1
|
Li Y, Li S, Huang Z, Zhang D, Jia Q. Research progress of fluorescent composites based on cyclodextrins: Preparation strategies, fluorescence properties and applications in sensing and bioimaging. Anal Chim Acta 2024; 1316:342878. [PMID: 38969399 DOI: 10.1016/j.aca.2024.342878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024]
Abstract
Fluorescence analysis has been regarded as one of the commonly used analytical methods because of its advantages of simple operation, fast response, low cost and high sensitivity. So far, various fluorescent probes, with noble metal nanoclusters, quantum dots, organic dyes and metal organic frameworks as representatives, have been widely reported. However, single fluorescent probe often suffers from some deficiencies, such as low quantum yield, poor chemical stability, low water solubility and toxicity. To overcome these disadvantages, the introduction of cyclodextrins into fluorescent probes has become a fascinating approach. This review (with 218 references) systematically covers the research progress of fluorescent composites based on cyclodextrins in recent years. Preparation strategies, fluorescence properties, response mechanisms and applications in sensing (ions, organic pollutants, bio-related molecules, temperature, pH) and bioimaging of fluorescent composites based on cyclodextrins are summarized in detail. Finally, the current challenges and future perspectives of these composites in relative research fields are discussed.
Collapse
Affiliation(s)
- Yiqi Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songrui Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dawei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Zhou J, Wang X, Wang D, Yuan L, Hao J, Hou J, Wu J, Lin P. Design and application of Cd 2+ polypeptide fluorescent probes based on Aggregation Induced Emission (AIE). J Mol Histol 2024; 55:581-588. [PMID: 38758519 DOI: 10.1007/s10735-024-10201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Cadmium is a toxic heavy metal, which is both an environmental pollutant, and a threat to human health. A fluorescent probe was developed to detect Cd2+ selectively, sensitively, and quickly. This study reports the successful development of a polypeptide fluorescent probe TPE-HC (TPE-His-Pro-Gly-Cys) which selectively detects Cd2+ by Aggregation-Induced Emission effect. After fluorescence excitation, Cd2+ can be effectively detected based on the change of fluorescence intensity. The detection limit of Cd2+ in buffer solution was determined to be 151 nM (R2 = 0.9933). This probe exhibits high sensitivity, high cell permeabilit y, and low biological toxicity, and can perform live cell imaging under biological conditions. This study indicates that TPE-HC can detect Cd2+ in biological environments.
Collapse
Affiliation(s)
- Jiang Zhou
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| | - Xuejiao Wang
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| | - Dajiang Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liangchao Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Artificial Intelligence Biomedicine, Engineering Research Center of Protein and Peptide Medicine, Nanjing University, Nanjing, 210023, P. R. China
| | - Junlei Hao
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| | - Jingcheng Hou
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China.
| | - Pengcheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China.
| |
Collapse
|
3
|
Kumar H, Obrai S. Ratiometric fluorescent sensing of melatonin based on inner filter effect and smartphone established detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123309. [PMID: 37716042 DOI: 10.1016/j.saa.2023.123309] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/18/2023]
Abstract
Melatonin (MLT) is a crucial neurohormone having inhibitory effects over various types of cancer. In this work, 3,6-Diaminocarbazole (DAC), a fluorescent probe is utilized to detect MLT in a highly sensitive, selective and facile way. The unique feature of present work is that MLT is sensed by ratiometric fluorescent technique based on the inner filter effect (IFE) using DAC at an emission wavelength of 310 nm. As a result, a noticeable change in color from red to cyan is observed and the quantitative analysis of fluorescence signals at these wavelengths are used to detect MLT observing a linear relationship between the ratio of emission intensities and the concentration of MLT over a linear range of 0 to 78 μM. DAC can accurately measure the detailed quantity of MLT with a limit of detection of 30 nM and has proved to be an efficient sensing probe due to its excellent molar absorptivity and high photoluminescence quantum yield (PLQY). Sensing characterization was carried out UV-Vis, steady-state, and time- resolved fluorescence spectroscopic techniques. The smartphone app "RGB colour detector" value has been successfully linked with the considerable detectable color changes of DAC on addition of MLT. HOMO-LUMO have been calculated using DFT with B3LYP/6-31G(d,p) level and band gaps of 3.77 eV and 4.91 eV were found for DAC and MLT, respectively. Electrons are not allowed energetically to transfer from MLT to DAC, as is evident from their band gaps. Therefore, IFE can be considered the foremost method in fluorescence quenching of present investigation. The developed sensor was verified by spiking of MLT in human serum.
Collapse
Affiliation(s)
- Himanshu Kumar
- Department of Chemistry, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab 144011, India
| | - Sangeeta Obrai
- Department of Chemistry, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab 144011, India.
| |
Collapse
|
4
|
Uttam Gawas R, Thakuri A, Acharya R, Banerjee M, Chatterjee A. Amplification of AIE-effect of tetraphenylethylene on solid support: Formation of a sensitive fluorescent nanosensor for turn-on detection of Cu2+ and successive sensing of ascorbate ions. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Danilescu O, Bourosh P, Kulikova OV, Chumakov YM, Bulhac I, Croitor L. Dihydrazone Schiff base ligands – appropriate chemosensors for Cd(II) detection. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Niu X, Zhang H, Wu X, Zhu S, Feng H, Liu W. A novel “turn-on” fluorescent sensor based on Tetraphenylethylene-planarized bis-Schiff base for dual-state TFA detection. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Wang JH, Liu YM, Chao JB, Wang Y, Wang H, Shuang SM. A phenazine-imidazole based ratiometric fluorescent probe for Cd 2+ ions and its application in in vivo imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1462-1470. [PMID: 35343532 DOI: 10.1039/d1ay02176a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A new phenazine-imidazole based Schiff base (PIS) fluorescent probe has been developed for the ratiometric detection of Cd2+ ions in aqueous media at physiological pH. PIS upon binding with Cd2+ ions shows red shifted fluorescence and thereby, permits ratiometric detection of Cd(II) ions. A detection limit down to 2.10 × 10-8 M was determined for Cd2+ quantitation. Also, the accompanying apparent fluorescence color change (from yellow to orange red) is noticeable to the naked eye under a UV-lamp. The sensing mechanism could be attributed to the 1 : 1 PIS-Cd complexation, followed by extension of the conjugation due to better planarity and modulation of the charge transfer efficiency in the probe. This was complemented by solvatochromism and density functional theory calculations. Furthermore, PIS was used to detect Cd2+ in Oxya chinensis cells, zebrafish larvae and live tissues of Arabidopsis thaliana under a fluorescence microscope, showing great potential in analyzing living biosystems.
