1
|
Garoni E, Colombo A, Roberto D, Dragonetti C, Guerchais V, Kamada K. Two-photon absorption properties of simple neutral Ir(III) complexes. Phys Chem Chem Phys 2024; 26:7837-7843. [PMID: 38375890 DOI: 10.1039/d3cp05489f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
A series of neutral Ir(2-phenylpyridine)3 derivatives substituted on the para-position of the pyridyl ligands with a π-conjugated substituent possessing different donor abilities has been prepared. Their two-photon absorption properties have been determined using the Z-scan technique. Such simple iridium(III) neutral complexes, which are easy to synthesize, show good two-photon absorption activity, with relevant TPA cross sections (the best is 750 GM), giving rise to multifunctional chromophores, since they present also high second-order NLO properties.
Collapse
Affiliation(s)
- Eleonora Garoni
- Department of Chemistry, Università degli Studi di Milano, UdR dell'INSTM, Via Golgi 19, 20133 Milano, Italy.
| | - Alessia Colombo
- Department of Chemistry, Università degli Studi di Milano, UdR dell'INSTM, Via Golgi 19, 20133 Milano, Italy.
| | - Dominique Roberto
- Department of Chemistry, Università degli Studi di Milano, UdR dell'INSTM, Via Golgi 19, 20133 Milano, Italy.
| | - Claudia Dragonetti
- Department of Chemistry, Università degli Studi di Milano, UdR dell'INSTM, Via Golgi 19, 20133 Milano, Italy.
| | | | - Kenji Kamada
- Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan.
| |
Collapse
|
2
|
Karges J, Chao H, Gasser G. Critical discussion of the applications of metal complexes for 2-photon photodynamic therapy. J Biol Inorg Chem 2020; 25:1035-1050. [DOI: 10.1007/s00775-020-01829-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
|
3
|
Zhang Q, Lu X, Cao H, Wang H, Zhu T, Tian X, Li D, Zhou H, Wu J, Tian Y. Multiphoton Absorption Iridium(III)–Organotin(IV) Dimetal Complex with AIE Behavior for Both Sensitive Detection of Tyrosine and Antibacterial Activity. ACS APPLIED BIO MATERIALS 2020; 3:8105-8112. [DOI: 10.1021/acsabm.0c01206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qiong Zhang
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| | - Xin Lu
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| | - Hongzhi Cao
- School of Life Science, Anhui University, Hefei 230601, P.R. China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| | - Tong Zhu
- School of Life Science, Anhui University, Hefei 230601, P.R. China
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230601, P.R. China
| | - Dandan Li
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| | - Jieying Wu
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Institutes of Physics Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
4
|
Colombo A, Dragonetti C, Guerchais V, Hierlinger C, Zysman-Colman E, Roberto D. A trip in the nonlinear optical properties of iridium complexes. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213293] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Jin C, Liang F, Wang J, Wang L, Liu J, Liao X, Rees TW, Yuan B, Wang H, Shen Y, Pei Z, Ji L, Chao H. Rational Design of Cyclometalated Iridium(III) Complexes for Three‐Photon Phosphorescence Bioimaging. Angew Chem Int Ed Engl 2020; 59:15987-15991. [DOI: 10.1002/anie.202006964] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Fengyin Liang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou 510080 P. R. China
| | - Jinquan Wang
- Guangdong Province Key Lab Biotechnology Candidate Drug Guangdong Pharmaceutical University Guangzhou 510006 Guangdong P. R. China
| | - Lili Wang
- School of Physics Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Bo Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Wang
- School of Physics Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhong Pei
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou 510080 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
6
|
Jin C, Liang F, Wang J, Wang L, Liu J, Liao X, Rees TW, Yuan B, Wang H, Shen Y, Pei Z, Ji L, Chao H. Rational Design of Cyclometalated Iridium(III) Complexes for Three‐Photon Phosphorescence Bioimaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Fengyin Liang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou 510080 P. R. China
| | - Jinquan Wang
- Guangdong Province Key Lab Biotechnology Candidate Drug Guangdong Pharmaceutical University Guangzhou 510006 Guangdong P. R. China
| | - Lili Wang
- School of Physics Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Bo Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Wang
- School of Physics Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhong Pei
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou 510080 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
7
|
Wang L, Cui P, Lystrom L, Lu J, Kilina S, Sun W. Heteroleptic cationic iridium( iii) complexes bearing phenanthroline derivatives with extended π-conjugation as potential broadband reverse saturable absorbers. NEW J CHEM 2020. [DOI: 10.1039/c9nj03877a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fluorenyl substitution at the diimine ligand broadened the excited-state absorption to near-IR, and enhanced reverse saturable absorption at 532 nm for the cationic Ir(iii) complexes.
