sibrian-Vazquez
- Department of Chemistry , Portland State University , 1719 SW 10th Avenue , Portland , Oregon 97201 , United States
| | - Jorge O Escobedo
- Department of Chemistry , Portland State University , 1719 SW 10th Avenue , Portland , Oregon 97201 , United States
| | - Catherine H Kitts
- Department of Chemistry , Portland State University , 1719 SW 10th Avenue , Portland , Oregon 97201 , United States
| | - Frank R Fronczek
- Department of Chemistry , Louisiana State University , 232 Choppin Hall , Baton Rouge , Louisiana 70803 , United States
| | - Robert M Strongin
- Department of Chemistry , Portland State University , 1719 SW 10th Avenue , Portland , Oregon 97201 , United States
| |
Collapse
|
11
|
Wang LG, Barth CW, Combs JR, Montaño AR, Gibbs SL. Investigation of Oxazine and Rhodamine Derivatives as Peripheral Nerve Tissue Targeting Contrast Agent for In Vivo Fluorescence Imaging. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10862. [PMID: 32341618 DOI: 10.1117/12.2507296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accidental nerve transection or injury is a significant morbidity associated with many surgical interventions, resulting in persistent postsurgical numbness, chronic pain, and/or paralysis. Nerve-sparing can be a difficult task due to patient-to-patient variability and the difficulty of nerve visualization in the operating room. Fluorescence image-guided surgery to aid in the precise visualization of vital nerve structures in real time during surgery could greatly improve patient outcomes. To date, all nerve-specific contrast agents emit in the visible range. Developing a near-infrared (NIR) nerve-specific fluorophore is poised to be a challenging task, as a NIR fluorophore must have enough "double-bonds" to reach the NIR imaging window, contradicting the requirement that a nerve-specific agent must have a relatively low molecular weight to cross the blood-nerve-barrier (BNB). Herein we report our efforts to investigate the molecular characteristics for the nerve-specific oxazine fluorophores, as well as their structurally analogous rhodamine fluorophores. Specifically, optical properties, physicochemical properties and their in vivo nerve specificity were evaluated herein.
Collapse
Affiliation(s)
- Lei G Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Connor W Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Jason R Combs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Antonio R Montaño
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201.,OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97201
| |
Collapse
|
12
|
Zheng Z, Geng WC, Gao J, Wang YY, Sun H, Guo DS. Ultrasensitive and specific fluorescence detection of a cancer biomarker via nanomolar binding to a guanidinium-modified calixarene. Chem Sci 2018; 9:2087-2091. [PMID: 29675249 PMCID: PMC5892409 DOI: 10.1039/c7sc04989g] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
We designed a water-soluble guanidinium-modified calix[5]arene to target lysophosphatidic acid (LPA), an ideal biomarker for early diagnosis of ovarian and other gynecologic cancers, achieving binding on the nanomolar level. An indicator displacement assay, coupled with differential sensing, enabled ultrasensitive and specific detection of LPA. Moreover, we show that using a calibration line, the LPA concentration in untreated serum can be quantified in the biologically relevant low μM range with a detection limit of 1.7 μM. The reported approach is feasible for diagnosing ovarian and other gynecologic cancers, particularly at their early stages.
Collapse
Affiliation(s)
- Zhe Zheng
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Key Laboratory of Functional Polymer Materials , Ministry of Education , Nankai University , Tianjin 300071 , China .
| | - Wen-Chao Geng
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Key Laboratory of Functional Polymer Materials , Ministry of Education , Nankai University , Tianjin 300071 , China .
| | - Jie Gao
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Key Laboratory of Functional Polymer Materials , Ministry of Education , Nankai University , Tianjin 300071 , China .
| | - Yu-Ying Wang
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Key Laboratory of Functional Polymer Materials , Ministry of Education , Nankai University , Tianjin 300071 , China .
| | - Hongwei Sun
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Key Laboratory of Functional Polymer Materials , Ministry of Education , Nankai University , Tianjin 300071 , China .
| | - Dong-Sheng Guo
- College of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Key Laboratory of Functional Polymer Materials , Ministry of Education , Nankai University , Tianjin 300071 , China .
- Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , China
| |
Collapse
|
13
|
Chen X, Gui W, Liu H, Ma Q. A novel CuZnInS quantum dot-based ECL sensing system for lysophosphatidic acid detection. Analyst 2017; 142:4142-4149. [DOI: 10.1039/c7an01250k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel ECL sensing system was developed for lysophosphatidic acid detection based on AGM-CuInZnS QDs and GNs.
Collapse
Affiliation(s)
- Xueqian Chen
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Wenying Gui
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Hua Liu
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Qiang Ma
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
14
|
Yao D, Lin Z, Wu J. Near-Infrared Fluorogenic Probes with Polarity-Sensitive Emission for in Vivo Imaging of an Ovarian Cancer Biomarker. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5847-5856. [PMID: 26910257 DOI: 10.1021/acsami.5b11826] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lysophosphatidic acid (LPA, cutoff values ≥ 1.5 μM) is an effective biomarker for early stage ovarian cancer. The development of selective probes for LPA detection is therefore critical for early clinical diagnosis. Although current methods have been developed for the detection of LPA in solution, they cannot be used for tracking LPA in vivo. Here, we report a near-infrared (NIR) fluorescent probe that can selectively respond to LPA based on polarity-sensitive emission at a very low detection limit of 0.5 μM in situ. This probe exhibits a marked increase of fluorescence at 720 nm upon binding to LPA, allowing the direct visualization of LPA in vitro and in vivo without interference from other biomolecules. Moreover, the probe containing two arginine-glycine-aspartic acid units can be efficiently taken up by cancer cells based on an αvβ3 integrin receptor targeting mechanism. It also exhibits excellent biocompatibility and high pH stability in live cells and in vivo. Confocal laser scanning microscopy and flow cytometric imaging of SKOV-3 cells have confirmed that our probe can be used to image LPA in live cells. In particular, its NIR turn-on fluorescence can be used to effectively monitor LPA imaging in a SKOV-3 tumor-bearing mouse model. Our probe may pave the way for the detection of cancer-related biomarkers and even for early stage cancer diagnosis.
Collapse
Affiliation(s)
- Defan Yao
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology , Shanghai 200237, China
| | - Zhi Lin
- College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Junchen Wu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
15
|
Ren M, Deng B, Wang JY, Liu ZR, Lin W. A dual-emission fluorescence-enhanced probe for imaging copper(ii) ions in lysosomes. J Mater Chem B 2015; 3:6746-6752. [PMID: 32262467 DOI: 10.1039/c5tb01184a] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed the first example of a fluorescence-enhanced and lysosome-targeted Cu2+ probe (Lys-Cu) with unique dual-channel emissions. The newly synthesized fluorescent probe Lys-Cu, which contains two recognition sites with different sensing mechanisms for Cu2+, displays fluorescence-enhanced dual-channel emissions with fluorescence response to Cu2+ in the lysosome pH environment. Fluorescence imaging shows that Lys-Cu is membrane-permeable and suitable for visualization of Cu2+ in lysosomes of living cells by dual-channel imaging.
Collapse
Affiliation(s)
- Mingguang Ren
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | | | | | | | | |
Collapse
|