Collapse
Affiliation(s)
- Jian Hua Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Yao Ming Liu
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, PR China
| | - Jian Bin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, PR China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Hui Wang
- College of Chemistry & Material Science, Shanxi Normal University, Linfen, 041004, PR China.
| | - Shao Min Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
8
|
Lin X, Wang X, Li R, Wang Z, Liu W, Chen L, Chen N, Sun S, Li Z, Hao J, Lin B, Xie L. Development of a New Multiple Stimuli-Responsive Fluorescent Material Using the Minus Strategy Based on the Structure of Tetraphenyl-1,3-butadiene. ACS OMEGA 2022; 7:10994-11001. [PMID: 35415344 PMCID: PMC8991897 DOI: 10.1021/acsomega.1c06916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
In this study, we designed and synthesized a new class of aggregation-induced emission luminogens, which was inspired and developed from the structure of tetraphenyl-1,3-butadienes derivative (TPB-1) through the minus strategy by removing one of the phenyl groups. Among them, L1 and L4 exhibited an aggregation-induced emission effect and multistimuli-responsive chromic behavior. Moreover, two types of single crystals of L1 were obtained, and their different emission behaviors were elucidated clearly by analyzing the single-crystal data.
Collapse
Affiliation(s)
- Xiang Lin
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, PR China
| | - Xinli Wang
- Department
of Oncology, Fujian Medical University Union
Hospital, Fuzhou, Fujian 350001, PR China
| | - Renfu Li
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, PR
China
| | - Zexin Wang
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, PR China
| | - Wei Liu
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, PR China
| | - Liwei Chen
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, PR China
| | - Nannan Chen
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, PR China
| | - Shitao Sun
- Department
of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Zhenli Li
- Department
of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jinle Hao
- Department
of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Bin Lin
- Department
of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Lijun Xie
- Fujian
Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, PR China
| |
Collapse
|
9
|
Zhu S, Khan MA, Kameda T, Xu H, Wang F, Xia M, Yoshioka T. New insights into the capture performance and mechanism of hazardous metals Cr 3+ and Cd 2+ onto an effective layered double hydroxide based material. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128062. [PMID: 34929593 DOI: 10.1016/j.jhazmat.2021.128062] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The phosphonate functionalized layered double hydroxide constructed through intercalation reaction, and efficiently applied to capture toxicant metal ions. The characterization results indicated that the functionalized composite with many functional groups has adsorption potential to heavy metals. The strong chelation of the phosphonate groups with heavy metal ions proved it an excellent adsorbent leading to a maximum adsorption capacity of 156.95 mg/g (Cr3+) and 198.34 mg/g (Cd2+) separately. The data of kinetics and isotherm revealed that the chelating adsorption was dominated by chemisorption and monolayer interaction. Notably, the spent adsorbent presented satisfactory reusability after six cycles. Furthermore, the Forcite simulation with the CLAYFF-CVFF force field implied that the critical mechanism for modifiers and the surface sites of the interlayer is electrostatic interaction. Our in-depth exploration in terms of the weak interactions not only demonstrated the strength and nature but also provided a novel way to intuitively capture the type of interactions that occurred around interesting regions. In the end, we made detailed investigations on the chelation mechanism, and the covalent nature played a leading role in the binding interaction. This work provides a valuable strategy for researchers to design novel materials in practice.
Collapse
Affiliation(s)
- Sidi Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Muhammad Asim Khan
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tomohito Kameda
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Haihua Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fengyun Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Mingzhu Xia
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Toshiaki Yoshioka
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan.
| |
Collapse
|
10
|
Zhang KR, Hu M, Luo J, Ye F, Zhou TT, Yuan YX, Gao ML, Zheng YS. Pseudo-crown ether having AIE and PET effects from a TPE-CD conjugate for highly selective detection of mercury ions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
He Y, Chen L, He R, Zhong K, Tang L. Research Progress of Fluorescence Probes Constructed by Cyclodextrin Derivatives and Inclusion Complexes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zalmi GA, Jadhav RW, Mirgane HA, Bhosale SV. Recent Advances in Aggregation-Induced Emission Active Materials for Sensing of Biologically Important Molecules and Drug Delivery System. Molecules 2021; 27:150. [PMID: 35011382 PMCID: PMC8746362 DOI: 10.3390/molecules27010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence and development of aggregation induced emission (AIE) have attracted worldwide attention due to its unique photophysical phenomenon and for removing the obstacle of aggregation-caused quenching (ACQ) which is the most detrimental process thereby making AIE an important and promising aspect in various fields of fluorescent material, sensing, bioimaging, optoelectronics, drug delivery system, and theranostics. In this review, we have discussed insights and explored recent advances that are being made in AIE active materials and their application in sensing, biological cell imaging, and drug delivery systems, and, furthermore, we explored AIE active fluorescent material as a building block in supramolecular chemistry. Herein, we focus on various AIE active molecules such as tetraphenylethylene, AIE-active polymer, quantum dots, AIE active metal-organic framework and triphenylamine, not only in terms of their synthetic routes but also we outline their applications. Finally, we summarize our view of the construction and application of AIE-active molecules, which thus inspiring young researchers to explore new ideas, innovations, and develop the field of supramolecular chemistry in years to come.
Collapse
Affiliation(s)
| | | | | | - Sheshanath V. Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, India; (G.A.Z.); (R.W.J.); (H.A.M.)
| |
Collapse
|
13
|
Tetraphenylethylene-Substituted Bis(thienyl)imidazole (DTITPE), An Efficient Molecular Sensor for the Detection and Quantification of Fluoride Ions. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fluoride ion plays a pivotal role in a range of biological and chemical applications however excessive exposure can cause severe kidney and gastric problems. A simple and selective molecular sensor, 4,5-di(thien-2-yl)-2-(4-(1,2,2-triphenylvinyl)-phenyl)-1H-imidazole, DTITPE, has been synthesized for the detection of fluoride ions, with detection limits of 1.37 × 10−7 M and 2.67 × 10−13 M, determined by UV-vis. and fluorescence spectroscopy, respectively. The variation in the optical properties of the molecular sensor in the presence of fluoride ions was explained by an intermolecular charge transfer (ICT) process between the bis(thienyl) and tetraphenylethylene (TPE) moieties upon the formation of a N-H---F− hydrogen bond of the imidazole proton. The sensing mechanism exhibited by DTITPE for fluoride ions was confirmed by 1H NMR spectroscopic studies and density functional theory (DFT) calculations. Test strips coated with the molecular sensor can detect fluoride ions in THF, undergoing a color change from white to yellow, which can be observed with the naked eye, showcasing their potential real-world application.