Collapse
Affiliation(s)
- Li Wang
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Peng Cui
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
- Materials and Nanotechnology Program
| | - Levi Lystrom
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Jiapeng Lu
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| |
Collapse
|
8
|
Yu G, Lin C, Liu Y, Yi R, Chen G, Lu C, Su H. Efficient and Saturated Red Light‐Emitting Electrochemical Cells Based on Cationic Iridium(III) Complexes with EQE up to 9.4 %. Chemistry 2019; 25:13748-13758. [DOI: 10.1002/chem.201902887] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/06/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Guang‐Xiang Yu
- Institute of Lighting and Energy PhotonicsNational Chiao Tung University Tainan 71150 Taiwan
| | - Chien‐Hsiang Lin
- Department of Applied ChemistryProvidence University Taichung 43301 Taiwan
| | - You‐Xuan Liu
- Institute of Lighting and Energy PhotonicsNational Chiao Tung University Tainan 71150 Taiwan
| | - Rong‐Huei Yi
- Department of Applied ChemistryProvidence University Taichung 43301 Taiwan
| | - Guan‐Yu Chen
- Department of Applied ChemistryProvidence University Taichung 43301 Taiwan
| | - Chin‐Wei Lu
- Department of Applied ChemistryProvidence University Taichung 43301 Taiwan
| | - Hai‐Ching Su
- Institute of Lighting and Energy PhotonicsNational Chiao Tung University Tainan 71150 Taiwan
| |
Collapse
|
9
|
Shao JY, Zhong YW. Stabilization of a Cyclometalated Ruthenium Sensitizer on Nanocrystalline TiO 2 by an Electrodeposited Covalent Layer. Inorg Chem 2019; 58:3509-3517. [PMID: 30758195 DOI: 10.1021/acs.inorgchem.9b00092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A cyclometalated ruthenium sensitizer 3 containing a triphenylamine unit was synthesized and immobilized on a nanocrystalline TiO2 surface. By using oxidative electrochemical deposition, a covalent layer of a related cyclometalated ruthenium complex 2 was coupled to the top of dye 3. Electrochemical studies suggested that complex 2 was immobilized on the TiO2/3 film surface by a tetraphenylbenzidine linker to form a dimer-like structure. The immobilization of 3 and 2 was further supported by absorption spectral analysis. The resulting electrodeposited TiO2/(3+2) film displays significantly enhanced sensitizer stabilization toward basic aqueous NaOH solution with respect to the original TiO2/3 film. The dye-sensitized solar cells with the TiO2/(3+2) photoanode display a power conversion efficiency of 4.4%, which is slightly inferior to that with the TiO2/3 film (5.1%) under the same measurement conditions.