Collapse
|
14
|
Zhang Y, Zhou S, Liu H, Tang X, Zhou H, Cai H. Nitrogen-doped MoS2 QDs as fluorescent probes for sequential dual-target detection and their microfluidic logic gate operations. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Zalmi GA, Gawade VK, Nadimetla DN, Bhosale SV. Aggregation Induced Emissive Luminogens for Sensing of Toxic Elements. ChemistryOpen 2021; 10:681-696. [PMID: 34240566 PMCID: PMC8266767 DOI: 10.1002/open.202100082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
The major findings in the growing field of aggregation induced emissive (AIE) active materials for the detection of environmental toxic pollutants have been summarized and discussed in this Review article. Owing to the underlying photophysical phenomenon, fluorescent AIE active molecules show more impact on sensing applications. The major focus in current research efforts is on the development of AIE active materials such as TPE based organic fluorescent molecules, metal organic framework, and polymers that can be employed for the detection of toxic pollutants such as CN- , NO2- , Hg2+ , Cd2+ , As3+ , As5+ , F- , Pb2+ , Sb3+ ions.
Collapse
Affiliation(s)
- Geeta A. Zalmi
- School of Chemical SciencesGoa UniversityTaleigaoPlateau Goa403206India
| | - Vilas K. Gawade
- School of Chemical SciencesGoa UniversityTaleigaoPlateau Goa403206India
| | | | | |
Collapse
|
16
|
Cai L, Zhang H, Guo J, Liu S, Jia YG. Polypseudorotaxanes Derived from Tetraphenylethylene: Preparation and Tandem-Activated Aggregation-Induced Emission. Biomacromolecules 2021; 22:2248-2255. [PMID: 33866788 DOI: 10.1021/acs.biomac.1c00328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuning the fluorescence of aggregation-induced emission (AIE)-based materials in a reversible way is essential and a requisite for their applications. The multiple host-guest interactions of polypseudorotaxanes (PPRs) could alter the aggregation state of hydrophobic AIE-based polymeric materials and consequently switch the fluorescence. Herein, tetraphenylethylene (TPE) as a typical AIE molecule has been incorporated into the main chains of the guest polyurethane via a step condensation between poly(ethylene glycol) (PEG)-based dicarbonate and TPE-diamine along with the cleavable disulfide bonds. γ-Cyclodextrins (γ-CDs) can selectively recognize the TPE units at the polyurethane chains to afford a PPR. Hydrophilic PEG segments and γ-CD molecules in the PPR could promote the disaggregation of TPE units, suppressing the fluorescence emission of TPE. To restore the aggregated state and fluorescence of TPE units, tris(2-carboxyethyl)phosphine (TCEP) and α-amylase are sequentially introduced to cleave the disulfide bonds and cut α-1,4 glycosidic bonds of γ-CD, reactivating the AIE behavior of PPR tandemly and accomplishing the reversible cycle of tuning the fluorescence of TPE. The present study provides a tandem way to switch the AIE behavior of polymeric materials reversibly.
Collapse
Affiliation(s)
- Lili Cai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianwei Guo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
17
|
He MY, Lin YJ, Kao YL, Kuo P, Grauffel C, Lim C, Cheng YS, Chou HHD. Sensitive and Specific Cadmium Biosensor Developed by Reconfiguring Metal Transport and Leveraging Natural Gene Repositories. ACS Sens 2021; 6:995-1002. [PMID: 33444502 DOI: 10.1021/acssensors.0c02204] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Whole-cell biosensors are useful for monitoring heavy metal toxicity in public health and ecosystems, but their development has been hindered by intrinsic trade-offs between sensitivity and specificity. Here, we demonstrated an effective engineering solution by building a sensitive, specific, and high-response biosensor for carcinogenic cadmium ions. We genetically programmed the metal transport system of Escherichia coli to enrich intracellular cadmium ions and deprive interfering metal species. We then selected 16 cadmium-sensing transcription factors from the GenBank database and tested their reactivity to 14 metal ions in the engineered E. coli using the expression of the green fluorescent protein as the readout. The resulting cadmium biosensor was highly specific and showed a detection limit of 3 nM, a linear increase in fluorescent intensities from 0 to 200 nM, and a maximal 777-fold signal change. Using this whole-cell biosensor, a smartphone, and low-tech equipment, we developed a simple assay capable of measuring cadmium ions at the same concentration range in irrigation water and human urine. This method is user-friendly and cost-effective, making it affordable to screen large amounts of samples for cadmium toxicity in agriculture and medicine. Moreover, our work highlights natural gene repositories as a treasure chest for bioengineering.
Collapse
Affiliation(s)
- Mei-Ying He
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Jen Lin
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Ling Kao
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Pu Kuo
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Sheng Cheng
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Hung David Chou
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
18
|
Lin Y, Zhang D, Li L, Zhang Y. Novel Multifunctional Hybrid Molecules Constructed from β‐Carboline and Naphthalene Anhydride: Aggregation, Deaggregation and Fluorescence Detection. ChemistrySelect 2021. [DOI: 10.1002/slct.202004344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yonggang Lin
- Shaanxi Key Laboratory of Catalysis, College of Chemistry and Environment Science Shaanxi University of Technology Hanzhong 723001 China
| | - Dan Zhang
- Shaanxi Key Laboratory of Catalysis, College of Chemistry and Environment Science Shaanxi University of Technology Hanzhong 723001 China
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation College of Mechanical Engineering, Shaanxi University of Technology Hanzhong 723001 China
| | | |
Collapse
|
19
|
Kang Q, Tang X, Huang H, Jin X, Zhang W, Wang Y. Click Preparation of Triazole-Bridged Aggregation-Induced Emission Aromatic Acid Probe for the Selective Determination of Aluminium Ion. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1771353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Qing Kang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaoying Tang
- School of Science, Tianjin University, Tianjin, China
| | - Hua Huang
- School of Science, Tianjin University, Tianjin, China
| | - Xiaoning Jin
- School of Science, Tianjin University, Tianjin, China
| | - Wandong Zhang
- School of Science, Tianjin University, Tianjin, China
| | - Yong Wang
- School of Science, Tianjin University, Tianjin, China
| |
Collapse
|
20
|
Mondal T, Roy S, Mondal I, Mane MV, Panja SS. Deeper insight into the multifaceted photodynamics of a potential organic functional material emphasizing aggregation induced emission enhancement (AIEE) properties. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Chen SY, Li Z, Li K, Yu XQ. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213691] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Wu M, Yang DD, Zheng HW, Liang QF, Li JB, Kang Y, Li S, Jiao C, Zheng XJ, Jin LP. A multi-binding site hydrazone-based chemosensor for Zn(ii) and Cd(ii): a new strategy for the detection of metal ions in aqueous media based on aggregation-induced emission. Dalton Trans 2021; 50:1507-1513. [PMID: 33443271 DOI: 10.1039/d0dt04062b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A multi-binding site chemosensor, N-(3-methoxy-2-hydroxybenzylidene)-3-hydroxy-2-naphthahydrazone (H3L), with excited-state intramolecular proton transfer (ESIPT) behaviour was prepared and characterized. It possesses no aggregation-induced emission (AIE) characteristics but can detect Cd2+ and Zn2+ ions selectively in the "off-on" mode based on the AIE of their complexes in the media of THF/HEPES and THF/H2O, respectively, which will provide a new strategy for target detection based on AIE. The detection limits of Zn2+ and Cd2+ were 9.85 × 10-9 M and 1.27 × 10-7 M, respectively. The aggregates of the complexes formed in the detection system were confirmed by DLS data and SEM images. The corresponding Zn2+ (1) and Cd2+ (2) complexes were prepared to investigate the response mechanism. Powder X-ray diffraction and single crystal X-ray diffraction proved that complex 1 is the species formed in the detection system. The chemosensor coordinates with the Cd2+ and Zn2+ ions in different formation and coordination modes, leading to the emission position of the aggregates at 560 and 645 nm, respectively, based on which Cd2+ ions were successfully differentiated from Zn2+ ions. Moreover, the detection of Cd2+ and Zn2+ ions was realized qualitatively via test paper and quantitatively in water.
Collapse
Affiliation(s)
- Min Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Qiong-Fang Liang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Jia-Bin Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yang Kang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Sai Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Chen Jiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Lin-Pei Jin
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
23
|
An J, Chen M, Hu N, Hu Y, Chen R, Lyu Y, Guo W, Li L, Liu Y. Carbon dots-based dual-emission ratiometric fluorescence sensor for dopamine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118804. [PMID: 32799189 DOI: 10.1016/j.saa.2020.118804] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The detection of Dopamine (DA) is significant for disease surveillance and prevention. However, the development of the precise and simple detection techniques is still at a preliminary stage due to their high tester requirements, time-consuming process, and low accuracy. In this work, we present a novel dual-emission ratiometric fluorescence sensing system based on a hybrid of carbon dots (CDs) and 7-amino-4-methylcoumarin (AMC) to quickly monitor the DA concentration. Linked via amide bonds, the CDs and AMC offered dual-emissions with peaks located at 455 and 505 nm, respectively, under a single excitation wavelength of 300 nm. Attributed to the fluorescence of the CDs and AMC in the nanohybrid system can be quenched by DA, the concentration of DA could be quantitatively detected by monitoring the ratiometric ratio change in fluorescent intensity. More importantly, the CDs-AMC-based dual-emission ratiometric fluorescence sensing system demonstrated a remarkable linear relationship in the range of 0-33.6 μM to detection of DA, and a low detection limit of 5.67 nM. Additionally, this sensor successfully applied to the detection of DA in real samples. Therefore, the ratiometric fluorescence sensing system may become promising to find potential applications in biomedical dopamine detection.
Collapse
Affiliation(s)
- Jia An
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China; Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 400044, China
| | - Meizhu Chen
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Nan Hu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Yongqin Hu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China; Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 400044, China
| | - Rubing Chen
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Ying Lyu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China
| | - Wenxi Guo
- College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Lijie Li
- Centre for NanoHealth, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing 400044, China; Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 400044, China; Centre for NanoHealth, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
24
|
Li C, Wang YT, Chen Y, Wang Y. Hyperbranched Poly(amido amine) Entrapped Tetraphenylethene as a Fluorescence Probe for Sequential Quadruple-Target Detection and Its Potential as a Chemical Logic Gate. Anal Chem 2020; 92:9755-9763. [PMID: 32575978 DOI: 10.1021/acs.analchem.0c01155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fluorescence sensors exhibit great potential as molecular logic gates to perform computation on a nanometer scale. For achieving the more complex artificial intelligence activities, developing complex logic gates using multitarget sensing systems with multi-input characteristics is highly desirable. Herein, a water-soluble quadruple-target fluorescence sensor that embeds a small amount (4.1 wt %) of tetraphenylethene (TPE) units into hyperbranched poly(amido amine) (TPE-HPA) has been designed. The nonfluorescent TPE-HPA could experience the fluorescence "off-on-off-on-off" by sequential addition of sodium hexametaphosphate (SHMP), Fe3+, ascorbic acid (AA), and H2O2. The as-prepared quadruple-target sensor showed good sensitivity and selectivity to SHMP, Fe3+, AA, and H2O2, and the limit of detection values were 29 nM, 20 nM, 0.66 μM, and 0.78 μM, respectively. On the basis of the multitarget sensing nature of TPE-HPA, chemical or electrochemical-induced logic gates were constructed, including YES, NOT, OR, NOR, NAND, INHIBIT, IMP, and higher logic systems.
Collapse
Affiliation(s)
- Cheng Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| | - Yi-Ting Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| | - Yu Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, People's Republic of China.,Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| |
Collapse
|
25
|
Wang H, Da L, Yang L, Chu S, Yang F, Yu S, Jiang C. Colorimetric fluorescent paper strip with smartphone platform for quantitative detection of cadmium ions in real samples. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122506. [PMID: 32193122 DOI: 10.1016/j.jhazmat.2020.122506] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/23/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Instrument-free, portable and direct read-out mini-devices have wider application prospects in various fields, especially for real-time/on-site detection in environmental science. Herein, a colorimetric fluorescent sensor for detecting cadmium ions (Cd2+) based on aggregation-induced emission (AIE) was established, fluorescent paper strips integrated with smartphone platform was further designed for the visualization, on-site and quantitative detection of Cd2+. The colorimetric fluorescent sensor was prepared by mixing orange emission glutathione-stabilized gold nanoclusters (AuNCs) with blue emission ethylenediamine functionalized graphene oxide (EDA-GO), and introducing copper ions (Cu2+) to quench the orange emission of AuNCs while the blue emission served as a background reference without color change. The Cd2+ can induce Cu2+-GSH-AuNCs to aggregation and emit orange fluorescence, causing the fluorescent color of the sensor changed from blue to red with the limit of detection (LOD) as low as 33.3 nM in solution. Moreover, fluorescent paper strips integrated with smartphone platform has a sensitive detection of Cd2+ with the LOD of 0.1 μM in rice samples. The method reported here might have great application prospects in real-time monitoring of foods safety and environmental protection.