Collapse
Affiliation(s)
- Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
10
|
Guo X, Chen Q, Tong Y, Li Y, Liu Y, Zhao D, Ma Y. Enhanced Triplet Sensitizing Ability of an Iridium Complex by Intramolecular Energy-Transfer Mechanism. J Phys Chem A 2018; 122:6963-6969. [DOI: 10.1021/acs.jpca.8b04807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xinyan Guo
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Qi Chen
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yujie Tong
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yao Li
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yiming Liu
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
A novel multifunctional cyclometallated iridium(III) complex with interesting second-order nonlinear optical properties and two-photon absorption activity. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Zhu X, Cui P, Kilina S, Sun W. Multifunctional Cationic Iridium(III) Complexes Bearing 2-Aryloxazolo[4,5-f][1,10]phenanthroline (N^N) Ligand: Synthesis, Crystal Structure, Photophysics, Mechanochromic/Vapochromic Effects, and Reverse Saturable Absorption. Inorg Chem 2017; 56:13715-13731. [PMID: 29083889 DOI: 10.1021/acs.inorgchem.7b01472] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of 2-aryloxazolo[4,5-f][1,10]phenanthroline ligands (N^N ligands) and their cationic iridium(III) complexes (1-11, aryl = 4-NO2-phenyl (1), 4-Br-phenyl (2), Ph (3), 4-NPh2-phenyl (4), 4-NH2-phenyl (5), pyridin-4-yl (6), naphthalen-1-yl (7), naphthalen-2-yl (8), phenanthren-9-yl (9), anthracen-9-yl (10), and pyren-1-yl (11)) were synthesized and characterized. By introducing different electron-donating or electron-withdrawing substituents at the 4-position of the 2-phenyl ring (1-5), or different aromatic substituents with varied degrees of π-conjugation (6-11) on oxazolo[4,5-f][1,10]phenanthroline ligand, we aim to understand the effects of terminal substituents at the N^N ligands on the photophysics of cationic Ir(III) complexes using both spectroscopic methods and quantum chemistry calculations. Complexes with the 4-R-phenyl substituents adopted an almost coplanar structure with the oxazolo[4,5-f][1,10]phenanthroline motif, while the polycyclic aryl substituents (except for naphthalen-2-yl) were twisted away from the oxazolo[4,5-f][1,10]phenanthroline motif. All complexes possessed strong absorption bands below 350 nm that emanated from the ligand-localized 1π,π*/1ILCT (intraligand charge transfer) transitions, mixed with 1LLCT (ligand-to-ligand charge transfer)/1MLCT (metal-to-ligand charge transfer) transitions. At the range of 350-570 nm, all complexes exhibited moderately strong 1ILCT/1LLCT/1MLCT transitions at 350-450 nm, and broad but very weak 3LLCT/3MLCT absorption at 450-570 nm. Most of the complexes demonstrated moderate to strong room temperature phosphorescence both in solution and in the solid state. Among them, complex 7 also manifested a drastic mechanochromic and vapochromic luminescence effect. Except for complexes 1 and 4 that contain NO2 or NPh2 substituent at the phenyl ring, respectively, all other complexes exhibited moderate to strong triplet excited-state absorption in the spectral region of 440-750 nm. Moderate to very strong reverse saturable absorption (RSA) of these complexes appeared at 532 nm for 4.1 ns laser pulses. The RSA strength followed the trend of 7 > 11 > 9 > 3 > 2 ≈ 4 > 5 ≈ 10 ≈ 6 ≈ 8 > 1. The photophysical studies revealed that the different 2-aryl substituents on the oxazole ring impacted the singlet and triplet excited-state characteristics dramatically, which in turn notably influenced the RSA of these complexes.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States
| | - Peng Cui
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States.,Materials and Nanotechnology Program, North Dakota State University , Fargo, North Dakota 58105, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States
| |
Collapse
|
13
|
Zhu X, Lystrom L, Kilina S, Sun W. Tuning the Photophysics and Reverse Saturable Absorption of Heteroleptic Cationic Iridium(III) Complexes via Substituents on the 6,6′-Bis(fluoren-2-yl)-2,2′-biquinoline Ligand. Inorg Chem 2016; 55:11908-11919. [DOI: 10.1021/acs.inorgchem.6b02028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolin Zhu
- Department
of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Levi Lystrom
- Department
of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Svetlana Kilina
- Department
of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Wenfang Sun