Collapse
Affiliation(s)
- Haiqian Wang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Liangguo Da
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan, 232038, China
| | - Liang Yang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Suyun Chu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Fan Yang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shaoming Yu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Changlong Jiang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| |
Collapse
|
26
|
Chen X, Gao H, Deng Y, Jin Q, Ji J, Ding D. Supramolecular Aggregation-Induced Emission Nanodots with Programmed Tumor Microenvironment Responsiveness for Image-Guided Orthotopic Pancreatic Cancer Therapy. ACS NANO 2020; 14:5121-5134. [PMID: 32283914 DOI: 10.1021/acsnano.0c02197] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Supramolecular nanomaterials as drug carriers have recently received increasing attention due to their intrinsic merits such as high stability, strong inclusion capability, and facile modification of the parental structure; however, intelligent ones with combined capacities of long blood circulation, highly efficient tumor cell uptake, and site-oriented drug release inside tumor cells are still rather limited. Herein, we report a strategy using supramolecular aggregation-induced emission (AIE) nanodots for image-guided drug delivery, which integrate both the advantages of AIE and supramolecular nanomaterials. The supramolecular AIE dots are prepared by the host-guest coassembly of the matrix metalloproteinase-2 (MMP-2) sensitive PEG-peptide (PEG2000-RRRRRRRR (R8)-PLGLAG-EKEKEKEKEKEK (EK6)) and functional α-cyclodextrins (α-CD) derivatives that are conjugated with the anticancer drug gemcitabine (GEM) and a far-red/near-infrared fluorescent rhodanine-3-acetic acid-based AIE luminogen, respectively. The supramolecular AIE dots realize long blood circulation time by virtue of the zwitterionic stealth peptide EK6. After largely accumulating in tumor tissues by the enhanced permeability and retention effect, the supramolecular AIE dots can successively respond to the tumor-overexpressed MMP-2 and intracellular reductive microenvironment, achieving both enhanced cancer cellular uptake and selective GEM release within cancer cells, which thus exhibit excellent tumor inhibition ability in both subcutaneous and orthotopic pancreatic tumor models.
Collapse
Affiliation(s)
- Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Heqi Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
27
|
Wang Y, Nie J, Fang W, Yang L, Hu Q, Wang Z, Sun JZ, Tang BZ. Sugar-Based Aggregation-Induced Emission Luminogens: Design, Structures, and Applications. Chem Rev 2020; 120:4534-4577. [DOI: 10.1021/acs.chemrev.9b00814] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yijia Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jingyi Nie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Wen Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ling Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
28
|
Yang Z, Chen X, Li S, Ma W, Li Y, He Z, Hu H, Wang T. Effective removal of Cd(II) from aqueous solution based on multifunctional nanoporous silicon derived from solar kerf loss waste. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121522. [PMID: 31740312 DOI: 10.1016/j.jhazmat.2019.121522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Recycling of kerf-loss slurry waste has become a meaningful and urgent issue in recent years. In this study, a novel hybrid material was prepared by Ag-assisted chemical etching kerf loss silicon waste and subsequently functionalized by a facile three-step graft process of 3-aminopropyltrimethoxy-silane, maleic anhydride, and ethylenediamine, named as EDA-MAH-APTES-NPSi, which could work as an effective adsorbent for removal of Cd(Ⅱ) from aqueous solution. The effect of initial pH, absorption duration, and metal ion concentrations on absorption performance were investigated. The adsorption equilibrium achieved after 120 min, the maximum adsorption capacity reached up to 210.01 mg/g and pH was at 5.5. The adsorption kinetic was fitted in the pseudo-second-order model and the Freundlich equation provided an accurate description for adsorption behavior. The XPS and FT-IR analysis manifested that Cd(Ⅱ) removal might be ascribed to the adsorption on the surface organic functional group by chemical chelating reaction and the ion exchange reaction. The EDA-MAH-APTES-NPSi maintained excellent adsorption capacity which decreased approximately 15.3 % (from 40.5-34.3 mg/g) after five successive regenerated cycles. The work confirms the potential of Cd(Ⅱ) removal from aqueous solution based on the modified NPSi and opens up a new way for recycling silicon cutting waste.
Collapse
Affiliation(s)
- Ziheng Yang
- Institution of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Xiuhua Chen
- Institution of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Shaoyuan Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Silicon Metallurgy and Silicon Material Engineering Research Center of Universities in Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China.
| | - Wenhui Ma
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Silicon Metallurgy and Silicon Material Engineering Research Center of Universities in Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | - Yi Li
- Institution of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Zudong He
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Silicon Metallurgy and Silicon Material Engineering Research Center of Universities in Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | - Huanran Hu
- Institution of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Tong Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Silicon Metallurgy and Silicon Material Engineering Research Center of Universities in Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
29
|
AIE active TPE mesogens with p6mm columnar and Im3m cubic mesophases and white light emission property. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
CHEN JM, ZENG J, ZHANG Z, ABULIKEMU AR. A Novel Colorimetric Fluorescent Probe for Fe3+ Based on Tetraphenylethylene-rhodamine. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61196-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Aich K, Das S, Gharami S, Patra L, Mondal TK. Two New Quinoline‐Benzothiazole Blended ‘Off‐On’ Type Fluorescent Probes Exclusively Detect Cd
2+. ChemistrySelect 2019. [DOI: 10.1002/slct.201901582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Krishnendu Aich
- Department of ChemistryJadavpur University, Jadavpur Kolkata-700 032 India
| | - Sangita Das
- Department of ChemistryJadavpur University, Jadavpur Kolkata-700 032 India
| | - Saswati Gharami
- Department of ChemistryJadavpur University, Jadavpur Kolkata-700 032 India
| | - Lakshman Patra
- Department of ChemistryJadavpur University, Jadavpur Kolkata-700 032 India
| | - Tapan Kumar Mondal
- Department of ChemistryJadavpur University, Jadavpur Kolkata-700 032 India
| |
Collapse
|
32
|
Liu J, Zhao X, Xu H, Wang Z, Dai Z. Amino Acid-Capped Water-Soluble Near-Infrared Region CuInS2/ZnS Quantum Dots for Selective Cadmium Ion Determination and Multicolor Cell Imaging. Anal Chem 2019; 91:8987-8993. [DOI: 10.1021/acs.analchem.9b01183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jia Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xinyu Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanyu Xu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Nanjing Normal University Center for Analysis and Testing, Nanjing, 210023, P. R. China
| |
Collapse
|
33
|
Low Molecular Weight Fluorescent Probes (LMFPs) to Detect the Group 12 Metal Triad. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7020022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fluorescence sensing, of d-block elements such as Cu2+, Fe3+, Fe2+, Cd2+, Hg2+, and Zn2+ has significantly increased since the beginning of the 21st century. These particular metal ions play essential roles in biological, industrial, and environmental applications, therefore, there has been a drive to measure, detect, and remediate these metal ions. We have chosen to highlight the low molecular weight fluorescent probes (LMFPs) that undergo an optical response upon coordination with the group 12 triad (Zn2+, Cd2+, and Hg2+), as these metals have similar chemical characteristics but behave differently in the environment.
Collapse
|
34
|
Liu X, Li N, Xu MM, Jiang C, Wang J, Song G, Wang Y. Turn on fluorescent detection for Cd 2+ based on surfactant controlled squaraine aggregation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:236-242. [PMID: 30340204 DOI: 10.1016/j.saa.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
A thymine moiety as ion binding accepter was introduced into asymmetric squaraine fluorophore by amide coupling reaction to develop a new thymine-squaraine based fluorescent chemosensor (SQ). Its detection ability towards heavy metal ions was investigated by UV-vis and fluorescent spectrometry. The results showed that the sensor had high selectivity towards Cd2+ over the other metal ions in aqueous media. Moreover, it was shown that the turn on fluorescence signal occurred in the present of high concentration of cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) solution which resulting in deaggregations of SQ. The stoichiometric ratio was determined by Job's plot analysis as 1:1 and the binding constant as 2.03 × 103 M-1 for the complex between Cd2+ and SQ was further calculated by the Benesi-Hilderbrand plot. The complexation mechanism was proposed according to ESI-MS and NMR results. The following DFT calculation fully supported that the detailed coordination mode of Cd2+ and SQ went through six-membered carbonyl oxygen and the CO group in the amide chain. Finally, the SQ sensor was successfully applied in waste water sample analysis.
Collapse
Affiliation(s)
- Xiaoqian Liu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, 213164, Jiangsu, China.
| | - Na Li
- School of Pharmaceutical Engineering and Life Science, Changzhou University, 213164, Jiangsu, China
| | - Min-Min Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212003, Jiangsu, China
| | - Jianhao Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, 213164, Jiangsu, China
| | - Guoqiang Song
- School of Pharmaceutical Engineering and Life Science, Changzhou University, 213164, Jiangsu, China.
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
35
|
Li X, Sun Y, Chen J, Wu Z, Cheng P, Li Q, Fang J, Chen D. Enhanced fluorescence quantum yield of syndiotactic side-chain TPE polymers via Rh-catalyzed carbene polymerization: influence of the substitution density and spacer length. Polym Chem 2019. [DOI: 10.1039/c8py01729h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The fluorescence quantum yields of the TPE-based C1 polymers also increase with the shortened spacer lengths and further improve by about 20% as compared with the corresponding C2 polyacrylate counterparts.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Yuhao Sun
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Jian Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Zhongying Wu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Pin Cheng
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Qian Li
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Jianglin Fang
- Center for Materials Analysis
- Nanjing University
- Nanjing 210093
- China
| | - Dongzhong Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| |
Collapse
|
36
|
Wang B, Li C, Yang L, Zhang C, Liu LJ, Zhu S, Chen Y, Wang Y. Tetraphenylethene decorated with disulfide-functionalized hyperbranched poly(amido amine)s as metal/organic solvent-free turn-on AIE probes for biothiol determination. J Mater Chem B 2019. [DOI: 10.1039/c9tb00214f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel hyperbranched poly(amido amine)s AIE probes were developed for organic solvent-free biothiol sensing.
Collapse
Affiliation(s)
- Bin Wang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University
- Tianjin 300384
- P. R. China
| | - Cheng Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University
- Tianjin 300354
- P. R. China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Congrou Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- P. R. China
| | - Li-Juan Liu
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University
- Tianjin 300384
- P. R. China
| | - Sen Zhu
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University
- Tianjin 300384
- P. R. China
| | - Yu Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University
- Tianjin 300354
- P. R. China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University
- Tianjin 300354
- P. R. China
| |
Collapse
|
37
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
38
|
Wang K, Lu H, Liu B, Yang J. A high-efficiency and low-cost AEE polyurethane chemo-sensor for Fe3+ and explosives detection. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Xiong J, Li Z, Tan J, Ji S, Sun J, Li X, Huo Y. Two new quinoline-based regenerable fluorescent probes with AIE characteristics for selective recognition of Cu 2+ in aqueous solution and test strips. Analyst 2018; 143:4870-4886. [PMID: 30128460 DOI: 10.1039/c8an00940f] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two novel highly selective quinoline-based fluorescent probes (1 and 2) with an aggregation induced emission (AIE) feature have been designed and synthesized for the rapid analysis of Cu2+ ions in aqueous media and on paper strips with a fluorescence quenching mechanism. Moreover, probes 1 and 2 exhibit excellent sensitivity and anti-interference for Cu2+ detection, and the detection limits are as low as 1.3 × 10-8 M and 8.5 × 10-8 M, respectively, which are much lower than the allowable standard of Cu2+ (∼20 μM) in drinking water (EPA). More importantly, these two probes were successfully applied for the determination of Cu2+ in real aqueous samples and fabrication of simple device test strips for rapid and on-site detection of Cu2+ ions. Interestingly, they can also be regenerated by adding an excess of S2-. Additionally, the crystallographic structure of probe 1 was confirmed through a single crystal X-ray study. Job's plot analysis and ESI-MS spectroscopic studies reflect the 1 : 1 complexation of the 1-Cu2+ and 2-Cu2+ complexes. Furthermore, DFT/TDDFT calculations were performed in order to help in understanding the electronic properties of the complexes and the chelation-induced quenching mechanism.
Collapse
Affiliation(s)
- Jingwen Xiong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Click Access to a Cyclodextrin-Based Spatially Confined AIE Material for Hydrogenase Recognition. SENSORS 2018; 18:s18041134. [PMID: 29642489 PMCID: PMC5948543 DOI: 10.3390/s18041134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The spatial confinement of conjugated phenyl rotators is a compulsory requirement for the fluorescence enhancement of aggregation induced emission (AIE) molecules. This work reports a novel spatially confined AIE material by restricting several tetraphenylethylene (TPE) molecules around the primary face of β-cyclodextrin (CD) via a Cu(I) catalytic 1,3-dipolar cycloaddition reaction (click chemistry). The spatial confinement effect was found to significantly enhance the fluorescence emission when compared with a single TPE modified CD. In addition, the emission maxima took place with the dimethyl sulfoxide volume ratio of 30% in a water mixture, which is remarkably different from traditional AIE molecules. Benefiting from the CD’s complexation effect, this material exhibits a selective fluorescence quenching property in certain hydrogenases and can be used as a fluorescence probe for hydrogenase sensing. This demonstrates the potential of the spatially confined AIECD for practical applications.
Collapse
|
41
|
Chen S, Liu W, Ge Z, Zhang W, Wang K, Hu Z. Synthesis and studies of axial chiral bisbenzocoumarins: Aggregation-induced emission enhancement properties and aggregation-annihilation circular dichroism effects. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:141-146. [PMID: 29223459 DOI: 10.1016/j.saa.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/12/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Axial chiral bisbenzocoumarins were synthesized for the first time by converting naphthanol units in 1,1'-binaphthol (BINOL) molecule to the benzocoumarin rings. The substitute groups on 3,3'-positions of bisbenzocoumarins showed significant influence on their aggregation-induced emission enhancement (AEE) properties. It was also found that BBzC1 with ester groups on 3,3'-positions exhibit an abnormal aggregation-annihilation circular dichroism (AACD) phenomenon, which could be caused by the decrease of the dihedral angle between adjacent benzocoumarin rings in the aggregation state. The single crystal structure of BBzC1 showed that the large dihedral angle in molecule prohibited the strong π-π stacking interactions, which could be main factors for its AEE properties.