- Department
of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| |
Collapse
|
14
|
Kundi V, Thankachan PP. Packing of Large Two- and Three-Photon Activity Into Smallest Possible Unsymmetrical Fluorene Chromophores. J Phys Chem A 2016; 120:2757-70. [DOI: 10.1021/acs.jpca.6b02364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Varun Kundi
- Theoretical Chemistry Lab,
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pompozhi Protasis Thankachan
- Theoretical Chemistry Lab,
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
15
|
Sarma M, Chatterjee T, Bodapati R, Krishnakanth KN, Hamad S, Venugopal Rao S, Das SK. Cyclometalated Iridium(III) Complexes Containing 4,4′-π-Conjugated 2,2′-Bipyridine Derivatives as the Ancillary Ligands: Synthesis, Photophysics, and Computational Studies. Inorg Chem 2016; 55:3530-40. [DOI: 10.1021/acs.inorgchem.5b02999] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Monima Sarma
- School of Chemistry, ‡Advanced Centre of Research in High Energy Materials
(ACRHEM), and §School of Physics, University of Hyderabad, Central University, Hyderabad 500 046, India
| | - Tanmay Chatterjee
- School of Chemistry, ‡Advanced Centre of Research in High Energy Materials
(ACRHEM), and §School of Physics, University of Hyderabad, Central University, Hyderabad 500 046, India
| | - Ramakrishna Bodapati
- School of Chemistry, ‡Advanced Centre of Research in High Energy Materials
(ACRHEM), and §School of Physics, University of Hyderabad, Central University, Hyderabad 500 046, India
| | - Katturi Naga Krishnakanth
- School of Chemistry, ‡Advanced Centre of Research in High Energy Materials
(ACRHEM), and §School of Physics, University of Hyderabad, Central University, Hyderabad 500 046, India
| | - Syed Hamad
- School of Chemistry, ‡Advanced Centre of Research in High Energy Materials
(ACRHEM), and §School of Physics, University of Hyderabad, Central University, Hyderabad 500 046, India
| | - S. Venugopal Rao
- School of Chemistry, ‡Advanced Centre of Research in High Energy Materials
(ACRHEM), and §School of Physics, University of Hyderabad, Central University, Hyderabad 500 046, India
| | - Samar K. Das
- School of Chemistry, ‡Advanced Centre of Research in High Energy Materials
(ACRHEM), and §School of Physics, University of Hyderabad, Central University, Hyderabad 500 046, India
| |
Collapse
|
16
|
Jiang X, Peng J, Wang J, Guo X, Zhao D, Ma Y. Iridium-Based High-Sensitivity Oxygen Sensors and Photosensitizers with Ultralong Triplet Lifetimes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3591-600. [PMID: 26592255 DOI: 10.1021/acsami.5b07860] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The photophysics of a series of bichromophoric molecules featuring an intramolecular triplet energy transfer between a triscyclometalated iridium(III) complex and covalently linked organic group are studied. By systematically varying the energy gap (0.1-0.3 eV) between the donor (metal complex) and acceptor (pyrene unit), reversible triplet energy transfer processes with equilibrium constant K ranging from ca. 500 to 40 000 are established. Unique photophysical consequences of such large K values are observed. Because of the highly imbalanced forward and backward energy transfer rates, triplet excitons dominantly populate the acceptor moiety in the steady state, giving rise to ultralong luminescence lifetimes up to 1-4 ms. Because the triscyclometalated Ir and triplet pyrene groups both impart relatively small nonradiative energy loss, decent phosphorescence quantum yields (Φ = 0.1-0.6) are attained in spite of the exceptionally prolonged excited states. By virtue of such precious combination of long-lived triplet state and high Φ, these bichromophoric molecules can serve as highly sensitive luminescent sensors for detecting trace amount of O2 and as potent photosensitizers for producing singlet oxygen even under low-oxygen content conditions.
Collapse
Affiliation(s)
- Xinpeng Jiang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Jiang Peng
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Jianchun Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Xinyan Guo
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| |
Collapse
|
17
|
You Y, Cho EJ, Kwon H, Hwang J, Lee SE. A singlet oxygen photosensitizer enables photoluminescent monitoring of singlet oxygen doses. Chem Commun (Camb) 2016; 52:780-3. [DOI: 10.1039/c5cc08411c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dichromophoric molecular dyad enables photosensitization and detection of sinlget oxygen.