Collapse
Affiliation(s)
- Shaojin Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Wei Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhaohai Ge
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Wenxuan Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Kunpeng Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhiqiang Hu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
42
|
Zhao YH, Luo Y, Wang H, Guo T, Zhou H, Tan H, Zhou Z, Long Y, Tang Z. A New Fluorescent Probe Based on Aggregation Induced Emission for Selective and Quantitative Determination of Copper(II) and its Further Application to Cysteine Detection. ChemistrySelect 2018. [DOI: 10.1002/slct.201702603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yun-Hui Zhao
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology, Xiangtan; Hunan 411201 China
| | - Yueyang Luo
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology, Xiangtan; Hunan 411201 China
| | - Han Wang
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology, Xiangtan; Hunan 411201 China
| | - Tao Guo
- College of Chemistry, Chemical and Environmental Engineering; Henan University of Technology, Zhengzhou; Henan 450001 PR China
| | - Hangbin Zhou
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology, Xiangtan; Hunan 411201 China
| | - Hailong Tan
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology, Xiangtan; Hunan 411201 China
| | - Zhihua Zhou
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology, Xiangtan; Hunan 411201 China
| | - Yunfei Long
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology, Xiangtan; Hunan 411201 China
| | - Zilong Tang
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education; Hunan University of Science and Technology, Xiangtan; Hunan 411201 PR China
| |
Collapse
|
43
|
Wang X, Li J, Yan Q, Chen Y, Fan A, Wang Z, Zhao Y. In Situ Probing Intracellular Drug Release from Redox-Responsive Micelles by United FRET and AIE. Macromol Biosci 2018; 18. [PMID: 29360270 DOI: 10.1002/mabi.201700339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Indexed: 12/23/2022]
Abstract
Redox-responsive micelles are versatile nanoplatforms for on-demand drug delivery, but the in situ evaluation of drug release is challenging. Fluorescence resonance energy transfer (FRET) technique shows potential for addressing this, while the aggregation-caused quenching effect limits the assay sensitivity. The aim of the current work is to combine aggregation-induced emission (AIE) probe with FRET to realize drug release assessment from micelles. Tetraphenylethene (TPE) is selected as AIE dye and curcumin (Cur) is chosen as the model drug as well as FRET receptor. The drug is covalently linked to a block copolymer via the disulfide bond linker and TPE is also chemically linked to the polymer via an amide bond; the obtained amphiphilic polymer conjugate self-assembles into micelles with a hydrodynamic size of ≈125 nm. Upon the supplement of glutathione or tris(2-carboxyethyl)phosphine) trigger (10 × 10-3 m), the drug release induces the fluorescence increase of both TPE and Cur. Accompanied with the FRET decay, absorption enhancement and particle size increase are observed. The same phenomenon is observed in MCF-7 cells. The FRET-AIE approach can be a useful addition to the spectrum of available methods for monitoring drug release from stimuli-responsive nanomedicine.
Collapse
Affiliation(s)
- Xuelin Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Juanjuan Li
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Qi Yan
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Yanrui Chen
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Aiping Fan
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
44
|
Kumar N, Ansari MY, Kant R, Kumar A. Copper-catalyzed decarboxylative regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles. Chem Commun (Camb) 2018; 54:2627-2630. [DOI: 10.1039/c7cc09934g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalyzed decarboxylative regioselective protocol for the synthesis of 1,5-disubstituted 1,2,3-triazoles via direct annulation of cinnamic acids with aryl azides has been developed. This is the first example of 1,5-disubstituted 1,2,3-triazoles using Cu(ii) as the catalyst, which were generally synthesized using a ruthenium(ii) catalyst.
Collapse
Affiliation(s)
- Navaneet Kumar
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Mohd Yeshab Ansari
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Ruchir Kant
- Molecular and Structural Biology
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Atul Kumar
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
45
|
Panda S, Jadav A, Panda N, Mohapatra S. A novel carbon quantum dot-based fluorescent nanosensor for selective detection of flumioxazin in real samples. NEW J CHEM 2018. [DOI: 10.1039/c7nj04358a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, a carbon quantum dot-based highly selective luminescent probe has been designed for the detection of the pesticide flumioxazinviathe alkyne azide click reaction.
Collapse
Affiliation(s)
- Snigdharani Panda
- Department of Chemistry
- National Institute of Technology Rourkela
- India
| | - Arpita Jadav
- Department of Chemistry
- National Institute of Technology Rourkela
- India
| | - Niranjan Panda
- Department of Chemistry
- National Institute of Technology Rourkela
- India
| | - Sasmita Mohapatra
- Department of Chemistry
- National Institute of Technology Rourkela
- India
| |
Collapse
|
46
|
Zhang Y, Chen X, Liu J, Gao G, Zhang X, Hou S, Wang H. A highly selective and sensitive fluorescent chemosensor for distinguishing cadmium(ii) from zinc(ii) based on amide tautomerization. NEW J CHEM 2018. [DOI: 10.1039/c8nj03465f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A naphthalimide-derived fluorescent sensor termed L2 was designed and synthesized.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Applied Chemistry
- China Agricultural University
- Beijing
- P. R. China
| | - Xiangzhu Chen
- Department of Applied Chemistry
- China Agricultural University
- Beijing
- P. R. China
| | - Jingjing Liu
- Department of Applied Chemistry
- China Agricultural University
- Beijing
- P. R. China
| | - Gui Gao
- Department of Applied Chemistry
- China Agricultural University
- Beijing
- P. R. China
| | - Xueyan Zhang
- Department of Applied Chemistry
- China Agricultural University
- Beijing
- P. R. China
| | - Shicong Hou
- Department of Applied Chemistry
- China Agricultural University
- Beijing
- P. R. China
| | - Hongmei Wang
- Department of Applied Chemistry
- China Agricultural University
- Beijing
- P. R. China
| |
Collapse
|
47
|
Guo S, Liu G, Fan C, Pu S. A highly selective fluorescent probe for detection of Cd2+ and HSO3− based on photochromic diarylethene with a triazole-bridged coumarin-quinoline group. RSC Adv 2018; 8:22786-22798. [PMID: 35539720 PMCID: PMC9081447 DOI: 10.1039/c8ra03443e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/08/2018] [Indexed: 11/24/2022] Open
Abstract
A novel photochromic diarylethene containing a quinoline-linked 3-aminocoumarin Schiff base unit (1O) was synthesized and used for the selective detection of Cd2+ and HSO3−. The synthesized probe exhibited a straightforward response for the selective detection of Cd2+. Its fluorescence emission red-shifted ∼126 nm and was enhanced 24.9 fold in the presence of Cd2+. Meanwhile, the fluorescence color of 1O changed from dark cyan to golden yellow. The binding stoichiometry between 1O and Cd2+ was determined to be 1 : 1. A molecular logic circuit with three inputs and one output was successfully constructed with its light and metal-responsive behaviors. In addition, 1O was able to selectively recognize HSO3− with a 135-fold enhanced fluorescence emission and a notable fluorescence color change from dark cyan to bright cyan. The 1H NMR and mass spectrometry analyses suggest that the HSO3− sensing of 1O is based on the hydrolysis of the Schiff base group of 1O. A novel photochromic diarylethene containing a quinoline-linked 3-aminocoumarin Schiff base unit (1O) was synthesized and used for the selective detection of Cd2+ and HSO3−.![]()
Collapse
Affiliation(s)
- Shuli Guo
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| |
Collapse
|
48
|
Li Q, Li X, Wu Z, Sun Y, Fang J, Chen D. Highly efficient luminescent side-chain polymers with short-spacer attached tetraphenylethylene AIEgens via RAFT polymerization capable of naked eye explosive detection. Polym Chem 2018. [DOI: 10.1039/c8py00710a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The fluorescence quantum yield of side-chain AIE polymers was remarkably promoted just by shortening the linking spacer.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Xiao Li
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Zhongying Wu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Yuhao Sun
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Jianglin Fang
- Center for Materials Analysis
- Nanjing University
- Nanjing 210093
- China
| | - Dongzhong Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education
- Collaborative Innovation Center of Chemistry for Life Sciences
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
| |
Collapse
|
49
|
Zhang Z, Zhang Z, Liu H, Mao X, Liu W, Zhang S, Nie Z, Lu X. Ultratrace and robust visual sensor of Cd 2+ ions based on the size-dependent optical properties of Au@g-CNQDs nanoparticles in mice models. Biosens Bioelectron 2017; 103:87-93. [PMID: 29278816 DOI: 10.1016/j.bios.2017.12.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/07/2017] [Accepted: 12/17/2017] [Indexed: 12/24/2022]
Abstract
Visual inspection is expected as an ideal technique, which can directly and conveniently detect heavy metal ions by observing the color change. Insensitivity of detecting weakly colored heavy transition metal ions and low adsorptivity of metal ions on nanoparticle surface are two main factors hindering the application of visual detection in heavy metal ions detection. Herein, we demonstrated an operational colorimetric sensor based on the color dependence of nanoparticles aggregation to selective and facile detect weakly colored transition heavy metal Cd2+ ions that have been considered as the origin of the "Itai-itai" disease. Uniform colloidal 15nm graphite-like nitride doped carbon quantum dots-capped gold nanoparticle (Au@g-CNQDs) was successfully prepared, wherein the existence of numerous heptazine, carboxyl and hydroxyl groups on the nanoparticle's surface strengthened adsorption of the Cd2+ ions on the surface of Au@g-CNQDs through the "cooperative effect". As a consequence, without expensive and intricate exogenous indicators or other special additives, the Cd2+ ions could sensitively and quickly captured to detect at ultra-low concentration within 30s by the naked-eye. Under the optimal conditions, the Cd2+ ions sensor possesses good analytical performances with a wide linear range of 0.01-3.0μM and a detection limit of 10nM (S/N = 3). Moreover, the biodistribution and aggregation of Cd2+ ions were detected effectively in mice organ tissues suggesting its great potential use for real-word applications.
Collapse
Affiliation(s)
- Zhuoyue Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, PR China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiang Mao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, PR China
| | - Wei Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, PR China
| | - Shouting Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China; Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, PR China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China; Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
50
|
Li K, Liu Y, Li Y, Feng Q, Hou H, Tang BZ. 2,5-bis(4-alkoxycarbonylphenyl)-1,4-diaryl-1,4-dihydropyrrolo[3,2- b]pyrrole ( AAPP) AIEgens: tunable RIR and TICT characteristics and their multifunctional applications. Chem Sci 2017; 8:7258-7267. [PMID: 29081958 PMCID: PMC5633666 DOI: 10.1039/c7sc03076b] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/31/2017] [Indexed: 12/29/2022] Open
Abstract
Novel propeller-like AIEgens with tunable emission were readily prepared and used as a fluorescent thermometer and selective chemosensor for Cd(ii) detection.
Aggregation-induced emission luminogens (AIEgens) have attracted extensive interest for their outstanding luminescence properties in the aggregated state and even in the solid state. In this work, we developed a series of novel AIEgens based on 2,5-bis(4-alkoxycarbonylphenyl)-1,4-diaryl-1,4-dihydropyrrolo[3,2-b]pyrrole (AAPP). The AIEgens can be facilely synthesized through a single-step reaction under mild conditions with satisfactory yields. Interestingly, AAPP was found to have multiple luminous mechanisms that result in variable fluorescence properties. The propeller-like structure of AAPP enables a restricted intramolecular rotation (RIR) process which significantly enhances its fluorescence in the aggregated state (i.e. AIE fluorescence). In addition, there is a donor–acceptor interaction between the heterocycle center and the alkoxycarbonyl units in AAPP which allows a typical twisted intramolecular charge transfer (TICT) process in the dispersed state, resulting in strong fluorescence emissions in non-polar or low-polarity solvents but fluorescence quenching in high-polarity solvents. Due to the tunable RIR and TICT processes and the multiple fluorescence, AAPP compounds exhibit multifunctional applications: (1) as a reversible fluorescent thermometer, AAPP exhibited excellent fatigue resistance. There was a good linear relationship between its fluorescence intensity and temperature from 10 °C to 60 °C. (2) The desethyl AAPP derivative (CAPP) was successfully applied in the detection of Cd(ii) in aqueous solution at neutral pH, and showed a 500-fold fluorescence “turn-on” response to Cd(ii) with good selectivity.
Collapse
Affiliation(s)
- Kai Li
- College of Chemistry and Molecular Engineering , Zhengzhou University , Henan 450001 , P. R. China . ; .,Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Yuanyuan Liu
- College of Chemistry and Molecular Engineering , Zhengzhou University , Henan 450001 , P. R. China . ;
| | - Yuanyuan Li
- College of Chemistry , Chemical and Environmental Engineering , Henan University of Technology , Henan 450001 , P. R. China
| | - Qi Feng
- College of Chemistry and Molecular Engineering , Zhengzhou University , Henan 450001 , P. R. China . ;
| | - Hongwei Hou
- College of Chemistry and Molecular Engineering , Zhengzhou University , Henan 450001 , P. R. China . ;
| | - Ben Zhong Tang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| |
Collapse
|