Collapse
Affiliation(s)
- Youngmin You
- Division of Chemical Engineering and Materials Science
- Ewha Womans University
- Seoul 120-750
- Korea
| | - Eun Jin Cho
- Department of Advanced Materials Engineering for Information and Electronics
- Kyung Hee University
- Gyeonggi-do 446-710
- Korea
| | - Hyeokseon Kwon
- Division of Chemical Engineering and Materials Science
- Ewha Womans University
- Seoul 120-750
- Korea
| | - Jieun Hwang
- Division of Chemical Engineering and Materials Science
- Ewha Womans University
- Seoul 120-750
- Korea
| | - Seung Eun Lee
- Division of Chemical Engineering and Materials Science
- Ewha Womans University
- Seoul 120-750
- Korea
| |
Collapse
|
18
|
Bandyopadhyay S, Métivier R, Pallavi P, Preis E, Nakatani K, Landfester K, Patra A, Scherf U. Conjugated Polymer Nanoparticle-Triplet Emitter Hybrids in Aqueous Dispersion: Fabrication and Fluorescence Quenching Behavior. Macromol Rapid Commun 2015; 37:271-7. [PMID: 26663576 DOI: 10.1002/marc.201500618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/16/2015] [Indexed: 01/19/2023]
Abstract
Conjugated polymer nanoparticles based on poly[9,9-bis(2-ethylhexyl)fluorene] and poly[N-(2,4,6-trimethylphenyl)-N,N-diphenylamine)-4,4'-diyl] are fabricated using anionic surfactant sodium dodecylsulphate in water by miniemulsion technique. Average diameters of polyfluorene and polytriarylamine nanoparticles range from 70 to 100 and 100 to 140 nm, respectively. The surface of the nanoparticles is decorated with triplet emitting dye, tris(2,2'-bipyridyl)ruthenium(II) chloride. Intriguing photophysics of aqueous dispersions of these hybrid nanoparticles is investigated. Nearly 50% quenching of fluorescence is observed in the case of dye-coated polyfluorene nanoparticles; excitation energy transfer is found to be the dominant quenching mechanism. On the other hand, nearly complete quenching of emission is noticed in polytriarylamine nanoparticle-dye hybrids. It is proposed that the excited state electron transfer from the electron-rich polytriarylamine donor polymer to Ru complex leads to the complete quenching of emission of polytriarylamine nanoparticles. The current study offers promising avenues for developing aqueous solution processed-electroluminescent devices involving a conjugated polymer nanoparticle host and Ru or Ir-based triplet emitting dye as the guest.
Collapse
Affiliation(s)
- Sujoy Bandyopadhyay
- Department of Chemistry, Indian Institute of Science, Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Rémi Métivier
- PPSM, ENS Cachan, CNRS, UniverSud, 61 av President Wilson, 94230, Cachan, France
| | - Pragyan Pallavi
- Department of Chemistry, Indian Institute of Science, Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Eduard Preis
- Macromolecular Chemistry, Bergische University Wuppertal, Gauss-Str. 20, D-42119, Wuppertal, Germany
| | - Keitaro Nakatani
- PPSM, ENS Cachan, CNRS, UniverSud, 61 av President Wilson, 94230, Cachan, France
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Department of Physical Chemistry of Polymers, Ackermannweg 10, D-55128, Mainz, Germany
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science, Education and Research (IISER) Bhopal, Bhopal, 462066, India
| | - Ullrich Scherf
- Macromolecular Chemistry, Bergische University Wuppertal, Gauss-Str. 20, D-42119, Wuppertal, Germany
| |
Collapse
|
19
|
Jiang X, Zhu N, Zhao D, Ma Y. New cyclometalated transition-metal based photosensitizers for singlet oxygen generation and photodynamic therapy. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5519-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Boreham EM, Jones L, Swinburne AN, Blanchard-Desce M, Hugues V, Terryn C, Miomandre F, Lemercier G, Natrajan LS. A cyclometallated fluorenyl Ir(iii) complex as a potential sensitiser for two-photon excited photodynamic therapy (2PE-PDT). Dalton Trans 2015; 44:16127-35. [DOI: 10.1039/c5dt01855b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A cyclometallated fluorenyl Ir(iii) complex that exhibits enhanced triplet oxygen sensing properties for two photon photodynamic therapy is reported.
Collapse
Affiliation(s)
- Elizabeth M. Boreham
- School of Chemistry
- The University of Manchester
- Manchester
- UK
- Photon Science Institute
| | - Lucy Jones
- School of Chemistry
- The University of Manchester
- Manchester
- UK
- Photon Science Institute
| | - Adam N. Swinburne
- School of Chemistry
- The University of Manchester
- Manchester
- UK
- Photon Science Institute
| | | | | | - Christine Terryn
- Plate-forme IBISA
- SFR CAP-SANTE
- Université de Reims Champagne-Ardenne
- Reims
- France
| | - Fabien Miomandre
- Laboratoire PPSM
- UMR CNRS 8531
- Ecole Normale Supérieure de Cachan
- F-94235 Cachan
- France
| | - Gilles Lemercier
- University of Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims UMR CNRS no 7312-C2POM Team
- F-51687 Reims Cedex 2
- France
- GdR CNRS no 3049 “Photomed”
| | - Louise S. Natrajan
- School of Chemistry
- The University of Manchester
- Manchester
- UK
- Photon Science Institute
| |
Collapse
|